Photoelectric magnitudes and colours at maximum brightness for 184 Cepheids (Errata: 15 330) Walraven, T.; Muller, A.B.; Oosterhoff, P.T. ## Citation Walraven, T., Muller, A. B., & Oosterhoff, P. T. (1958). Photoelectric magnitudes and colours at maximum brightness for 184 Cepheids (Errata: 15 330). *Bulletin Of The Astronomical Institutes Of The Netherlands*, 14, 81. Retrieved from https://hdl.handle.net/1887/6276 Version: Not Applicable (or Unknown) License: Leiden University Non-exclusive license Downloaded from: https://hdl.handle.net/1887/6276 **Note:** To cite this publication please use the final published version (if applicable). # BULLETIN OF THE ASTRONOMICAL INSTITUTES OF THE NETHERLANDS 1958 APRIL 3 VOLUME XIV NUMBER 484 #### COMMUNICATION FROM THE OBSERVATORY AT LEIDEN ## PHOTO-ELECTRIC MAGNITUDES AND COLOURS AT MAXIMUM BRIGHTNESS FOR 184 CEPHEIDS BY TH. WALRAVEN, A. B. MULLER AND P. TH. OOSTERHOFF Photo-electric magnitudes in blue and yellow and colour-indices were observed for a large number of southern Cepheids with the Rockefeller astrograph of the Leiden station at Johannesburg. The observations were made through a Corning glass filter 5551 and a Schott GG 11 filter. As comparison stars one star in each of the 9 E-regions were used. Data about them are given in Tables 2, 3 and 4. The relation between the magnitudes derived in this paper and the Cape 1953 S system is given in section 5. The Cepheids were observed near phase of maximum brightness, but for some of them complete light- and colour curves were obtained. The programme is nearly complete down to the 12th magnitude and contains also some Cepheids in the northern hemisphere. The individual observations are given in Table 6. In the remarks to this table improved ephemerides are given. The observations are shown graphically in Figures 2, 3, 4, 5 and 6. Table 7 contains the observations of the Cepheids which were insufficiently observed to derive magnitudes and colours at maximum brightness. Sections 8 and 9 show comparisons of the new magnitudes and colours with those derived by other authors and with other photometric systems. In section 10 relations are derived between light-, colour-, radial-velocity amplitudes and periods. The relation between the range of the light-curves and the periods shows a large scatter and does not confirm Eggen's classification of A, B and C type Cepheids. In section 11 the intrinsic colours of Cepheids are discussed. Figure 11 shows a plot of the observed colours at maximum against the logarithm of the periods. The relation adopted for the normal colours, expressed in the Cape S system, is: $$SCI_{max.} = + .oi + .io log P.$$ The conversion of colour excess to total photographic absorption is discussed in section 12 and the period-luminosity relation in section 13. Table 13 contains all the data required to study the spatial distribution for 184 Cepheids. This distribution is discussed in the last section 14. The z co-ordinates were computed relative to the galactic plane as derived by Westerhout. On the basis of the light-and colour curves and the z co-ordinates 22 Cepheids were classified with more or less certainty as population II objects. They have been listed on page 123. The mean z co-ordinate for the Cepheids of population I was found to be - 23.9 pc \pm 5.5 (m.e.) and the mean dispersion around this value \pm 65 pc. Using the radial velocities by Stibbs we derived a value of + 17.4 km/sec/kpc \pm 2.1 (m.e.) for Oort's constant A. A remarkable difference was found in the relation between colour excess and distance for the Carina and Sagittarius regions. Figure 12 shows the projection on the galactic plane of the Cepheids of population I. This figure clearly shows indications of spiral structure. The most interesting feature is an accumulation of Cepheids in the general direction of the galactic centre at a distance of about 600 pc. This group seems to be a continuation of the Carina spiral arm and is definitely distinct from the Sagittarius arm, in which also many Cepheids occur, and which was derived by radio observations and from O associations. In the years 1953, 1954, 1955 and 1956 photoelectric observations were made of a large number of southern Cepheids at the Leiden station in Johannesburg. The programme has in its main phases been a co-operative enterprise of the three authors. Dr Wal-RAVEN designed and constructed a special photometer and made the observations, together with Dr MULLER, in the year 1953 and also together they made some provisional reductions of these measurements. Dr Muller has been responsible for the observations in the years 1954 and 1955 and together with the third author he completed the observations in 1956. The more extensive reductions were made in Leiden under the supervision of the third author; in the absence of the other authors he prepared the discussions in the later sections as well as the text of the paper. ## 1. The programme Cepheid variables are stars of high intrinsic luminosity and even as apparently faint stars they can easily be identified by the characteristics of their light-variation. The absolute magnitude is related to the period according to the period-luminosity relation. The majority of the known Cepheids belongs to BAADE's population I and they are strongly concentrated towards the galactic plane. These properties make them a very suitable group of stars for an investigation of interstellar absorption near the galactic plane and of spiral structure in the neighbourhood of the sun up to distances of some kiloparsecs. The combination of photometric data with radial velocities and proper motions will provide valuable infor- mation concerning the dynamical properties of the galactic system in a wide region around the Sun. Therefore it has been generally recognized for several years that accurate photometry of Cepheids is of fundamental importance. Although for some individual Cepheids accurate and even multi-colour photometry has been performed, relatively little has been done so far in the line of a general photometry of galactic Cepheids. The most extensive investigations were published by EGGEN (1951) on photo-electric magnitudes and colours for 32 classical Cepheids and by BADALYAN (1956) on photographic magnitudes and colour-indices for 167 Cepheids. Both these investigations will be discussed later, but it should be remarked here that neither of them contains Cepheids in the southern parts of the Milky Way. Therefore we decided to observe photo-electric magnitudes in blue and yellow for all the Cepheids in the southern hemisphere which are bright enough for the available equipment. We have considered the possibility to make measures in a third colour, namely in the ultraviolet. But as most of the Cepheids are considerably reddened by interstellar absorption, the response of the photometer in the ultraviolet would be much smaller than in the blue and the yellow, and therefore such measures could only be made successfully for the brighter Cepheids. Therefore we abandoned this idea, the more so, as the observations had to be made with a refractor and measures in three colours would therefore imply measures at three different settings of the focus. The programme was restricted in one more respect. To obtain photometric data for about 200 Cepheids well distributed over all phases of the light-curves would be a tremendous task, even in the good climate of South Africa. Now it is a well known fact that the dispersion in the spectral types of Cepheids of different periods is smallest at the phase of maximum brightness (Code, 1947) and as one of the main aims of the present investigation was the determination of colour-excesses, we decided to derive the magnitudes and colours for these Cepheids at maximum brightness. Due to the fact that several of the ephemerides proved to be out of phase, we obtained complete light-curves and colour curves for a number of stars. A number of Cepheids in the northern hemisphere were put on the programme in order to facilitate a comparison of our results with investigations carried out in the north. ## 2. The equipment The observations were made with one of the 40-cm Zeiss objectives of the Rockefeller Astrograph of the Leiden Southern Station. The telescope was equipped with a photometer specially designed and constructed by Dr Walraven for this Cepheid programme. As several of the Cepheids are situated in dense regions of the Milky Way the use of a very small diaphragm was indicated in order to avoid disturbing influence of faint stars on the measures of the variables. A small diaphragm has the further advantage that the influence of sky brightness is reduced, which is important when faint stars have to be measured. However, it also causes a difficulty when the observations are made with a refractor on account of the secondary spectrum of the objective. The diameter of the diaphragm was 30 seconds of arc or about half a millimetre. For the measures in blue light a Corning glass filter 5551 was used. The focal setting of the telescope was made in such a way that the best focus for the blue image lay in the plane of the diaphragm. According to the data of Table 1 and Figure 1 in Oosterhoff's article on "Photo-electric colours of southern early-type stars" (1951) the effective wavelength of these blue measures is estimated to be about .424 μ. For the measures in yellow light a Schott GG 11 filter of 2 mm thickness was used 1). This filter was combined with a doublet lens, the main function of which consists in the flattening of the secondary spectrum in the yellow region of the spectrum and which reduces the focal length in yellow light to that for blue light, so that the focal setting of the telescope could remain unchanged during the observations. As the transmission curve of the Schott GG 11 filter is practically the same as that of the Corning 3385 filter,
the effective wavelength of the yellow measures is about .537 μ. By means of a Fabry lens an image of the objective was formed on the kathode of an RCA photomultiplier of the type 1 P 21. As stars from the 4th to the 13th magnitude had to be measured it was necessary to make it possible to adjust the output of the amplifier over a wide range in order to obtain a reasonable deflection on the Brown recorder for faint and bright stars. A large difference in sensitivity could be obtained by the use of two different input resistances of 10 and 100 M Ω . Smaller steps in sensitivity were made possible by five different feed-back resistances, numbered from 1 to 5. For the very bright stars the voltage on the photomultiplier could be diminished in nine fixed steps. The differences in sensitivity obtained by various combinations of input- and feed-back resistances and of photo-multiplier voltages were determined from the star measures. As each observation consisted of two measures in blue and in yellow with two different sensitivities of the photo- ¹⁾ In B.A.N. 12, 271 (No. 460), 1955, Oosterhoff erroneously stated that a Corning filter 3385 had been used for the measures in vellow light. meter, the sensitivity ratios could be derived from a very large number of measures. The ten logarithms of these ratios, all relative to the combination: 10 M Ω , feed-back resistance 5 and high voltage h 9, to which all measures were reduced later, were found to be: TABLE I | 10 - 1
10 - 2
10 - 3
10 - 4 | +.732
+.553
+.363
+.154 | h 9
h 6
h 5
h 4 | .000
+ .510
+ .718
+ .933 | |--------------------------------------|----------------------------------|--------------------------|------------------------------------| | 10 - 5 | .000 | h 3 | +1.143 | | 100 — 1 | 259 | h 2 | +1.379 | | 100 — 2 | 438 | h I | +1.652 | | 100 — 3 | 628 | NE | | | 100 — 4 | 836 | NF | + .997 | | 100 — 5 | 991 | | | The last entry in this table gives the logarithm of the absorption by a neutral filter, which was used in 1953 and 1954 to reduce the recorder deflections for the brightest Cepheids. However it soon became clear that the filter used was not sufficiently neutral and that its absorption depends on the colour of the star, when used in combination with the blue filter. No such effect could be found when it was used in combination with the yellow filter. Consequently we have not used the blue measures made with this neutral filter. The values given in Table 1 were derived from the observations of all four years. When the reduction of the observations of the years 1953 and 1954 was made, slightly different values were used, but the differences were so small that it did not seem worthwhile to repeat the reduction with these improved values. ### 3. The observations For each Cepheid an identification chart had been prepared and a list of times of maximum brightness, computed with the elements from the *General Catalogue of Variable Stars* and its supplements. One observation of a Cepheid consisted of two pairs of settings in blue and yellow light with different sensitivity of the amplifier. Only for the faintest stars the two pairs of settings were made both with the strongest amplification. Each of the four settings was preceded and followed by a measure of the sky brightness in the direct neighbourhood of the variable. If accurate light- and colour curves of a variable star have to be determined the best results can be obtained by using a comparison star very near the variable and by making alternately measures of the variable and of this comparison star. In this way the influence of fluctuations in extinction can be considerably reduced. However half of the total observing time is then used for the comparison star. In our programme the internal accuracy of the observations on light- and colour curves is not of primary importance. It is much more important that the observations of magnitudes and colours and the colour excesses derived below for stars in different parts of the southern hemisphere will be free of systematic errors depending on the position in the sky, the apparent brightness or the time at which the observations were made. We decided not to use any comparison stars at all near the individual Cepheids. Instead we selected nine stars, one in each E-region at declination -45° , which have served as the only comparison stars for this programme. The nine stars were the following: TABLE 2 | E-region | number | Sp. | SP_g | SP_v | SCI | |--------------------------------------|--|--|---|--|---| | 1
2
3
4
5
6
7
8 | 21
10
38
24
33
22
40
21 | G ₅
F ₅
K ₅
F ₈
K ₅
F ₈
K ₂
F ₈
K ₀ | 7.61
8.25
9.33
8.76
9.66
8.46
9.31
9.18
8.58: | 6.90
8.04
7.90:
(8.53)
(7.96)
8.15
(7.84)
8.85
7.16: | + .71
+ .21
+ 1.43:
(+ .23)
(+ 1.70)
+ .31
(+ 1.47)
+ .33
+ 1.42: | The numbers, spectral types, magnitudes and colours have been taken from *Cape Mimeogram* No. 3, 1953. During the nights when Cepheid observations were made two or three of these comparison stars were measured in rapid succession in intervals of two or three hours. During each such set of observations one of the comparison stars had a low and the other or the two others a high altitude. ## 4. The magnitudes of the comparison stars If the brightness of the comparison stars in blue and yellow light in the system of the equipment used for the observations and without the influence of atmospheric extinction were known, each observation of a comparison star would yield a value of this atmospheric extinction at the time of the observation. As several measures of comparison stars during the course of a night were made, these would provide a fair information about the extinction and its variations, although interpolation is necessary for the intervals between the different sets of measures of the comparison stars. Therefore the first problem was to derive the brightness in blue and yellow light of the comparison stars outside the Earth's atmosphere. During the whole reduction we have not used magnitudes or differences in magnitude, but we have worked with the logarithm of the deflections on the Brown recorder B. A. N. 484 LEIDEN records. Unless stated otherwise, all values given in this paper are therefore expressed in terms of $\log I_B$ and $\log I_Y$, which can be converted into magnitudes by multiplying with the factor - 2.5. It should be kept in mind that large positive values correspond with great brightness and that positive values of ($\log I_B - \log I_Y$) correspond with a blue colour. From the observations of the comparison stars, made practically simultaneously at about the same altitude, the differences in brightness in blue and yellow light could be derived. After a little smoothing the following values were found: TABLE 3 | Comparison stars in E -regions | $\Delta \log I_B$ | $\Delta \log I_Y$ | |---|---|---| | 1 - 2
2 - 3
3 - 4
4 - 5
5 - 6
6 - 7
7 - 8
8 - 9
9 - 1 | +.272
+.422
235
+.367
481
+.336
072
222
387 | +.422
046
+.228
183
+.035
097
+.370
632
097 | These differences having been derived, we next used the observations of pairs of comparison stars, made practically simultaneously but with widely different altitudes. For these observations we have the equations: $$\begin{split} k_{B} &= \frac{\Delta (\log I_{B}) - \Delta (\log I_{B}) \text{ obs.}}{\Delta \sec z} \quad \text{ and} \\ k_{Y} &= \frac{\Delta (\log I_{Y}) - \Delta (\log I_{Y}) \text{ obs.}}{\Delta \sec z} \end{split}$$ in which k represents the zenithal extinction coefficient, $\Delta(\log I)$ the difference in brightness outside the atmosphere, for which the values given in the table can be used, and $\Delta(\log I)$ obs. the difference in brightness as actually observed. For all the pairs of observations of comparison stars, taken in quick succession after each other and with a sufficiently large value of Δ sec z, the values of k for blue and yellow light were computed. With the aid of these k-values all $\log I_B$ and $\log I_Y$ values of the comparison stars were then reduced to "no atmosphere". These reduced values show a considerable dispersion, as could be expected from observations made in the city of Johannesburg, where the sky is often, especially in the winter season, spoilt by smoke and dust. The values of k, derived from two observations only, are easily affected by irregularities in the extinction and the errors in k, multiplied by a factor larger than one, are found back in the values of $\log I_B$ and $\log I_Y$ for "no atmosphere". A superficial inspection of these reduced values made it clear that the brightness of the comparison stars, reduced to "no atmosphere", varies with time. A further investigation showed that this variation was practically the same for the blue and yellow measures. This effect is due to changes in the instrumental equipment, such as the accumulation of dust on the objective, the filters and other optical parts of the photometer, variations in the voltage of dry batteries and the like. During the four years in which the observations were made the optical parts have been cleaned and
batteries have been changed a couple of times and each time the brightness of the comparison stars shows a discontinuity in such a sense that the deflections on the Brown recorder become larger after such an operation. For each comparison star average values of $\log I$ were computed for time intervals varying from one week to one month and these were smoothed in such a way that the differences between the comparison stars agreed with the values given in Table 3. The values of $\log I_R$ and $\log I_Y$ reduced to "no atmosphere" for 10 May 1953 were found to be: TABLE 4 | $\log I_B$ | $\log I_Y$ | $(O-C)_B$ | $(O-C)_{Y}$ | |---|---|---|--| | 1.632
1.360
.938
1.173
.806
1.287
.951
1.023 | 1.450
1.028
1.074
.846
1.029
.994
1.091
.721 | 006
026
010
009
009
005
+.009
003: | 037
012
003:
(+.002)
(019)
.000
(009)
+.007
019: | | | 1.632
1.360
.938
1.173
.806
1.287 | 1.632 | 1.632 1.450 006 1.360 1.028 026 .938 1.074 010 1.173 .846 009 .806 1.029 009 1.287 .994 015 .951 1.091 005 1.023 .721 +.009 | The zeropoint of these values depends on the unit in which the deflections on the Brown recorder have been expressed and is therefore arbitrary, but the same zeropoint has been used throughout for comparison stars and Cepheids. For any other date a certain constant has to be added to or subtracted from all the values of Table 4 in order to obtain the brightness of the comparison stars reduced to "no atmosphere". The values of these constants are given in Table 5 for a number of dates. For other dates values can be derived by interpolation. These figures are a direct measure of the sensitivity of the combination of objective, photometer and Brown recorder. In the further reduction all measures have been reduced to 10 May 1953. In other words all values of $\log I$ for the Cepheids given below are directly comparable with the values of Table 4 for the comparison stars, which define the photometric system of this paper. In this connection it should be emphasized that the LEIDEN 85 B.A.N. 484 | T | ABLE | 5 | |---|------|---| | | | | | 1953 10 May
1953 2 July
1953 23 July
1953 13 Sept.
1954 10 Febr. | .000
100
131
131 | 1955
1955
1955
1955
1955 | 24 Febr.
27 March
26 April
25 May
16 June
7 July | +.054
+.051
+.047
+.040
+.030
+ 010 | |--|---------------------------|--------------------------------------|---|--| | 1954 I April discontinuity | 133 | 1955 | 8 Aug. | 010 | | 1954 2 April | 001 | 1955 | 1 Febr. | 037
072 | | 1954 3 May
1954 22 May | 014
024 | 1956 | 2 March
4 April | o ₇₇
o ₈₅ | | 1954 11 June
1954 1 July | 040
058 | 1956 | 1 May
5 June | 094
125 | | 1954 23 July
1954 6 Aug. | o8o
o9o | 1956
disconti | , | 160 | | 1954 3 Sept. discontinuity | 103 | 1956
1956 | 6 July
13 July | +.074
+.039 | | | | 1956
1956 | 26 July
6 Aug. | .000
024 | comparison stars in the *E*-regions 1, 2 and 9 have been used a few times only and consequently the values of $\log I_B$ and $\log I_Y$ for these three stars are much less accurate than those for the remaining six comparison stars. The residuals (O-C) in Table 4 will be explained in the next section. ## 5. The photometric system Although the photometric system of the measures in this paper has been defined, it will be useful to investigate its relation to other photometric systems in order to make possible a comparison of our results with those by other authors. The most accurate photometry of stars in the *E*-regions has been published in *Cape Mimeogram* No. 3 in 1953. As a number of six stars is too small to derive the relation between two photometric systems, observations on a larger number of stars in the *E*-regions 8 and 9 were made in 1953 in exactly the same way as for the Cepheids. A comparison between our measures of these stars with those from the Cape has been published already in *B.A.N.* 12, 271 (No. 260), 1955. The following relations were derived: If we apply these formulae to the values of SPg and SPv of Table 2 and if we compute the differences between the observed values of $\log I_B$ and $\log I_Y$, given in Table 4, and the values computed with the formulae, the residuals (O-C) are obtained, which are given in the fourth and fifth columns of Table 4. The residuals for the stars in regions 3 to 8 are satisfactorily small. Comparisons with other photometric systems will be made in a later paragraph. ## 6. The coefficient of extinction The extinction coefficient per unit air mass for blue and yellow light has been derived for each measure of a comparison star. For each night of observing we have therefore two or three determinations of the extinction at intervals of two or three hours. As has been said before, the sky at the Leiden Southern Station in Johannesburg is often very poor for photometric work and quite often work at the telescope had to be discontinued for some hours on account of smoke. It happened very often that the extinction was large in the beginning of the night and that it decreased in one or two hours time to normal values. This effect is mainly caused by smoke and it is clear that under such conditions the interpolated values of the extinction are rather uncertain. Frequency curves of the night averages of the extinction coefficients for blue and yellow light are shown in Figure 1. During the very best nights the values of these coefficients Frequency distribution of the coefficient of atmospheric extinction in blue and yellow are about .1 and .055 or .25 and .14 magnitudes respectively. During some very poor nights these values were as high as .24 and .16 or .6 and .4 magnitudes. The average values over all four years are .143 and .084 or .36 and .21 magnitudes. ### 7. The reduction of the measures of Cepheids The measures of the Cepheids were first reduced to input resistance 10 M Ω , to feed-back resistance 5 and to high voltage h 9 with the aid of the data of Table 1. Then they were reduced to "no atmosphere" with the extinction coefficients derived by interpolation for the time of observation. As each observation of a Cepheid consisted of two measures in blue and of two in yellow made with different amplification of the photometer, mean values were formed for the two measures in blue and for those in yellow light. Finally the resulting values of $\log I_B$ and $\log I_Y$ were reduced to 10 May 1953 with the aid of Table 5. The individual observations have been listed in Tables 6 and 7. Table 6 | TABLE 0 | | | | | | | | | | | | |-------------------|-----------------------|--------------|---|------------------|---|--|-----------------------|--------------|-------------------|--------------------|-----------------------------------| | Nameof
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | | T Ant * | d
4562.210 | •345 | + .358 | +.156 | + .514 | | d
5683.416 | .551 | +1.096 | +.043 | +1.139 | | d_1 | 75.194
79.217 | .546
.228 | + .691:
+ .332: | +.314
+.110: | + 1.005:
+ .442: | TON A 1 | 89.344 | .521 | +1.058 | +.028 | +1.086 | | .169511 | 4833.393 | .313 | + .357 | +.127 | + .484 | FN Aql | 4907.484
5315.463 | .671
.707 | + .964
+1.003 | +.047
+.045 | +1.011
+1.048 | | | 4906.324
17.275 | .676
•532 | + .616
+ .684 | +.235
+.312 | $^{+}$.851 $^{+}$.996 | d
.105486 | 63.304 | ·753 | +1.019: | +.055: | +1.074: | | | 5194.487 | ·523 | + .681 | +.321 | +1.002 | | 64.300 | .859 | + .994 | +.025 | +1.019 | | | 5224.389 | .591 | + .675 | +.311 | + .986 | | 5647.432
54.341 | ∙725
•454 | + 1.003
+ .868 | +.055
016 | $^{+ ext{1.058}}_{+ ext{.852}}$ | | | 5532.515
35.449 | .822
.319 | + .491
+ .357 | +.205
+.137 | + .696
+ .494 | 1 | 55.487 | •575 | + .918 | +.014 | + .932 | | | 55.474 | .714 | + .608 | +.246 | + .854 | | 65.430
68.473 | .624
•945 | + .939
+ .970 | +.025
+.006 | $^{+}$.964 $^{+}$.976 | | | 68.423 | .909 | + .508
+ .564 | +.186 | + .694 | | 85.406 | ·731 | + .995 | +.042 | + 1.037 | | | 73.448
74.337 | .761
.911 | + .564
+ .507 | +.228
+.178 | $^{+}$.792 $^{+}$.685 | V336 Aql | 4989.343 | .136 | + .183 | 147 | + .036 | | | 80.362 | .933 | + 495 | +.182 | + .677 | d_1 | 5328.392 | .558 | + .446 | +.016 | + .462 | | | 95.350
5608.308 | .473
.670 | + .591 + .626 | $+.241 \\ +.265$ | + .832
+ .891 | .136919 | 63.395
64.277 | .351
.471 | + .312:
+ .468 | 058:
+.035 | + .254:
+ .503 | | | 09.335 | .844 | + .523 | +.197 | + .720 | | 5612.533 | .462 | + .454 | +.026 | + .480 | | | 11.324 | .181 | $\begin{array}{r} + .368 \\ + .365 \end{array}$ | +.137
+.161 | + .505
+ .526 | | 26.494 | .374 | + .334 | 028
+.024 | + .306
+ .480 | | | 16.294 | ·345
·024 | + .472 | +.168 | + .526
+ .640 | 37.aa Aal* | 27.496 | .511
.886 | + .456 | | | | | 19.274 | .529 | + .694: | +.311: | +1.005: | V ₄₉₃ Aql * d ⁻¹ | 5612.438
•545 | .922 | 210
218 | 062
072 | 272
290 | | | 20.265 | .697
.029 | + .612
+ .473 |
+.261
+.163 | + .873 + .636 | ·334950 | 23.462 | .579 | 063 | +.030 | 033 | | | 23.310 | .213 | + .372 | +.143 | + .515 | 1 | 24.596 | .958
.277 | 230
270 | 078
040 | 308
310 | | | 24.217 | .367 | + .393 | +.170 | + .563 | | 25.548
26.441 | .576 | 068 | +.040 | 028 | | | 26.229
27.220 | .708
.876 | + .599
+ .522 | +.246
+.186 | + .845
+ .708 | | 27.487 | .927 | 214 | −.o66 | 280 | | | 29.240 | .218 | + .362 | +.132 | + .494 | İ | 28.461
29.565 | .253
.623 | 268
084 | 042
+.027 | 310
057 | | | 30.280 | .394
.561 | + .438 + .682 | +.201
+.311 | + .639
+ .993 | | 30.516 | .941 | 213 | 069 | 282 | | | 31.262
32.210 | .722 | + .596 | +.242 | $\begin{array}{c} + .993 \\ + .838 \end{array}$ | | 31.462 | .258 | 264 | o61 | 325 | | | 34.200 | .059 | + .438 | +.154 | + .592 | 1 | 36.494
37.461 | .944
.268 | 219
258 | 075
042 | 294
300 | | | 36.205
37.254 | ∙399
•577 | + ·454
+ .670 | +.204
+.301 | + .658 + .971 | ļ | 38.482 | .610 | 071 | +.034 | 037 | | | 38.235 | .743 | + .610 | +.230 | + .840 | | 39.517
40.556 | .956
.304 | 237
225 | 051
036 | 288
261 | | | 39.192 | .905 | + .480 | +.172 | + .652
+ .582 | l | 41.483 | .615 | 076 | +.032 | 044 | | | 40.207
41.200 | .077
.245 | $\begin{array}{c} + .431 \\ + .378 \end{array}$ | +.151
+.124 | + .582
+ .502 | 1 | 42.543 | .970 | 234 | 066 | 300 | | | 42.194 | .414 | + .370? | +.188? | + .558? | ł | 43.363
46.486 | .244
.290 | 272
244 | 048
100 | 320
344 | | | 43.270
44.214 | .596
.756 | + .653
+ .579 | +.302
+.225 | + .955
+ .804 | 1 | 52.366 | .260 | 246 | 052 | 298 | | | 47.195 | .262 | + .358 | +.134 | + .492 | İ | 54.310 | .911
.290 | 203:
254 | 049:
041 | 252:
295 | | U Aql | 4572.568 | .006 | +1.624 | +.088 | +1.712 | 1 | 55.440
•554 | .328 | 190 | 029 | 219 | | d^{-1} | 74.578 | .292 | +1.604 | +.019 | +1.623 | 1 | 60.571 | .008 | 246 | 057 | 303 | | .142372 | 4907.496
22.559 | .690
.835 | +1.680
+1.825 | +.091
+.163 | +1.771
+1.988 | 1 | 61.420
65.385 | .293
.621 | 268:
076 | 068:
+.022 | 336:
054 | | | 5302.500 | .928 | +1.779 | +.119 | +1.898 | İ | 68.448 | .647 | 066 | +.012 | 054 | | | 15.484
70.320 | .776
.583 | +1.824 + 1.554 | +.155
+.018 | $+1.979 \\ +1.572$ | 1 | 69.422
72.430 | •973
•980 | 230
238 | 060
044 | 290
282 | | SZ Aql | 4980.408 | .607 | +1.086 | +.081 | +1.167 | l | 81.363 | .973 | 214 | 068 | 282 | | d ⁻¹ | 5358.343 | .659 | +1.023 | +.026 | +1.049 | i | 82.336 | .298 | 265
064 | 033 | 298
040 | | .058350 | 5646.526 | ·475 | + .687 | 150 | + .537 | 1 | 83.393
85.396 | .652
•323 | 064
220 | +.024
044 | 040
264 | | | 47.398
65.397 | .526
.576 | + .712
+1.037 | 125
+.057 | + .587
+ 1.094 | | 86.396 | .658 | 084 | +.013 | 071 | | | 81.375 | .508 | + .700 | 124 | + .576 | 1 | 87.422
88.299 | .002 | 228
222: | o66
o19: | 294
241: | | TT Aql | 4980.416 | .091 | +1.641 | +.116 | 1. 200 | Į. | 89.335 | .643 | 066 | +.018 | 048 | | d_1 | 5364.284 | .000 | +1.342 | 041 | +1.757
+1.301 | | 91.298 | .300 | 242
080 | 062 | 304
064 | | .072703 | 65.316 | .075 | +1.617 | +.114 | +1.731 | 37C A1 | 92.343 | .650 | F . | +.016 | | | | 5643.401
54.333 | .292 | +1.488
+1.648 | 026
+.118 | +1.462
+1.766 | V496 Aql | 4989.355
5302.491 | .986
.989 | +1.216 + 1.223 | $^{+.073}_{+.063}$ | +1.289
+1.286 | | | 55.478 | .170 | +1.572 | +.048 | +1.620 | d
.146910 | 15.452 | .893 | +1.204 | +.053 | +1.257 | | | 68.464 | .114 | +1.632
+1.562 | +.100 | +1.732 +1.612 | | 5643.393 | .071 | +1.203 | +.051 | +1.254
+1.062 | | | 69.442
83.410 | .185 | +1.570 | +.050
+.038 | +1.608 | i ' | 47.412
54.324 | .661
.677 | +1.077
+1.074 | 015
003 | +1.071 | | TT 4 1 4 | I | _ | 1 | l | | i | 55.469 | .845 | +1.180 | +.042 | +1.222 | | FF Aql * | 5358.304
65.293 | .476
.039 | +2.128 + 2.103 | +.204
+.201 | +2.332
+2.304 | | 69.431
78.386 | .896
.212 | +1.198
+1.180 | +.068
+.014 | +1.266
+1.194 | | d
.223667 | 70.308 | .161 | +2.161 | +.225 | +2.386 | ì | 83.404 | .949 | +1.238 | +.074 | +1.312 | | 1223007 | 5612.521 | .336 | +2.172 | +.232 | +2.404 | Vices Act * | 1000 066 | | , ,,,, | 0.00 | | | | 21.469
25.557 | ·337
·251 | +2.170
+2.181: | +.226
+.246: | +2.396
+2.427: | V600 Aql * | 4989.366
5315.474 | .992
.024 | + .133
+ .114 | 210
211 | 077
097 | | | 26.482 | .458 | +2.136 | +.212 | +2.348 | .138092 | 59.264 | .071 | + .105 | 194 | e8o. — | | | 29.555 | .146 | +2.144 | +.230 | +2.374 | | 5643.413
52.387 | .310
•549 | + .355
+ .304 | 058
120 | + .297
+ .184 | | FM Aql | 5328.402 | .487 | + .990 | 002 | + .988 | 1 | 54.350
54.350 | .821 | + .200 | 170 | + .030 | | d ⁻¹ | 59.255 | ∙533 | +1.060 | +.030 | +1.090 | | 55.497 | .979 | + .138 | 202 | 064 | | .163555 | 64.292
72.260 | ·357
.66o | + .822
+1.066 | 094
+.014 | + .728
+1.080 | i | 60.584
65.441 | .681
.352 | + .252
+ .381 | 113
058 | + .139
+ .323 | | | 5646.536 | .519 | +1.033 | +.008 | +1.041 | I | 69.454 | .906 | + .146 | 196 | 050 | | | 47.422 | .664 | + 1.066
+ .990 | 810.+
810 | +1.084 | | 85.417
86.409 | .111 | + .124
+ .292 | 168
088 | 044
+ .204 | | | 52.377
65.405 | .475
.605 | + 1.095 | +.041 | + .972
+1.136 | 1 | 87.434 | .248
.389 | + .292 | 06o
06o | + .294 | | | 78.434 | .736 | +1.044 | 016 | +1.028 | I | 88.312 | .510 | + .344 | 106 | + .238 | Table 6 (continued) | | | | | | TABLE U | (continuea) |) | | | | | |-------------------------------------|---|--|---|--|---|--------------------------------------|--|--|---|--|---| | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | | η Aql
d ⁻¹
.139340 | d
5302.531
15.495
31.442
48.329
5652 406
54.379
60.596
61.443
68.449
81.384
82.349 | .855
.661
.883
.236
.606
.881
.747
.865
.847
.644 | +2.861
+2.674
+2.855
+2.682
+2.598
+2.849
+2.838
+2.860
+2.632
+3.131? | +.265
+.164
+.263
+.137
+.131
+.264
+.238
+.258
+.281
+.167
+.272? | +3.126
+2.838
+3.118
+2.819
+2.729
+3.113
+3.044
+3.096
+3.141
+2.799
+3.403? | Y Car * d ⁻¹ .274743 | d 4517.307 2 .260 36.311 78.219 85.211 88.195 4812.455 47.306 65.442 95.369 4906.377 20.315 | .098
.185
.320
.834
.755
.574
.188
.763
.746
.968 | + .985
+ .888
+ .906
+ 1.071
+ 1.016
+ .973
+ .936
+ 1.152
+ 1.149
+ .969
+ 1.021 | +.261
+.224
+.212
+.310
+.279
+.262
+.232
+.332
+.349
+.256
+.255
+.249 | +1.246
+1.112
+1.118
+1.381
+1.295
+1.235
+1.168
+1.504
+1.498
+1.225
+1.276
+1.263 | | RY CMa * d1 .213755 | 5187.357
94.349
5223.241
24.279
5532.419
55.366
5612.214 | .823
.318
.494
.716
.582
.487
.639 | + 1.095
+ .889
+ .941
+ 1.141
+ 1.116
+ .892
+ 1.167 | +.181
+.080
+.140
+.222
+.212
+.139
+.247 | +1.276
+ .969
+1.081
+1.363
+1.328
+1.031
+1.414 | SX Car
d ⁻¹
.205761 | 5251.355
5309.230
4520.392
34.323
69.240
4865.449
5224.430 | .773
.674
.120
.987
.171
.120 | +1.142
+1.035
+ .768
+ .666
+ .708
+ .759
+ .664 | +.333
+.301
+.223
+.190
+.187
+.225
+.179 | +1.475
+1.336
+ .991
+ .856
+ .895
+ .984
+ .843 | | RZ CMa * d ⁻¹ .235019 | 5187.373
94.360
5223.255
24.291
5535.373 | .131
.773
.564
.808
.918 | + .353:
+ .486
+ .337
+ .474
+ .428 | +.058:
+.131
+.080
+.125
+.088 | + .411:
+ .617
+ .417
+ .599
+ .516 | UW Car * | 5535.507
55.485
74.365
5628.309 | .991
.102
.987
.086 | + .680
+ .782
+ .672
+ .764
+ .640 | +.188
+.222
+.182
+.226
+.196 | + .868
+1.004
+ .854
+ .990
+ .836 | | TV CMa * | 47.412
55.379
68.340
73.330
4811.378 | .747
.620
.666
.838 | + .500
+ .432
+ .479
+ .454
+ .118: | +.142
+.119
+.145
+.116
+.051: | + .642
+ .551
+ .624
+ .570
+ .169: | d ⁻¹ .187064 | 22.265
65.289
4839.271
65.402
86.332
4924.260 | .953
.001
.253
.142
.057 | + .513
+ .591
+ .546
+ .598
+ .642
+ .609: | +.145
+.169
+.119
+.162
+.188
+.124: | + .658
+ .760
+ .665
+ .760
+ .830
+ .733: | | d ⁻¹
.214096 | 5187.348
94.337
5224.265
5535.363
55.356
67.308
73.316
80.284 |
.590
.087
.494
.099
.379
.938
.225
.716 | 088
+ .123
066
+ .122
017
+ .194
+ .062:
102 | 067
+.035
065
+.030
053
+.076
002:
055 | 155
+ .158
131
+ .152
070
+ .270
+ .060:
157 | UX Car * d ⁻¹ .271573 | 4520.298
31.340
35.339
64.260
4835.474
47.289
67.364
85.394 | .591
.590
.676
.530
.184
.393
.845 | +1.080
+1.111
+1.035
+1.135:
+ .798
+ .857
+ .933
+ .982 | +.342
+.338
+.301
+.293:
+.187
+.224
+.228
+.266 | +1.422
+1.449
+1.336
+1.428:
+ .985
+1.061
+1.161 | | TW CMa * d ⁻¹ .142962 | 5532.429
35.383
47.421
55.393
73.335
95.268 | .927
.349
.070
.210
.775
.911 | + .468
+ .454
+ .542
+ .472:
+ .305
+ .436 | +.140
+.082
+.166
+.094:
+.044
+.126 | + .608
+ .536
+ .708
+ .566:
+ .349
+ .562 | UY Car * | 96.331
5223.389
82.222
85.227
4513.312 | .711
.531
.509
.325 | + .989
+1.105
+1.047:
+ .788
+ .767 | +.276
+.344
+.321:
+.183
+.245 | + 1.265
+ 1.449
+ 1.368:
+ .971
+ 1.012 | | TW Cap * d ⁻¹ .035017 | 5627.193
5643.437
55.541
60.620
61.454
65.453
68.506 | .475
.616
.040
.218
.247
.387 | + .111
160
230
169
+ .264
+ .140: | +.052
+.268
+.192
+.246
+.271
+.398
+.300: | + .454
+ .379
+ .032
+ .016
+ .102
+ .662 | d_1
.180384 | 19.378
29.356
31.348
36.302
4890.392
96.339
4907.273
29.299 | .223
.023
.383
.276
.148
.221
.194 | + .813
+ .591
+ .749
+ .787
+ .792
+ .799
+ .812
+ .809 | + .247
+ .151
+ .193
+ .231
+ .230
+ .246
+ .245
+ .253 | +1.060
+ .742
+ .942
+1.018
+1.022
+1.045
+1.057
+1.062 | | | 69.494
86.436
87.466
88.348
89.355
91.309 | .494
.529
.122
.158
.189
.224
.293 | + .140.
+ .108
223
236
190
180
+ .044
+ .215 | +.300.
+.293
+.206
+.231
+.228
+.269
+.357
+.395 | + .440:
+ .401
017
005
+ .038
+ .089
+ .401
+ .610 | UZ Car * d | 4519.393
20.308
35.348
4931.207
36.207 | .338
.514
.404
.462
.423 | + .566
+ .621
+ .644
+ .633:
+ .641: | +.214
+.203
+.231
+.210:
+.227: | + .780
+ .824
+ .875
+ .843:
+ .868: | | U Car * d ⁻¹ .025802 | 4512.370
13.364
17.407
19.417
20.350
30.397
32.394 | .428
.454
.558
.610
.634
.893 | +1.650
+1.611
+1.546
+1.494
+1.485
+1.938
+1.892 | 103
121
135
124
125
+.142
+.101 | +1.547
+1.490
+1.411
+1.370
+1.360
+2.080
+1.993 | d 1 .052812 | 13.322
29.367
30.372
65.298
4869.440
90.399
4908.237 | .358
.205
.258
.103
.165
.272 | +1.395
+1.503
+1.476
+1.187
+1.468
+1.464
+1.491: | +.070
+.165
+.144
+.037
+.164
+.109
+.156: | +1.465
+1.668
+1.620
+1.224
+1.632
+1.573
+1.647: | | | 61.306
68.200
73.296
75.244
78.244
80.230
86.255
88.206
4834.418
35.481 | .691
869
.000
.050
.128
.179
.335
.385
.738
.765 | +1.499
+1.934:
+1.839
+1.806
+1.766
+1.774:
+1.661
+1.629:
+1.756
+1.951 | 128
+.163:
+.055
+.007
037
036:
125
120
005:
+.073 | +1.371
+2.097:
+1.894
+1.813
+1.729
+1.738:
+1.536
+1.527
+1.624:
+1.829 | WW Car * d ⁻¹ .213821 | 4513.334
19.403
32.387
4865.456
4906.390
25.238
30.236
5223.447
24.455
5303.236 | .046
.343
.120
.337
.089
.119
.188
.883
.098 | + .478
+ .393
+ .505
+ .382
+ .486
+ .522:
+ .479
+ .223
+ .516
+ .254 | +.222
+.143
+.217
+.139
+.200
+.221:
+.193
+.083
+.222
+.100 | + .700
+ .536
+ .722
+ .521
+ .686
+ .743:
+ .672
+ .306
+ .738
+ .354 | | V Car * d ⁻¹ .149334 | 39.39.39.4913.257 14.322 17.351 4869.348 90.284 4917.212 5611.298 12.269 19.261 37.247 38.225 | .159
.286
.307
.958
.103
.147
.833 | +1.801
+1.801
+1.919
+1.919
+1.402
+1.345
+1.325:
+1.261
+1.416
+1.418
+1.180
+1.338 | +.079
+.146
+.146
+.209
+.185
+.166:
+.163
+.227
+.216
+.074
+.142 | + 1.880
+2.045
+2.065
+1.611
+1.530
+1.491:
+1.643
+1.634
+1.254
+1.480 | WZ Car * d ⁻¹ .043464 | 4529.378
30.381
72.236
74.243
4847.314
67.375
69.455
85.415
86.403
95.405
96.350
4907.284 | .865
.908
.728
.815
.684
.556
.646
.340
.383
.774
.815 | + .587:
+ .614
+ .716
+ .681
+ .745
+ .477
+ .769
+ .332
+ .328
+ .686
+ .647
+ .354 | +.015:020 +.120 +.048 +.169 +.043 +.186129105 +.072 +.041146 | + .602:
+ .594
+ .836
+ .729
+ .914
+ .520
+ .955
+ .223
+ .223
+ .758
+ .688
+ .208 | Table 6 (continued) LEIDEN | | Name of LD bel Name of LD bel | | | | | | | | | | | | | |--------------------------------------|--|--|--|---|---|--------------------------------------|--|--|---|--|---|--|--| | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | | | | XX Car * | d
4914.315
17.332
20.342
34.194
4566.204 | .596
.727
.858
.460 | + .754
+ .703
+ .633
+ .314 | +.175
+.096
+.002
092 | + .929
+ .799
+ .635
+ .222
154: | CT Car
d ⁻¹
.055382 | d
4517.318
33.338
34.311
35.362
74.215
5275.284 | .178
.065
.119
.177
.329 | 434
693
655
408
517:
486: | +.067
151
013
+.033
+.002:
065: | 367
844
668
375
515:
551: | | | | d_1
.063628 | 72.276
73.288
86.218
4886.413
4917.343
18.302
34.211 | .925
.989
.812
.913
.881
.942 | + .694
+ .656
+ .513
+ .733
+ .770
+ .695
+ .685 | +.170
+.123
+.087
+.192
+.213
+.152
+.153 | + .864
+ .779
+ .600
+ .925
+ .983
+ .847
+ .838 | CY Car * | 96.239
5567.408
5636.221
37.270
38.252 | .316
.334
.145
.203
.258 | 544
490
636:
486:
454
+ .277 | 004
046
008:
+.068:
016 | 548
536
644:
418:
470
+ .376 | | | | XY Car * d ⁻¹ .080419 | 4513.385
76.248
78.261
87.188
4834.430
35.490
47.323
85.424
86.420
5194.543 | .962
.017
.179
.897
.780
.865
.817
.881 | + .614
+ .575
+ .465
+ .633
+ .723:
+ .681
+ .691
+ .654
+ .620
+ .634 | +.020
012
092
+.048
+.135:
+.085
+.101
+.074
+.032
+.077 | + .634
+ .563
+ .373
+ .681
+ .858:
+ .766
+ .792
+ .728
+ .652
+ .711 | d-1 .234416 | 4890.410
4914.333
5282.249
5303.249
08.251
5535.556
68.449
73.522
5611.400 | .390
.998
.244
.166
.339
.623
.334
.523
.402 | + .447
+ .259
+ .385:
+ .318
+ .429
+ .345
+ .470
+ .376
+ .414 | +.161
+.069
+.173:
+.119
+.184
+.105
+.190
+.130
+.163 | + .608
+ .328
+ .558:
+ .437
+ .613
+ .450
+ .660
+ .506
+ .577 | | | | YZ Car * | 5567.453
5616.350
28.318
40.235
41.226 | .729
.661
.624
.582
.662 | + .611
+ .500
+ .498
+ .496
+ .525
+ .898 | +.074
+.013
+.006
008
+.011
+.110 | + .685
+ .513
+ .504
+ .488
+ .536
+ 1.008 | d ⁻¹
.213916 | 4513.343
46.276
79.235
4953.213
5224.468
5253.263 | .476
.521
.572
.572
.597
.757 | 297
181
127
165
140
213 | +.108
+.186
+.182
+.156
+.193
+.116 | 189
+ .005
+ .055
009
+ .053
097 | | | | d ^{—1}
·055057 | 64.268
73.264
75.228
76.221
78.205
4834.410
35.467
90.384
4907.265
43.244 | .295
.790
.898
.953
.062
.168
.226
.250
.179 | + .916:
+ .600
+ .615
+ .640
+ .722
+ .942:
+ .913
+ .908
+ .939
+ .924 | +.141
+.047:
059
038
013
+.029
+.159:
+.147
+.104
+.137
+.141 | + .963:
+ .541
+ .577
+ .627
+ .751
+ 1.101:
+ 1.060
+ 1.012
+ 1.076
+ 1.065 | ER Car * d ⁻¹ .129555 | 4519.424
33.364
34.364
4834.438
35.498
90.419
4943.268
5253.303
5555.534
5608.340
16.359 | .514
.320
.452
.326
.463
.578
.425
.592
.747
.588
.627 | +1.600
+1.451
+1.576
+1.465:
+1.594
+1.616
+1.535
+1.618
+1.566
+1.613
+1.562 |
+.236
+.139
+.224
+.153:
+.218
+.208
+.193
+.216
+.166
+.213
+.194 | +1.836
+1.590
+1.800
+1.618:
+1.812
+1.824
+1.728
+1.834
+1.732
+1.826
+1.756 | | | | AQ Car *
d | 4510.351
19.369
29.347
67.212 | .702
.625
.647
.523
.681 | + .735
+ .767
+ .760
+ .820: | +.117
+.146
+.122
+.169: | + .852
+ .913
+ .882
+ .999: | EY Car * | 23.333
24.253
4517.330 | .531
.650
.689 | +1.628
+1.581
+ .096 | +.238
+.192
+.093 | +1.866
+1.773
+ .189 | | | | | 4930.207
5308.228
09.210
10.215
5535.478
73.484
5611.341
20.299 | .061
·377
·477
·580
.639
·530
·405
·322 | + .731:
+ .744
+ .825
+ .747
+ .766
+ .792
+ .771
+ .752 | +.108;
+.170
+.179
+.130
+.126
+.163
+.181
+.171 | + .839:
+ .914
+ 1.004
+ .877
+ .892
+ .955
+ .952
+ .923 | d ⁻¹ •347703 | 20.317
32.368
66.213
72.212
4917.322
20.325
5256.310
85.260 | .728
.918
.686
.772
.768
.812
.635
.701 | + .206
+ .221
+ .032:
+ .161
+ .200
+ .168
+ .080
+ .149 | +.205
+.204
+.138:
+.184
+.181
+.188
+.159
+.177 | + .411
+ .425
+ .170:
+ .345
+ .381
+ .356
+ .326
+ .326
+ .456 | | | | CC Car * d ⁻¹ .210100 | 4534-352
35.371
62.299
67.267
4925-252 | .667
.881
.539
.583
.795 | 445
502
654
722?
209? | +.102
+.037
013
+.028?
075? | 343
465
667
694?
284? | FI Car | 5567.421
68.437
73.511
5608.330
4569.252 | .609
.162
.926
.033 | + .246
+ .090
+ .207
+ .154
270 | +.210
+.145
+.183
+.168 | + .456
+ .235
+ .390
+ .322 | | | | | 53.229 5224.480 53.276 81.300 82.234 5535.539 55.500 67.439 80.375 95.385 5609.390 | .673
.663
.713
.601
.797
.017
.211
.719
.437
.590 | 293?440418478505:548620418638544 | +.457?
+.065
+.075
+.021
+.029:
+.002
045
+.060
058
+.017 | + .164?375343457476:546665358696527628 | d ⁻¹
.074326 | 70.286
5194.526
5223.400
24.442
81.287
85.282
5535.520
74.374
5629.258
30.291 | .691
.088
.234
.312
.537
.834
.433
.321
.400 | 341
504
434
479
284
356
413
470:
425
401 | 129270225184082163151196:123125 | 470
774
659
663
366
519
564
666:
548
526 | | | | | 23.323
24.242
27.230
39.210
40.224
41.215 | .460
.653
.281
.798
.011 | 631
451
620
477
549
594 | 032
+.067
038
+.023
002
052 | 663
384
658
454
551
646 | FN Car * d ⁻¹ .218070 | 4513.375
46.290
74.257
4839.303
67.383
4917.365 | .232
.409
.508
.307
.430 | 398
231
280
269
237
275 | +.054
+.122
+.070
+.065
+.114
+.112 | 344
109
210
204
123
163 | | | | CN Car * d ⁻¹ .202732 | 4510.337
35.289
36.287
64.251
4885.375
4929.253 | .390
.448
.651
.320
.422
.317 | + .144
+ .090
015
+ .095:
+ .096
+ .098 | +.136
+.117
+.027
+.060:
+.122
+.112 | + .280
+ .207
+ .012
+ .155:
+ .218
+ .210 | FO Car
d ⁻¹
.096563 | 4529.405
75.253
78.251
80.237
4943.256
5253.290
5308.262 | .373
.800
.090
.281
.336
.273 | + .053
155
074
+ .068:
+ .076
+ .046
054 | 002
091
023
+.056:
+.047
+.045
046 | + .051
246
097
+ .124:
+ .123
+ .091
100 | | | | CR Car
d ⁻¹
.102441 | 4920 302
21.307
30.224
5281.249
5308.239
09.219
5535.492
73.500
5611.369
24.231 | .041
.144
.057
.016
.781
.882
.061
.955
.834 | 286
338:
272:
225:
395
324
264
316
330
316 | +.010
004:
014:
+.026:
030
.000
+.012
029
+.002
024 | 276342:286:199:425324252345328340 | FR Car
d ⁻¹
.093307 | 4520.378
21.326
33.377
4865.468
4918.312
29.310
5251.384
82.270
5315.219 | .783
.871
.996
.982
.913
.939
.991
.873 | + .410
+ .510
+ .512
+ .508
+ .509
+ .510
+ .515
+ .453
+ .493 | +.080
+.131
+.089
+.090
+.109
+.104
+.089
+.104
+.090 | + .490
+ .641
+ .601
+ .598
+ .618
+ .614
+ .604
+ .557
+ .583 | | | Table 6 (continued) | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | log I _B | |--|--|--|--|--|---|--|--|--|--|---|---| | GH Car * d ⁻¹ .174655 | d
4520.357
21.277
88.219
4834.445
35.505
4921.346
5555.545
67.498
68.460
80.388
5608.351
09.405 | .503
.664
.355
.360
.545
.538
.304
.391
.559
.643
.527
.711 | + .632
+ .607
+ .632
+ .648:
+ .640
+ .634
+ .605
+ .644
+ .639
+ .614
+ .536 | +.141
+.131
+.132
+.162:
+.155
+.140
+.130
+.148
+.135
+.119
+.142
+.115 | + .773
+ .738
+ .764
+ .810:
+ .795
+ .774
+ .735
+ .792
+ .774
+ .733
+ .778
+ .778 | V Cen * d ⁻¹ d ⁻¹ 182018 | d
4513.4442
19.457
29.470
78.300
4847.437
69.497
86.528
5281.360
86.315
5302.252 | .528
.623
.445
.333
.321
.336
.436
.303
.204
.105 | +1.595
+1.540
+1.658
+1.666:
+1.661:
+1.625
+1.628
+1.632
+1.447
+1.365 | +.178
+.148
+.229
+.247
+.224:
+.238
+.243
+.223
+.126
+.053 | +1.773
+1.688
+1.887
+1.913
+1.885:
+1.903
+1.871
+1.875
+1.573
+1.418 | | GI Car * d ⁻¹ .225703 | 4512.382
20.368
21.286
30.405
4835.513
67.395
5253.313
5310.226
28.216 | .458
.261
.468
.526
.390
.586
.689
.534 | + .511
+ .991
+ .906
+ .984
+ .998
+ .960
+ .973
+ .948
+ .962
+ .963 | +.087 +.269 +.215 +.262 +.248 +.243 +.257 +.225 +.242 +.239 | + .598
+1.260
+1.121
+1.246
+1.246
+1.203
+1.230
+1.173
+1.204
+1.202 | d ⁻¹
.058501 | 64.349
68.305
69.379
70.361
72.336
4929.414
30.338
5251.485
81.402
85.340
86.325
5308.347
58.228 | .019
.250
.313
.371
.486
.376
.431
.217
.967
.198
.255
.544 | 174:024 + .017 + .300 + .223 + .287 + .266072133092056 + .194 + .239 | 374:270213076145078118294367305265175 | 548:294196 + .224 + .078 + .209 + .148366500397321 + .019 + .118 | | GX Car *
d ⁻¹
.138957 | 4522.252
23.270
31.328
45.232
4839.261 | -399
-540
-660
-592
-449 | + .526
+ .664
+ .612
+ .636
+ .610 | +.096
+.161
+.102
+.141
+.129 | + .622
+ .825
+ .714
+ .777
+ .739 | UZ Cen * d ⁻¹ .299907 | 4517.415
74.269
4834.477
47.375 | .804
.855
.893
.762 | + .837
+ .843
+ .909
+ .781 | +.256
+.247
+.274
+.227 | +1.093
+1.090
+1.183
+1.008 | | GZ Car * d -1 .240451 | 4513.286
17.288
21.249
29.339
61.214
4812.445
69.403
86.321
95.331 | .224
.186
.139
.084
.748
.157
.853
.921
.087 | + .182
+ .218
+ .169
+ .218
+ .179
+ .182
+ .188
+ .213
+ .268:
+ .123 | +.111
+.138
+.109
+.127
+.093
+.112
+.127
+.143
+.130:
+.057 | + .293
+ .356
+ .278
+ .345
+ .272
+ .294
+ .315
+ .356
+ .398:
+ .180 | | 4907:331
17:392
21:367
5567:517
73:552
74:391
80:397
5608:400
09:419
11:440
16:370 | .743
.760
.952
.737
.547
.799
.600
.998
.304
.910 | + .896
+ .841
+ .881
+ .604
+ .899:
+ .610
+ .784
+ .678
+ .891
+ .628 | +.281
+.253
+.259
+.250
+.132
+.275:
+.124
+.217
+.167
+.279
+.148 | +1.177
+1.094
+1.140
+1.068
+ .736
+1.174:
+ .734
+1.001
+ .845
+1.170
+ .776 | | | 19.306
24.250
31.196
43.210 | .852
.041
.711
.600 | + .173
+ .233:
+ .113:
+ .122: | +.121
+.146:
+.080:
+.083: | + .294
+ .379:
+ .193:
+ .205: | VW Cen * d ⁻¹ .066506 | 4561.346
63.398
67.318
70.319
80.313 | •357
•493
•754
•954
•618 | + .009
+ .048
+ .344
+ .212
+
.189 | 193
117
+.049
094
010 | 184
069
+ .393
+ .118
+ .179 | | HK Car *
d ⁻¹
.149349 | 4529.412
35.374
68.211
4917.373
24.314 | .463
.354
.258
.405 | + .239
+ .268
+ .217:
+ .259
+ .243: | +.119
+.133
+.111:
+.102
+.108: | + .358
+ .401
+ .328:
+ .361
+ .351: | | 4867.472
69.485
98.442
5302.242
03.302 | .716
.850
.776
.631
.701 | + .366
+ .267
+ .286
+ .244
+ .350: | +.063
031
018
+.023
+.062: | + .429
+ .236
+ .268
+ .267
+ .412: | | IT Car * d ⁻¹ .132703 | 4546.300
4847.333
4907.294
08.246
14.344
16.278
24.324
30.292
5251.372
82.260
5328.208
5567.506
73.532
74.383
5611.421 | .308
.256
.213
.339
.148
.405
.473
.265
.873
.972
.069
.825
.624
.737
.652 | + .986
+ .983
+ .994
+ .958
+ I.012
+ .929
+ .915
+ .990
+ I.070
+ I.005
+ I.005
+ I.062:
+ .994
+ I.062:
+ .996 | +.096
+.072
+.082
+.055
+.105
+.060
+.048
+.141
+.102
+.107
+.144
+.199
+.130: | +1.082
+1.076
+1.075
+1.076
+1.013
+1.117
+ .983
+1.058
+1.211
+1.100
+1.112
+1.216
+1.103
+1.192:
+1.104 | XX Cen * d - 1 .091276 | 4517.476
29.460
4847.426
89.440
98.424
4901.603
22.364
.446
5282.336
5349.230
59.224
5567.541
5621.416
43.282 | .337
.431
.454
.289
.109
.399
.294
.301
.151
.256
.169
.183
.100 | +1.227
+1.188
+1.170:
+1.289
+1.274
+1.207
+1.274
+1.277
+1.187
+1.317
+1.220
+1.234
+1.156:
+1.155 | +.144
+.106
+.074:
+.190
+.188?
+.101
+.177
+.150
+.210
+.164
+.179
+.124:
+.141
+.174 | +1.371
+1.294
+1.244:
+1.479
+1.452;
+1.308
+1.473
+1.454
+1.337
+1.527
+1.384
+1.413
+1.280:
+1.296
+1.424 | | l Car *
d ⁻¹
.028136 | 20.309
21.394
4544.273
45.222
46.229
4833.404
34.371
35.456
65.391 | .832
.976
.858
.884
.913
.993
.020
.050 | +1.072
+1.042
+2.631
+2.641
+2.661
+2.762
+2.809
+2.860
+2.617 | +.151
+.117
080
069
041 | +1.223
+1.159
+2.551
+2.572
+2.620 | AY Cen * d ⁻¹ .188333 | 4520.390
46.307
80.247
88.251
4834.456
65.478
4917.384
5224.494
5309.240
15.230 | .339
.220
.612
.119
.488
.330
.106
.945
.905 | + .769
+ .820
+ .635:
+ .825
+ .719:
+ .766
+ .810
+ .674
+ .626
+ .757 | +.102
+.150
+.066:
+.157
+.068:
+.107
+.157
+.075
+.041
+.128 | + .871
+ .970
+ .701:
+ .982
+ .787:
+ .873
+ .967
+ .749
+ .667
+ .885 | | | 67-353
69-392
4907-252
08-228
13-241
5302-216
5616-305
19-269
20-275
22-256
56-238
57-191 | .948
.005
.070
.098
.239
.183
.211
.020
.104
.132
.188
.144 | +2.674
+2.782
+2.782
+2.986:
+2.986:
+2.995
+2.911
+2.863
+2.845
+2.938
+2.931
+2.930
+2.939 | +.034
+.041
+.015
+.051
+.086
+.091
+.048:
+.079
+.065 | +2.939
+2.952
+2.878
+2.896
+3.024
+3.022
+2.962:
+3.009
+3.004 | AZ Cen * d -1 .311269 | 4521.337
33.387
78.272
4835.522
90.429
4925.299
5188.545
94.566
5223.462
5573.542
5608.389
11.430
30.322 | .352
.103
.074
.148
.239
.093
.033
.907
.902
.871
.718
.664 | + .737
+ .820
+ .812
+ .804
+ .768
+ .800
+ .831
+ .857
+ .865
+ .865
+ .828
+ .750: | +.219
+.245
+.235
+.241
+.201
+.261
+.261
+.267
+.271
+.256
+.243
+.202: | + .956
+1.065
+1.047
+1.045
+ .969
+1.026
+1.026
+1.124
+1.138
+1.129
+1.084
+1.031
+ .952: | Table 6 (continued) | | TABLE O (continuea) | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|---|---|--|--| | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | | | IU Cen * d ⁻¹ .301272 | d
4569.357
72.324
75.376
4867.487
4947.283
50.257 | .619
.513
.433
.438
.478 | 744
692
828
769
711
967 | +.194
+.248
+.329
+.299
+.246
+.285 | 550
444
499
470
465
682 | | d
4920.354
21.356
24.336
5223.473
24.507 | .220
.261
.381
.493
.535 | + .095
+ .130
+ .442
+ .417
+ .390 | +.193
+.223
+.313
+.270
+.242 | + .288
+ .353
+ .755
+ .687
+ .632 | | | KK Cen *
d ⁻¹
.082100 | 4512.392
13.393
4865.497
90.440
5194.580
5223.488
51.409 | .467
.550
.457
.505
.475
.848
.141 | 105
179
150
168
143
381
499 | +.088
+.031
+.075
+.048
+.082
112 | 017
148
075
060
061
493
625 | V496 Cen * d-1 .226033 | 4513.434
17.465
22.345
30.457
4867.459
4929.358 | .185
.096
.199
.033
.206 | + .384
+ .400
+ .380
+ .340
+ .356
+ .378 | +.098
+.089
+.070
+.054
+.067
+.064 | + .482
+ .489
+ .450
+ .394
+ .423
+ .442 | | | | 81.314
86.260
5303.262 | .596
.002
.398 | 205
499
308 | +.009
161
028 | 196
660
336 | AL CrA *
d ⁻¹
.058625 | 4563.554
78.514
79.470
5308.484 | .538
.415
.471
.210 | 369
320
319
474 | +.101
+.154
+.132
+.247 | 268
166
187
227 | | | KN Cen * d ⁻¹ .029395 | 4561.366
67.331
69.341
73.347
4947.260
5251.473
53.326
86.293 | .081
.257
.316
.434
.425
.367
.422 | + .162
+ .268
+ .490
+ .464
+ .501
+ .537
+ .512
+ .522 | 246
160
076
109
099
068
101
089 | 084
+ .108
+ .414
+ .355
+ .402
+ .469
+ .411
+ .433 | | 09.357
10.353
28.308
5612.410
24.573
26.554
27.418
28.541
29.487 | .261
.319
.372
.028
.741
.857
.907
.973 | 440
389
345
674
751:
729
748:
714
659 | +.264
+.193
+.190
+.117
+.035:
015
022:
+.088
+.151 | 176196155557716760626508 | | | MY Cen *
d ⁻¹
.268918 | 4568.284
72.295
75.356
76.314
4869.473
4929.371
5281.345
85.320
5303.288 | .494
.572
.396
.653
.489
.597
.249
.318 | 378
435
431
522:
406
448
524
568
703: | 160
188
167
207:
130
194
266
240 | 538
623
598
729:
536
542
890
808
997: | | 30.476
31.381
34.465
36.440
37.434
38.466
39.485
42.531
52.351
57.461 | .087
.140
.321
.436
.495
.555
.615
.793
.369 | 617
548
317
334
361
468
462
772
343
577 | +.196
+.218
+.152
+.126
+.115
+.087
+.042
022
+.163
+.075 | 421330165208246321420794180502 | | | OO Cen *
d1
.077637 | 4530.467
4916.364
50.275
52.281
53.263
5328.237
5573.568
74.423
5611.503
23.344 | .732
.692
.325
.480
.556
.668
.715
.781
.660 | 393
381:
622
545
438
384
402
410:
326
401 | 175218:355341272197244361:212225 | 568599:977886710581646771:538626 | KQ CrA *
d ⁻¹
.032400 | 67-498
68.436
4562.546
64-535
73-422
74-425
76-445
77-475
78-485 | .257
.312
.826
.891
.179
.211
.277
.310 | 416
354
677
559
511
518
566
617
600 | +.238
+.218
+.071
+.230
+.071
+.091
+.015
+.084
+.045 | 178136606329440427551533555 | | | V339 Cen * d ⁻¹ .105628 | 4562.317
63.412
67.373
68.296
69.370
76.325
4889.449
4917.455 | .908
.024
.442
.540
.653
.388
.463 | + .663
+ .613
+ .859
+ .864
+ .802
+ .822
+ .876
+ .867 | 081
074
+.057
+.025
003
+.043
+.067
+.051 | + .582
+ .539
+ .916
+ .889
+ .799
+ .865
+ .943
+ .918 | | 5281.472
5308.441
09.341
10.288
5567.571
5623.444
24.504
26.532
27.393
28.497 | .120
.993
.023
.053
.389
.200
.234
.300
.328 | 513
507
617
545
629
568:
566:
534
708: | +.132
+.187
+.185
+.140
+.091
+.099:
+.107:
+.090
+.044
+.152: | 381
320
432
405
538
469:
459:
454
490
556: | | | V378 Cen * d ⁻¹ .154816 | 4521.393
22.356
29.453
72.305
88.305
4916.356
30.346
36.273 | .984
.133
.232
.866
.343
.131
.296 | + .802
+ .924
+ .948
+ .799
+ .905
+ .912
+ .927
+ .933 | +.071
+.130
+.127
+.037
+.111
+.121
+.115
+.124 | + .873
+ 1.054
+
1.075
+ .836
+ 1.016
+ 1.033
+ 1.042
+ 1.057 | | 29.463
30.366
31.356
34.444
36.417
38.437
39.462
52.328
55.427 | .395
.424
.456
.556
.620
.685
.719
.135 | 759:
664:
605
858
749
- 1.013
914:
540:
584: | +.035:
+.016:
+.009
+.060
085
+.031
+.050:
+.163:
+.184: | 724:648:596798834982864:377:400: | | | V381 Cen*
d ⁻¹
.196898 | 4520.456
21.411
46.333
4886.520
4932.291 | .069
.257
.164
.146
.158 | +1.264
+1.267
+1.314
+1.318
+1.312 | +.249
+.237
+.270
+.273
+.261 | +1.513
+1.504
+1.584
+1.591
+1.573 | V347 CrA * | 64.227
68.424
4563.541
64.572 | .521
.657
.319
.386 | 487:
718:
655
752 | +.031:
+.015:
+.184
+.207 | 456:
703:
471
545 | | | V419 Cen * d-1 .181426 | 4585.243
86.268
87.206
88.259
4865.487 | .882
.068
.238
.429 | + .918
+1.008
+1.017
+ .971
+ .919 | +.161
+.206
+.220
+.187
+.172 | +1.079
+1.214
+1.237
+1.158
+1.091 | d
.065151 | 75.527
4930.472
5328.291
43.235
5624.546 | .100
.225
.143
.117 | 749
653:
643
658:
775: | +.202
+.192:
+.215
+.225:
+.133: | 547
461:
428
433:
642: | | | V420 Cen * | 95.415
4906.408
34.220 | .156
.150
.196 | +1.039
+1.003
+1.031 | +.224
+.205
+.226 | +1.263
+1.208
+1.257 | R Cru *
d ⁻¹
.171652 | 4520.444
32.415
4847.392
86.467 | .943
.998
.065 | +1.683
+1.661
+1.653
+1.457 | +.269
+.262
+.238
+.167 | +1.952
+1.923
+1.891
+1.624 | | | d
.040489 | 4565.315
85.247
87.213
88.269
4834.468 | .845
.652
.732
.774
.743 | + .229
+ .361
+ .319
+ .308
+ .337: | +.178
+.195
+.192
+.180
+.204: | + .407
+ .556
+ .511
+ .488
+ .541: | S Cru | 4916.338
22.312
4587.270 | .899
.925 | +1.674
+1.689
+1.486 | +.281
+.280
+.115 | +1.955
+1.969
+1.601 | | | | 35-533
86.437
95.424
96.382
4914-355
16.288
18.324 | .743
.786
.847
.211
.250
.977
.056
.138 | + .337
+ .317
+ .256
+ .088
+ .111
+ .179
+ .103
+ .094
+ .083 | +.188
+.163
+.188
+.222
+.137
+.149
+.158
+.178 | + .541
+ .505
+ .419
+ .276
+ .333
+ .316
+ .252
+ .252
+ .261 | d ⁻¹
.213219 | 88.297
4847.418
4907.362
08.262
31.291
5282.325
5348.237
58.200 | .312
.562
.343
.535
.445
.292
.346 | + 1.460
+ 1.560
+ 1.730
+ 1.652
+ 1.744
+ 1.768
+ 1.541
+ 1.633
+ 1.745 | +.115
+.182
+.242
+.228
+.261
+.283
+.169
+.237
+.285 | +1.742
+1.972
+1.880
+2.005
+2.051
+1.710
+1.870
+2.030 | | ## Table 6 (continued) 91 | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | |--|--|--|---|--|--|--|--|--|--|---|--| | T Cru *
d ⁻¹
.148517 | d
4513.410
20.433
21.386 | .318
.361
.503 | +1.636
+1.673
+1.698 | +.151
+.184
+.192 | +1.787
+1.857
+1.890 | SU Cyg | d
5348.308
49.271
64.310 | •795
.046
•957 | +1.374
+1.667
+1.547 | +.233
+.360
+.295 | +1.607
+2.027
+1.842 | | .140517 | 34.412
4925.352
31.231
5188.557 | .437
.499
.372
.589 | +1.718
+1.717
+1.682:
+1.676 | +.205
+.189
+.173:
+.162 | +1.923
+1.906
+1.855:
+1.838 | .260044
TX Del * | 65.324
5343.358 | .506 | + 1.567 + .607 | +.306
+.240
+.119 | + .847
+ .616 | | X Cru * | 94.592
5296.269
4563.363 | .485
.586 | +1.705
+1.673
+ .809 | +.184
+.151
+.037 | +1.889
+1.824
+ .846 | d ^{—1}
.162165 | 5643.447
54.460
65.464
68.513 | .956
.740
.234 | + .497
+ .614
+ .686
+ .465
+ .458 | +.202
+.274
+.107
+.108 | + .816
+ .960
+ .572
+ .566 | | d ⁻¹
.160772 | 64.312
65.331
4901.451
06.436
07.355 | .814
•977
.016
.818 | + .793:
+ .851
+ .897
+ .773
+ .879 | +.050:
+.050:
+.097
+.109
+.030
+.098 | + .843:
+ .948
+1.006
+ .803
+ .977 | | 81.412
82.448
83.442
88.373
89.366 | .326
.494
.655
.455
.616 | $\begin{array}{c} + .458 \\ + .610 \\ + .713 \\ + .534 \\ + .658 \end{array}$ | +.236
+.295
+.186
+.309 | + .846
+1.008
+ .720
+ .967 | | | 14.376
25.363
5188.568
5281.329
82.311
5308.316 | .094
.860
.176
.090
.248 | + .979
+ .794
+ .999
+ .993
+ .944
+ .897 | +.142
+.042
+.167
+.150
+.130
+.078 | + 1.121
+ .836
+ 1.166
+ 1.143
+ 1.074
+ .975 | β Dor * d ⁻¹ .101599 | 5547.232
48.249
55.228
68.229
69.228
73.236
80.218 | .593
.697
.406
.726
.828
.235 | +2.650
+2.732
+2.652
+2.753
+2.802
+2.767
+2.879 | +.152
+.184
+.100
+.203
+.231
+.161
+.263 | +2.802
+2.916
+2.752
+2.956
+3.033
+2.928
+3.142 | | SU Cru *
d ⁻¹
.077835 | 4512.422
30.429
32.408
34.407 | .224
.626
.780
.936 | + .400
+ .274
+ .257
+ .328 | 210
378
346
255 | + .190
104
089
+ .073 | W Gem | 5608.204
12.185 | .788
.192 | +2.804
+2.798 | +.225
+.184
+.152 | +3.029 $+2.982$ $+1.638$ | | | 87.252
4834.561
95.452
96.394
4921.387
22.306
34.235 | .049
.298
.038
.111
.056
.128 | + .481
+ .377
+ .492
+ .433
+ .492
+ .436
+ .494 | 087
247
093
157
090
158
094 | + .394
+ .130
+ .399
+ .276
+ .402
+ .278
+ .400 | d ⁻¹ .126350 | 4785.314
5535.304
55.319
68.289
73.281
80.255
95.219 | .024
.386
.915
.553
.184
.065 | +1.486
+1.314
+1.520:
+1.392
+1.417
+1.500
+1.572: | +.152
+.020
+.142:
+.110
+.054
+.112
+.168: | + 1.334
+ 1.662:
+ 1.502
+ 1.471
+ 1.612
+ 1.740: | | | 5331.231
5626.247
27.250
39.226
40.247
41.237 | .956
.919
.997
.929
.009
.086 | + .331
+ .276
+ .372
+ .310:
+ .405
+ .465 | 248
288
206
291:
181 | + .083
012
+ .166
+ .019:
+ .224
+ .318 | AP Her *
d ⁻¹
.096073 | 5315.435
58.296
5626.455
27.478
36.483
37.447
46.460 | .670
.788
.550
.649
.606 | + .092
+ .019
+ .022
+ .102
030
+ .086
118 | +.242
+.197
+.261
+.260
+.236
+.281
+.212 | + .334
+ .216
+ .283
+ .362
+ .206
+ .367
+ .094 | | SV Cru
d ^{_1}
.142770 | 4512.403
46.321
75.267
76.289 | .236
.078
.211
·357 | 441
563
469
537 | 013
065
004
078 | 454
628
473
615 | BB Her * | 87.410
88.281
5328.380 | .407
.490 | + .524?
022
+ .272 | +.095?
+.221
+.114 | + .619?
+ .199
+ .386 | | | 4834.496
4919.388
25.313 | .341
.187 | 537
453:
527:
464 | 044:
053:
011 | 497:
580:
475 | d ⁻¹
.133196 | 59.246
64.266
65.284
5629.527 | .830
.499
.634
.830 | + .340
+ .080
+ .182
+ .328 | +.136
017
+.060
+.142 | $\begin{array}{c c} + .476 \\ + .063 \\ + .242 \\ + .470 \end{array}$ | | TY Cru * d .200461 | 4567.300
76.297
77.307
4916.323
5555.559
74.402
5629.274 | .566
.369
.572
.531
.673
.450 | 723
855
770:
772
807:
744:
814: | 035
112
051:
065
127:
082:
064: | 758
967
821:
837
934:
826:
878: | RX Lib *
d ⁻¹
.040087 | 30.527
36.476
4562.374
4929.444
30.403
31.309 | .964
.756
.892
.607
.645
.681 | + .282
+ .320
574
425
422
403 | +.094
+.133
046
+.157
+.156
+.122 | + .376
+ .453
620
268
266
281 | | VW Cru * d ⁻¹ .189939 | 4512.430
13.425
45.260
85.258
4929.345
34.286 | .086
.275
.322
.919
.275 | + .467
+ .476
+ .459
+ .281
+ .477
+ .494 | +.011
020
026
101
018
+.004 | + .478
+ .456
+ .433
+ .180
+ .459
+ .498 | | 32.313
5251.503
5302.267
5555.601
73.610
5608.440
09.449
11.524 | .722
.517
.552
.707
.429
.826
.866 | 416
478
487
444
586
503
520
606 | +.120
+.219
+.178
+.094
+.188
+.068
+.025
006 | 296259309350398435495612 | | VX Cru * d -1 .081883 | 4512.441
17.445
.454
30.444
69.324
80.294
4896.405
5251.422 | .492
.902
.903
.966
.150
.048
.932 | 628
434
404
290
474
364:
390
325 | 249125132083151141:105094 | 877
559
536
373
625
505:
495
419 | |
12.386
22.352
23.389
24.278
26.338
27.278
28.355
29.449
30.350 | .984
.383
.425
.460
.543
.581
.624
.668 | 676
722:
665:
580:
484
457
423
415
461: | 012
+.140:
+.189:
+.200:
+.176
+.173
+.167
+.117
+.118: | 688
582:
476:
380:
284
256
298
343: | | AD Cru * d ⁻¹ .156288 | 4521.377
34.398
35.409
4834.551
67.447
4924.353
25.342
31.276
5224.521
82.285 | .637
.672
.830
.582
.724
.617
.772
.699
.530 | 031
017
085
042
055
076:
073
023
132
130 | +.060
+.048
017
+.023
+.011
020:
+.010
015
+.009 | + .029
+ .031
102
019
044
096:
069
013
147
121 | | 31.343
34.236
37.316
38.335
39.243
40.281
41.278
42.500
57.225
60.293 | .744
.860
.983
.024
.060
.102
.142
.191
.781 | 429482592677:676:706:736:479558 | +.115
+.082
+.059
+.028:
+.026:
+.148:
+.021:
+.034:
+.059
017 | 314
400
533
649:
558:
734:
702:
420
575 | | AG Cru * d ⁻¹ .260598 | 5308.276 4563.328 75-303 4847.399 85.451 4901.435 16.347 20.394 | .620
.194
.315
.222
.139
.304
.190 | 038
+1.132
+1.065
+1.155
+1.064
+1.080
+1.127
+1.119 | +.040
+.299
+.256
+.295
+.271
+.246
+.301
+.283 | + .002
+1.431
+1.321
+1.450
+1.335
+1.326
+1.428
+1.402 | T Mon
d ⁻¹
.037012 | 4784.328
85.304
5532.381
35.296
47.265
55.258
67.266
68.254
75.234 | .078
.114
.764
.872
.315
.611
.056
.092 | +1.958
+1.996:
+1.662
+1.628
+1.829?
+1.704
+1.888
+1.988
+1.987 | +.144
+.148:
093
078
+.120?
096
+.084
+.146
+ 008 | +2.002
+2.144:
+1.569
+1.550
+1.949?
+1.608
+1.972
+2.134
+1.878 | ## Table 6 (continued) | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | |----------------------------------|--|--|--|--|--|--|--|--|--|---|--| | SV Mon * d ⁻¹ .065652 | d
4784.307
85.285
5164.335
87.313
5532.360
35.276
48.290 | .099
.164
.049
.557
.210
.402 | + .855
+ .786:
+ .894
+ 1.110
+ .716
+ .836
+ .713: | 050
069:
040
+.191
041
+.016
091: | + .805
+ .717:
+ .854
+ 1.301
+ .675
+ .852
+ .622: | | d
4585.276
86.314
4867.573
85.513
86.554
4917.498 | .082
.189
.024
.863
.970 | +1.742
+1.795
+1.729
+1.615
+1.688
+1.760 | +.165
+.178
+.167
+.097
+.142
+.167 | +1.907
+1.973
+1.896
+1.712
+1.830
+1.927 | | | 55.249
67.248
68.246
73.254
80.238
5612.201 | .713
.501
.566
.895
.354 | + .713.
+ 1.094
+ .874
+ 1.140
+ .998
+ .794
+ .872 | +.135
+.046
+.208
+.027
018
+.076 | + .622:
+1.229
+ .920
+1.348
+1.025
+ .776
+ .948 | U Nor *
d ⁻¹
.079106 | 4562.357
63.434
72.348
73.361
74.304
78.309
4885.505 | .910
.995
.700
.780
.855
.172
.473 | + .620
+ .547
+ .789
+ .712
+ .661
+ .452
+ .490 | 176
235
066
117
169
283
217 | + .444
+ .312
+ .723
+ .595
+ .492
+ .169
+ .273 | | TX Mon * d ⁻¹ .114910 | 4812.305
5547.360
67.294
68.302
74.255 | .982
.447
.738
.854
.538 | 028
252
056:
083:
242 | +.074
059
+.083:
+.061:
002 | + .046
311
+ .027:
022:
244 | RS Nor | 86.539
4922.462
25.415
4562.449 | .555
.396
.630 | + .562
+ .437
+ .644
+ .108 | 168
252
131
130 | + .394
+ .185
+ .513
022 | | AC Mon | 95.252
5609.215
5532.409
35.328 | .950
.555
.113
.477 | 018
224
+ .110
+ .352 | +.070
+.002
066
+.081 | + .052
222
+ .044
+ .433 | d ⁻¹
.161339 | 63.471
64.400
65.440
4905.554
17.469 | .266
.416
.584
.457
.380 | $\begin{array}{r} + .241 \\ + .343 \\ + .326 \\ + .386 \\ + .413 \end{array}$ | 046
+.038
021
+.031
+.039 | + .195
+ .381
+ .305
+ .417
+ .452 | | .124740 | 47.402
68.322
73.304
74.269
5609.231 | .983
.592
.214
.334
.695 | + .188
+ .299
+ .086
+ .192
+ .351 | 030
+.042
072
+.006
+.047 | + .158
+ .341
+ .014
+ .198
+ .398 | SY Nor * | 30.435
43.289
5308.360
63.262 | .471
.545
.445
.303 | + .391
+ .350
+ .412
+ .285: | +.034
+.006
+.043
022: | + .425
+ .356
+ .455
+ .263: | | R Mus * d ⁻¹ .133158 | 16.211
4573.312
75.315
80.306
87.262
4847.407
85.460
86.474
4907.342 | .566
.973
.240
.904
.831
.471
.538
.673
.452 | + .321:
+1.630
+1.556
+1.651:
+1.736
+1.888
+1.854
+1.782
+1.881 | 076: +.125 +.120 +.147: +.190 +.300 +.286 +.225 +.295 | + .245:
+1.755
+1.676
+1.798:
+1.926
+2.188
+2.140
+2.007
+2.176 | d ⁻¹ .079083 | 4562.395
63.444
65.404
67.386
68.316
4906.529
07.386
19.444
20.465
21.431 | .808
.891
.046
.203
.276
.023
.091
.044
.125 | + .322
+ .386
+ .497
+ .597
+ .572
+ .461
+ .615
+ .656
+ .609 | 111091030016059038 +.010036 +.026023 | + .211
+ .295
+ .467
+ .581
+ .513
+ .423
+ .625
+ .454
+ .682
+ .586 | | g., . | 08.256
5251.439
82.299
5349.211 | .574
.271
.380
.290 | +1.839
+1.593
+1.692
+1.597 | +.265
+.136
+.213
+.156 | +2.104
+1.729
+1.905
+1.753 | TW Nor * d ⁻¹ .092690 | 4563.462
65.429
75.398
76.360 | .987
.170
.094
.183 | 433
329
360
353 | 359
295
313
300 | 792
624
673
653 | | S Mus * d ⁻¹ .103534 | 4563.316
75.286
77.327
80.275
88.286
4834.505 | .458
.698
.909
.214
.044 | +1.863
+1.744
+1.673
+1.873
+1.734
+1.829: | +.213
+.125
+.119
+.215
+.159
+.184: | +2.076
+1.869
+1.792
+2.088
+1.893
+2.013: | | 77.384
4889.464
5302.298
10.247
65.223 | .278
.204
.470
.207
.303 | 198:
314:
363
284
237 | 244:
279:
337
298
309 | 442:
593:
700
582
546 | | RT Mus * d ⁻¹ .924036 | 90.456
4929.334
4587.225
4834.486
47.382
96.372
4905.425
20.369 | .328
.354
.426
.548
.726
.601
.534
.377 | + 1.863
+ 1.868
+ .750
+ .791
+ .697
+ .739
+ .809
+ .628 | +.202
+.203
+.221
+.230
+.167
+.204
+.230
+.168 | +2.065
+2.071
+ .971
+1.021
+ .864
+ .943
+1.039
+ .796 | UX Nor * d ⁻¹ .419152 | 4567.452
69.452
74.372
75.422
4916.415
20.494
21.447
31.350
5285.388 | .457
.295
.357
.797
.725
.435
.834
.985 | 1.099
1.522?
1.069
1.236
1.178:
1.062
1.348:
1.407:
1.051 | +.377
+.360?
+.397
+.194
+.190:
+.338
+.310:
+.049:
+.405 | 722
- 1.162?
672
- 1.042
988:
724
- 1.038:
- 1.358:
646 | | TZ Mus | 21.377
5223.501
5309.251
28.225
4519.427 | .703
.602
.388
.537 | + .697
+ .753
+ .653
+ .773
415 | +.166
+.205
+.173
+.241
+.028 | + .863
+ .958
+ .826
+ 1.014
387 | GU Nor *
d ⁻¹
.289619 | 4574-350
75.410
78.351
4914-412
17.490 | .819
.126
.977
.307 | + .016
+ .204
+ .155
+ .118
+ .173 | 088
+.018
+.006
050
003 | 072
+ .222
+ .161
+ .068
+ .170 | | d_1
d_202229 | 35.394
69.308
78.283
4867.435
86.456
95.438
4916.304
20.380
5285.300
5315.243 | .188
.047
.862
.337
.183
.000
.219
.044
.841 | 196?
307
386?
421
337
315
358
298
549
505 | 221?
+.040
067?
038
+.003
004
045
+.014
098 | 417?267453?459334319403284647540 | Y Oph * d ⁻¹ .058413 | 20.474
4564.524
73.401
79.416
85.351
86.377
87.363
4901.628
21.489 | .063
.628
.146
.497
.844
.904
.962
.319 | + .223
+1.840
+1.734
+1.917:
+1.777
+1.753
+1.727
+1.792:
+1.907 | +.023 051118012:114123137042:013 | + .246
+1.789
+1.616
+1.905:
+1.663
+1.630
+1.750:
+1.894 | | UU Mus * d ⁻¹ .085940 | 4519.442
20.421
21.351
4835.543
4905.443
06.421
29.324 | .401
.485
.565
.567
.574
.658 | + .320
+ .504
+ .524
+ .535
+ .527
+ .422
+ .459 | +.054
+.148
+.142
+.136
+.108
+.053
+.066 | + .374
+ .652
+ .666
+ .671
+ .635
+ .475
+ .525 | BF Oph * d ⁻¹ .245832 | 53.341
89.228
4585.322
86.324
87.306
4901.560
05.612 |
.340
.436
.219
.465
.707
.960 | +1.813
+1.891
+1.244
+1.215
+1.443
+1.307
+1.329 | 054
018
+.090
+.110
+.239
+.150
+.141 | +1.759
+1.873
+.1344
+1.325
+1.682
+1.457
+1.470 | | S Nor * d ⁻¹ .102520 | 4561.469
63.484
64.408
67.434
69.440 | .642
.848
.943
.253
.459 | +1.605
+1.634
+1.688
+1.789
+1.683 | +.033
+.075
+.129
+.185
+.094 | +1.638
+1.709
+1.817
+1.974
+1.777 | RS Ori * | 16.431
17.509
41.204
4784.318
85.297 | .616
.881
.706
.257
.387 | + 1.422
+ 1.362
+ 1.446
+ .983
+ 1.009: | +.224
+.160
+.226
+.173
+.163: | +1.646
+1.522
+1.672
+1.156
+1.172: | | | 72.393
74.357
77.452
78.344
79.326
80.352 | .762
.963
.280
.372
.473 | +1.556
+1.679
+1.766
+1.738
+1.667
+1.617 | +.043
+.138
+.161
+.123
+.088
+.047 | + 1.593
+ 1.817
+ 1.927
+ 1.861
+ 1.755
+ 1.664 | d
.132152 | 5532-373
35.284
67.254
73.262
74.230
80.246 | .367
.114
.499
.724
.518
.646 | + .780
+ .944
+ .871
+ .957
+ .934
+ 1.004 | +.052
+.129
+.046
+.131
+.104
+.154 | + .832
+1.073
+ .917
+1.088
+1.038
+1.158 | Table 6 (continued) | | | | | | I ABLE O | (continuea) | | | | • | | |--|--|--|---|---|---|---------------------------------------|--|--|---|--|---| | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | | ж Pav *
d ⁻¹
.110331 | d
5302.460
48.370
49.258
65.301
70.291
72.268
5626.470
27.503
28.480
29.548
36.505 | .026
.091
.189
.959
.510
.728
.774
.888
.996
.114 | +2.611
+2.569
+2.475
+2.665
+2.380
+2.582
+2.640
+2.636
+2.538
+2.636 | +.262
+.235
+.176
+.316
+.210
+.323
+.353
+.357
+.280
+.220
+.342 | +2.873
+2.804
+2.651
+2.981
+2.590
+2.995
+2.993
+3.014
+2.916
+2.758
+3.036 | | d
4530.213
31.192
4834.268
35.345
39.228
40.236
61.310
65.282
66.248
67.251 | .765
.952
.672
.877
.616
.808
.822
.578
.762 | + .144
+ .031
+ .172
+ .087
+ .080
+ .108
+ .105
+ .010
+ .154
+ .041 | +.249
+.168
+.281
+.199
+.237
+.235
+.222
+.200
+.260
+.170 | + .393
+ .199
+ .453
+ .286
+ .317
+ .343
+ .327
+ .210
+ .414
+ .211 | | X Pup * d ⁻¹ .038523 | 4833.297
34.260
35.237
65.262
67.241
69.249
4905.226
06.212
07.215
5187.390 | .193
.230
.268
.424
.501
.578
.964
.002
.041 | + .900
+ .878
+ .845
+ .737
+ .696
+ .681
+ 1.052:
+ .986:
+ .950
+ .915 | 064
079
097
154
.166
141
+.105:
+.096:
+.030: | + .836
+ .799
+ .748
+ .583
+ .530
+ .540
+ I.157:
+ I.082:
+ .980:
+ I.001: | WZ Pup * d ⁻¹ .198685 | 4513.225
19.255
23.214
32.198
4835.360
65.290
67.272
69.280
93.228
5256.248 | .710
.908
.695
.480
.714
.660
.054
.453
.211
.338 | + .186
+ .107
+ .177
+ .242
+ .172
+ .195
+ .027
+ .300
044
+ .267
+ .532 | +.221
+.164
+.227
+.263
+.175
+.195
+.110
+.276
+.106
+.268 | + .407
+ .271
+ .404
+ .505
+ .347
+ .390
+ .137
+ .576
+ .062
+ .535
+ .742 | | RS Pup * d ⁻¹ .024162 | 88.374
4529.260
30.239
31.205
52.214
33.215 | .872
.436
.460
.483
.507 | +1.097
+1.413
+1.492
+1.560
+1.628
+1.635 | +.155
069
018
+.012
+.040
+.052 | +1.252
+1.344
+1.474
+1.572
+1.668
+1.687 | d ⁻¹
.073562 | 20.195
.253
31.184
32.178
4833.304
47.227 | .515
.519
.323
.396
.548 | + .334:
+ .456:
+ .244
+ .474
+ .434
+ .424 | +.199:
+.159:
+.065
+.199
+.132
+.109 | + .742
+ .573:
+ .615:
+ .309
+ .673
+ .566
+ .533 | | | 34.197
35.194
36.213
4866.271
67.298
69.340
4907.230
08.216
13.216 | .555
.579
.604
.579
.604
.653
.568
.592 | +1.637
+1.649
+1.611
+1.666
+1.647
+1.595
+1.616
+1.621:
+1.616: | +.038
+.037
+.004
+.040
+.012
037
+.022
+.019:
065: | +1.675
+1.686
+1.615
+1.706
+1.659
+1.558
+1.638
+1.640:
+1.551: | AP Pup * d ⁻¹ .196686 | 4847.256
67.262
93.215
5188.430
5223.323
5532.444
35.392
5626.216
29.224
40.190 | .387
.322
.427
.492
.355
.154
.734
.598
.190 | + 1.408
+ 1.354
+ 1.393
+ 1.380
+ 1.381
+ 1.182
+ 1.306
+ 1.362
+ 1.192
+ 1.378 | +.248
+.211
+.255
+.219
+.233
+.094
+.149
+.184
+.119 | +1.656
+1.565
+1.648
+1.599
+1.614
+1.276
+1.455
+1.546
+1.311
+1.577 | | ST Pup *
d ⁻¹
.052948 | 5532.394
35.316
47.349
74.244
80.269
95.237
5616.194
17.196 | .929
.084
.721
.145
.464
.257
.366
.419 | + .288
+ .112
+ .322
+ .017
+ .500
032
+ .345:
+ .509: | +.201
+.144
+.248
+.142
+.389
+.205
+.379:
+.389: | + .489
+ .256
+ .570
+ .159
+ .889
+ .173
+ .724:
+ .898: | AT Pup
d ⁻¹
.150041 | 5535.422
47.474
73.401
74.316
80.324
95.318
5608.295
09.278 | .540
.349
.239
.376
.277
.527
.474 | +1.128
+ .881
+ .914
+ .882
+ .898
+ 1.098
+ .990
+ 1.244 | +.235
+.081
+.086
+.088
+.076
+.224
+.164
+.290 | +1.363
+ .962
+1.000
+ .970
+ .974
+1.322
+1.154
+1.534 | | VW Pup * d ⁻¹ .233362 | 4833.286
85.227
5223.270
5555.402
67.320
73.346
74.292
95.281
5609.242
22.215 | .905
.026
.913
.420
.201
.607
.828
.726
984 | 417
461:
392
188
252
302
369
364
404
391: | +.008
+.013:
015
+.105
+.050
+.034
005
+.024
025
+.006: | 409
448:
407
083
202
268
374
340
429
385: | EK Pup * | 12.236
16.231
22.234
29.231
36.191
40.197
41.192
44.206 | .066
.665
.566
.615
.660
.261
.410
.862 | +1.007
+1.212
+1.210
+1.234
+1.211
+.902
+.928
+1.096 | +.125
+.266
+.273
+.292
+.267
+.075
+.107
+.182
+.178 | + 1.132
+ 1.478
+ 1.483
+ 1.526
+ 1.478
+ 1.977
+ 1.035
+ 1.278
+ .176 | | VZ Pup *
d ⁻¹
.043170 | 24.193
27.205
4517.213
19.232
20.183
4865.274
86.210
5188.386
5256.231 | .473
.176
.008
.095
.136
.034
.938
.983 | 230
312
+ .647
+ .616
+ .532:
+ .648
+ .228
+ .504
+ .196 | +.076
+.030
+.191
+.156
+.106:
+.178
032
+.109
070 | 154
282
+ .838
+ .772
+ .638:
+ .826
+ .196
+ .613
+ .126 | d_1
.380803 | 33.190
4812.389
35.257
69.269
85.246
95.226
5223.291
5547.462
73.388
5612.224 | .252
.572
.280
.232
.316
.117
.045
.490
.363 | + .011
+ .026
+ .052
+ .040
+ .030:
031
072
+ .060
+ .072
015 | +.176
+.181
+.194
+.184
+.224:
+.151
+.139
+.182
+.203
+.171 | + .187
+ .207
+ .246
+ .224
+ .254:
+ .120
+ .067
+ .242
+ .275
+ .156 | | WW Pup
d ⁻¹
.181268 | 4835.246
69.259
85.237
5194.376
5547.450
5555.411
67.338
68.352
73.375
74.304
5624.203
29.214 | .475
.641
.537
.574
.575
.018
.180
.364
.275
.443
.488 | + .149
+ .165
+ .191
+ .195
+ .186
033
127
120
160
+ .048
+ .186
060 | +.215
+.195
+.246
+.225
+.229
+.087
+.045
+.058
+.167
+.216
+.124 | + .364
+ .360
+ .437
+ .420
+ .415
+ .054
082
036
102
+ .215
+ .402
+ .064 | S Sge
d ⁻¹
.119301 | 5302.541
03.419
28.412
48.343
49.280
58.333
63.313
64.319
5652.414
54.422
61.435
69.468
78.440 | .598
.703
.685
.063
.174
.257
.849
.969
.339
.578
.415 | +2.151
+2.092
+2.113
+1.956
+1.891
+1.864
+2.127:
+2.000
+1.878
+2.150
+1.868
+1.950 | +.265
+.217
+.239
+.115
+.094
+.085
+.223:
+.150
+.100
+.281
+.144
+.123
+.149 |
+2.416
+2.309
+2.352
+2.071
+1.985
+1.949
+2.350:
+2.150
+1.978
+2.431
+2.043
+1.991
+1.099 | | WX Pup * d ⁻¹ .111875 | 4513.205
22.181
23.184
33.202
4835.335
5256.240
5568.385
5632.196 | .915
.919
.031
.152
.953
.042
.844 | + .575
+ .607
+ .702
+ .708
+ .635:
+ .744:
+ .637
661? | +.104
+.110
+.176
+.151
+.088:
+.167:
+.133
053? | + .679
+ .717
+ .878
+ .859
+ .723:
+ .911:
+ .770
714? | U Sgr *
d ⁻¹
.148253 | 87.442
88.321
4585.408
86.424
87.404
4901.680
06.648
07.474 | .518
.622
.800
.951
.096
.689 | +2.046
+2.197
+1.607
+1.525
+1.461
+1.608:
+1.661
+1.695 | +.230
+.283
+.043
+.003
029
+.086:
+.121
+.125 | +2.276
+2.480
+1.650
+1.528
+1.432
+1.694:
+1.782
+1.820 | | WY Pup * d ⁻¹ .190447 | 4513.214
23.199
29.203 | .528
.430
.573 | 092
148
+ .013 | +.144
+.098
+.201 | + .052
050
+ .214 | | 14.455
47.439
53.492 | .548
.583
.473
.370 | +1.680
+1.729
+1.580 | +.099
+.149
+.072 | +1.626
+1.779
+1.878
+1.652 | ## Table 6 (continued) | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | |--|--|--|--|---|--|--|--|--|---|--|---| | W Sgr *
d ⁻¹
.131671 | d
4564.547
65.521
67.535
68.447 | .018
.147
.412 | +2.501
+2.473
+2.356
+2.357 | +.288
+.248
+.171 | +2.789
+2.721
+2.527
+2.461 | BB Sgr *
d ⁻¹
.150671 | d
4585.455
86.455
87.442 | .895
.046
.194 | +1.446
+1.587
+1.555 | +.092
+.179
+.138 | +1.538
+1.766
+1.693 | | | 73-433
75-475
77-484
79-450
85-361 | .532
.188
.457
.722
.981 | +2.307
+2.457
+2.335
+2.219
+2.527
+2.234 | +.154
+.238
+.161
+.116
+.290
+.122 | +2.695 $+2.496$ $+2.335$ $+2.817$ $+2.356$ | | 4925.546
31.474
5303.410
49.320
50.229
70.282 | .137
.030
.070
.987
.124
.146 | + 1.574
+ 1.573
+ 1.582
+ 1.533
+ 1.572:
+ 1.589 | +.159
+.163
+.160
+.148
+.163:
+.154 | +1.733
+1.736
+1.742
+1.681
+1.735:
+1.743 | | | 86.389
87.370
4914.435
21.497
29.458
61.278
89.238 | .894
.024
.089
.018
.067
.256 | +2.372
+2.528
+2.488
+2.532
+2.517
+2.424
+2.420 | +.226
+.315 | +2.598
+2.843 | V350 Sgr * d ⁻¹ .194015 | 4585.432
86.441
87.424
4914.466
25.535
31.460
88.344 | .643
.838
.029
.480
.628
.777
.814 | +1.412
+1.315
+1.218
+1.256
+1.406
+1.337
+1.315 | +.212
+.140
+.090
+.139
+.221
+.156
+.148 | +1.624
+1.455
+1.308
+1.395
+1.627
+1.493
+1.463 | | X Sgr *
d ⁻¹
142608 | 4564.469
86.364
87.352
4885.531
86.586 | .930
.052
.193
.716
.866 | +2.523
+2.465
+2.400
+2.501
+2.524 | +.259
+.213
+.192 | +2.782
+2.678
+2.592 | V626 Sgr * | 5302.480
58.263
59.236
4562.535
64.562 | .761
.583
.772
.593
.669 | +1.346
+1.414
+1.332
538
631 | +.156
+.220
+.156
+.191
+.138 | +1.502
+1.634
+1.488
347
493 | | | 4989.218
5251.608
85.421
5573.639
5628.440
43.353
44.240 | .502
.921
•743
.846
.661
•787 | +2.303
+2.543
+2.546
+2.555
+2.425
+2.561
+2.540 | +.251
+.272
+.264
+.225
+.278
+.244 | +2.794 $+2.818$ $+2.819$ $+2.650$ $+2.839$ $+2.784$ | d
.037390 | 73.444
74.438
75.483
76.460
77.496
4929.470
31.434 | .001
.038
.077
.114
.153
.313 | 879
716
598
488
431
518
485: | +.276
+.285
+.324
+.341
+.353
+.234
+.209: | 603
431
274
147
078
284
276 | | Y Sgr
d ⁻¹
.173210 | 4579-494
85.398
86.415
87.389
4907.466
14.444
25.527
47.431 | .214
.237
.413
.582
.022
.231
.151 | +2.099
+2.075
+1.989
+1.917
+1.952
+2.054
+2.095
+1.884 | +.229
+.215
+.154
+.112 | +2.328
+2.290
+2.143
+2.029 | | 53.446
79.371
88.299
5611.539
23.476
24.517
26.543
27.403 | .209
.179
.512
.815
.262
.301
.376 | 402
419
522
843
472
459
474
522 | +.284
+.332
+.202
+.137
+.259
+.241
+.244
+.256 | 118
087
320
706
213
218
230
266 | | VY Sgr * | 5358.245
63.275
64.242
4567.557 | .102
.973
.140 | +2.105
+1.922:
+2.119 | +.244
+.145:
+.251 | +2.349
+2.067:
+2.370
287 | | 28.510
29.476
30.465
31.368
34.456 | .450
.486
.523
.557
.672 | 480
530
553
554
622 | +.210
+.220
+.227
+.196
+.146 | 270
310
326
358
476 | | d ⁻¹ .073762 | 68.455
5623.510
24.559
36.454
37.418 | .978
.801
.879
.756
.827 | 131
400
247:
406
382 | 250
366
297:
350
326 | 381
766
544:
756
708 | | 36.430
37.403
38.451
39.474
40.524
41.452 | .746
.782
.822
.860
.899 | 740
717:
757
804
820
822 | +.186
+.162:
+.159
+.172
+.192
+.217 | 554
555:
598
632
628
605 | | WZ Sgr *
d ⁻¹
.045766 | 4563.567
65.549
68.477
72.514
73.488 | .856
.947
.081
.266
.310 | + .730?
+1.117
+1.185:
+1.105
+1.087 | 134?
010
+.076:
106
133 | + .596?
+1.107
+1.261:
+ .999
+ .954 | Vary Son * | 42.518
52.339
60.555
72.419 | .974
.341
.648
.092 | 826:
505
640:
606 | +.232:
+.206
+.138:
+.273 | 594:
299
502:
333 | | | 75.539
79.480
85.385
86.405
4901.653
41.218 | .404
.584
.855
.901
.329
.140 | +1.008
+ .890
+ .944
+ .954
+1.062:
+1.202 | 177
215
134
117
122:
031 | + .831
+ .675
+ .810
+ .837
+ .940:
+1.171 | V741 Sgr * d ⁻¹ .065980 | 4572.529
73.500
4950.457
80.373
5331.300
43.254 | .695
.760
.631
.605
•759
.548 | 247
248
159:
219
225
250 | 243
251
198:
215
252
245 | 490
499
357:
434
477
495 | | YZ Sgr | 43.417
61.353
5309.376
10.366 | .240
.061
.989
.034 | +1.128
+1.252
+1.243
+1.252: | 097
+.049
+.047
+.061: | +1.031
+1.301
+1.290
+1.313: | RV Sco *
d ⁻¹
.164980 | 4564.437
79.342
80.383
4901.548
25.461 | .041
.500
.672
.657
.603 | +1.417
+1.462
+1.566
+1.580
+1.606 | +.065
+.144
+.171
+.184
+.205 | +1.482
+1.606
+1.737
+1.764
+1.811 | | d ⁻¹ .104674 | 4585.445
86.447
87.432
4914.474
22.551 | .977
.082
.185
.418 | +1.379
+1.388
+1.439
+1.316
+1.406 | +.131
+.137
+.155
+.041
+.118 | +1.510
+1.525
+1.494
+1.357
+1.524 | CQ Sco * | 32.328
5331.248
43.222
4565.483 | ∙735
•549
•525
.871 | +1.529 +1.566 +1.511 642 | +.143
+.189
+.157
+.137 | +1.672
+1.755
+1.668
505 | | | 31.467
61.404
80.398
88.353
5331.432
70.274 | .196
.330
.318
.151
.062
.128 | +1.449
+1.362
+1.364
+1.416
+1.391
+1.405 | +.152
+.094
+.096
+.144
+.139
+.133 | +1.601
+1.456
+1.460
+1.560
+1.530
+1.538 | d ⁻¹
.032827 | 67.522
68.434
70.439
4961.283
5251.637
81.454 | .938
.968
.034
.864
.395 | 647
636
649
703:
978
994 | +.130
+.124
+.112
+.199:
079
019 | 517
512
537
504:
- 1.057
- 1.013 | | AP Sgr * d ⁻¹ .197714 | 4565.541
73.481
85.375
86.397
87.380
4907.458
43.318
47.420
53.484 | .671
.241
.593
.795
.989
.273
.363
.174 | +1.433
+1.617
+1.477
+1.401
+1.319
+1.627
+1.595
+1.596 | +.131
+.276
+.152
+.113
+.092
+.275
+.250
+.218
+.237 | +1.564
+1.893
+1.629
+1.514
+1.411
+1.902
+1.845
+1.724
+1.827 | KQ Sco * d ⁻¹ .034856 | 4561.488
64.428
65.469
67.480
72.410
87.296
5251.585
81.438
85.405 | .995
.098
.134
.204
.376
.895
.049 | + .346
+ .538
+ .213?
+ .465
+ .367
+ .192
+ .465
+ .523
+ .449 | 313
208
+-350?
267
373
397
230
223
289 | + .033
+ .330
+ .563?
+ .198
006
205
+ .235
+ .300
+ .160 | | AY Sgr
d ⁻¹
.152216 | 4573.511
79.503
4922.528
29.486 | .162
.074
.288 | + .214
+ .154
+ .141
+ .106 | 045
071
095
122 | + .169
+ .083
+ .046
016 | V446 Sco * | 5308.372
09.284
10.262
4576.429 | .029
.060
.094
.905 | + .409
+ .486
+ .516
-1.046: | 262
232
216
+.034: | + .147
+ .254
+
.300
-1.012: | | | 61.391
5302.401
08.499
09.387 | .203
.110
.038
.174 | $\begin{array}{c} + .189 \\ + .212 \\ + .085 \\ + .198 \end{array}$ | 044
045
097
057 | + .145
+ .167
012
+ .141 | d ¹
.034941 | 78.438
79.435
4953.395
80.316 | .975
.010
.077
.017 | 966:
749
843:
731: | +.232:
+.191
+.193:
+.199: | 734:
558
650:
542: | Table 6 (continued) | Name of
Cepheid | J.D. hel.
– 2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | |-------------------------------------|--|--|---|---|---|--|--|--|--|--|--| | V470 Sco * d ⁻¹ .061495 | d
4563.517
64.448
75.440
76.403
77.462
78.400
4950.345
5308.386
72.246 | .633
.691
.367
.426
.491
.549
.421
.439 | 056
070
059
+ .071
+ .035
+ .005
+ .062
+ .077
056 | 467
463
397
351
365
396
342
343 | 523
533
456
280
330
391
286
266
483 | UZ Sct *
d ⁻¹
.067811 | d
4567.573
68.522
79.520
4950.477
80.387
5364.253
65.241
5612.482
27.446
28.556 | .732
.796
.542
.697
.725
.755
.822
.588
.603 | 053
059
291
125
073
050
063
278
271
202 | 159193260211172182215286273236 | 212252551336245232278564544438 | | V482 Sco * d ⁻¹ .220858 | 4579.396
85.340
86.333
87.341
4886.580
4905.622
31.365 | .396
.709
.928
.151
.240
.446 | +1.123:
+1.006
+ .953
+1.185
+1.195
+1.108
+1.157 | +.110:
+.044
+.040
+.174
+.176
+.107
+.160 | +1.233:
+1.050
+ .993
+1.359
+1.371
+1.215
+1.317 | CK Sct * d ⁻¹ .134858 | 29.500
30.489
31.409
4574.493
4989.307
5315.317
31.383 | .742
.809
.871
.907
.848
.813
.980 | 076
062
123
+ .103
+ .121
+ .106
+ .095 | 194
204
244
107
105
116
137 | 270
266
367
004
+ .016
010
042 | | V500 Sco * d ⁻¹ 107935 | 50.435
4562.477
63.527
64.476
67.512
70.423
72.448
4906.597
07.418
25.472
43.305 | .343
.713
.826
.928
.254
.566
.784
.650
.738
.676 | + 1.154
+ .905
+ .805
+ .766
+ .628
+ .838
+ .821
+ .867
+ .901
+ .832 | +.138
+.030
041
074
109
+.009
026
+.030
+.005
+.030
+.009 | + 1.292
+ .935
+ .764
+ .692
+ .519
+ .847
+ .795
+ .906
+ .872
+ .931
+ .841 | OVS. A | 5623.554
27.457
28.588
29.511
30.499
31.419
36.466
39.496
40.536 | .381
.908
.060
.185
.318
.442
.123
.531
.671 | 032
+ .099
+ .071
+ .029
006
072
+ .054
080
014
+ .088 | 225118163174200214180219162126 | 257
019
092
145
266
286
126
299
176
038 | | V542 Sco * d ⁻¹ .065615 | 4570.410
72.433
73.386
4952.322
53.324
5302.350
03.367 | .887
.020
.083
.947
.012
.914 | - 1.039
765
820
839
864:
899
798 | +.226
+.197
+.118
+.258
+.241:
+.250
+.244 | 813
568
702
581
623:
649
554 | CM Sct * d ⁻¹ .255299 | 4578.529
79.534
4950.495
5315.383
31.420
43.283
5612.509
23.525
28.577
39.506 | .894
.150
.856
.012
.106
.135
.868
.680
.970 | 046155064088112155071274:074190 | 008086020033064065029106:024078 | 054
241
084
121
176
220
100
380:
098
268 | | V636 Sco * d ⁻¹ 47132 | 4561.521
64.458
79.386
85.330
87.314
4885.522
86.570
4901.666
06.543
07.407 | .146
.578
.774
.649
.941
.817
.971
.192
.909 | +1.643
+1.499
+1.593
+1.597
+1.694
+1.635
+1.683
+1.595:
+1.699
+1.659 | +.130
+.071
+.144
+.081
+.193
+.163
+.179
+.135:
+.193
+.157 | +1.773
+1.570
+1.737
+1.588
+1.887
+1.798
+1.862
+1.730:
+1.892
+1.816 | CR Ser * d ⁻¹ .188629 | 40.547
4565.530
75.498
4925.490
89.296
5302.383
03.386
08.455
5625.534
26.421 | .026 .191 .072 .090 .126 .183 .372 .329 .139 .306 | 101030218192135037 + .024 + .040124 + .046 | 035144241223203155141107180116 | 136174459415338192117067304070 | | X Sct
d ⁻¹
.238205 | 4565.563
73.521
74.467
4905.646
22.541
5308.512
58.255
63.284 | .540
.436
.661
.549
.574
.514
.363 | + .451
+ .308
+ .377
+ .448
+ .441
+ .448
+ .163
+ .451: | +.099
+.046
+.077
+.113
+.104
+.132
025
+.110: | + .550
+ .354
+ .454
+ .561
+ .580
+ .138
+ .561: | ST Tau
d ⁻¹
.247879 | 31.396
41.463
4784.273
5164.314
87.257
5548.261
69.238
74.220 | .245
.144
.921
.125
.812
.297
.497 | + .048
118
+ .893
+ .842
+ .978
+ .828
+ 1.122
+ 1.024 | 096
190:
+.103
+.072
+.124
+.084
+.236
+.170 | 048
308:
+ .996
+ .914
+ 1.102
+ .912
+ 1.358
+ 1.194 | | Y Sct * d ⁻¹ .096698 | 4565.574
73.532
74.479
4905.660
06.617
47.452
88.313 | .482
.251
.343
.368
.460
.409
.360 | + .517
+ .452
+ .539
+ .582
+ .520
+ .567
+ .558 | 125
121
073
040
114
071
063 | + .392
+ .331
+ .466
+ .542
+ .406
+ .496
+ .495 | SZ Tau * d ⁻¹ .317548 | 5505.279
32.291
35.247
42.241
48.238
74.208 | .190
.768
.707
.928
.832 | + 1.560
+ 1.674
+ 1.692
+ 1.687:
+ 1.684
+ 1.624 | +.138
+.211
+.214
+.193:
+.184
+.174 | + 1.698
+ 1.885
+ 1.906
+ 1.880:
+ 1.868
+ 1.798 | | Z Sct * d ⁻¹ .077511 | 4570.504
4906.628
31.449
43.431
5302.414 | .264
.318
.242
.170
.995 | + ·573
+ ·558
+ ·598
+ ·574
+ ·370
+ ·405 | +.018
005
+.035
+.053
079
056 | + .591
+ .553
+ .633
+ .627
+ .291
+ .349 | R TrA * d ⁻¹ .295047 | 4562.344
63.422
65.395
77.341
79.291
85.284
86.294 | .106
.424
.006
.531
.106
.874 | +1.570
+1.459
+1.609
+1.499
+1.589:
+1.687
+1.551 | +.200
+.148
+.230
+.184
+.212:
+.264
+.179 | +1.770
+1.607
+1.839
+1.683
+1.801:
+1.951
+1.730 | | RU Sct * d ⁻¹ .050762 | 5309.401
10.379
28.346
31.395
5626.432
27.465
28.567
29.519
30.507 | .516
.565
.477
.632
.609
.661
.717
.766 | + .322
+ .402
+ .319
+ .717
+ .607
+ .711
+ .650
+ .612
+ .594 | 275
225
288
066
109
079
116
137 | + .047
+ .177
+ .031
+ .651
+ .498
+ .632
+ .534
+ .475
+ .415 | | 87.283
88.320
4634.236
4907.374
20.444
61.244
88.281
5188.610
5282.378
86.345
96.431 | .464
.770
.317
.906
.762
.800
.777
.884
.550
.720 | +1.488
+1.695
+1.492
+1.679
+1.698
+1.686
+1.673
+1.491
+1.669
+1.640 | +.161
+.289
+.164
+.264
+.290
+.276
+.273
+.179
+.267
+.263 | +1.649
+1.984
+1.656
+1.943
+1.988
+1.944
+1.980
+1.946
+1.670
+1.936
+1.903 | | SS Sct * d ⁻¹ .272390 | 4585,419
86,432
87,415
4988,336
89,332
5315,420
5624,585
27,470
31,450 | .022
.298
.566
.773
.044
.867
.081
.867 | +1.052
+ .942
+ .882
+ .933
+1.037
+1.063
+1.020
+1.050
+1.057 | +.161
+.089
+.071
+.135
+.148
+.166
+.143
+.168
+.163 | +1.213
+1.031
+.953
+1.068
+1.185
+1.229
+1.163
+1.218
+1.220 | S TrA * d ⁻¹ .158142 | 4562.431
63.451
64.390
65.415
67.397
68.326
69.416
72.356 | .512
.673
.822
.984
.297
.444
.617 | +1.840
+1.807
+1.787
+1.723
+1.654
+1.535
+1.714
+1.812
+1.608 | +.203
+.291
+.252
+.197
+.166
+.127
+.226
+.288
+.134 | +1.903
+2.098
+2.039
+1.920
+1.820
+1.662
+1.940
+2.100
+1.742 | Table 6 (continued) | | TABLE 6 (continuea) | | | | | | | | | | | | |--------------------|-----------------------|------------------------------|----------------------------|-----------------|--------------------|----------------------------|--|--------------------------------------|---------------------|-------------------------|--|--| | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_B$ | Name of
Cepheid | J.D. hel.
- 2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_B$ | | | | d | | | | _ | | d | _ | | | | | | | 4574.312 | .391
.561 | +1.612
+1.841 | +.191
+.299 | +1.803 $+2.140$ | 1 |
5669.205
72.319 | .265 | +1.056
+1.258 | $^{+.273}_{+.364}$ | $+1.329 \\ +1.622$ | | | | 75.389
76.337 | .711 | +1.773 | +.244 | +2.017 | | 77.212 | .478
.383
.848 | +1.064 | +.277 | +1.341 | | | | 77.354 | .711
.872 | +1.773
+1.707
+1.637 | +.244
+.188 | +1.895 | l | 77.212
78.408 | .848 | + 1.045
+ .963 | +.237 | +1.341
+1.282 | | | | 78.319
79.310 | .025 | +1.585 | +.155
+.121 | +1.792
+1.706 | 1 | 81.222 | ·944
·326 | + .903 | +.191
+.205 | +1.154
+1.376 | | | | 80.327 | .342 | +1.561 | +.144 | +1.705 | | 82.204
83.202
85.202
86.218 | .944
.326
.715
.494
.889 | +1.070 | +.295
+.243
+.352 | +1.154
+1.376
+1.313
+1.608 | | | U TrA * | 4562.459 | .361 | +1.048 | +.266 | -L r 0 r 4 | | 85.202
86 o x 8 | ·494 | +1.256 | +.352
+.202 | +1.608 + 1.192 | | | d ⁻¹ | 65.448 | .525 | +1.128 | +.302 | +1.314 + 1.430 | | 87.398 | .349 | + .990
+1.196 | +.356 | +1.552 | | | a
.389343 | 74.340 | .525
.987 | +1.016 | +.225 | +1.241 | | 87.398
88.202 | ·349
.662 | +1.054 | +.356
+.244
+.216 | +1.552
+1.298 | | | | 79.319
80.343 | .926
.324 | +1.033
+1.047 | +.220
+.261 | $+1.253 \\ +1.308$ | | 89.208
91.207 | .053
.832 | + .990
+1.058 | +.216 | +1.206
+1.286 | | | | 85.293
86.307 | .252 | +1.056 | +.264 | +1.320 | | .261 | .853 | +1.056
+ .960 | +.230 | +1.286 | | | | 86.307 | .252
.647
.661 | +1.107 | +.270 | +1.377 | | 92.332 | .270 | + .960 | +.230 | +1.190 | | | | 4907.398
17.479 | .586 | +1.098
+1.150 | +.257
+.288 | +1.355 + 1.438 | | | _ | | | | | | | 22.472 | .530
.634 | +1.260 | +.349
+.268 | +1.609 | T Vel * | 4510.245 | .084 | +1.131 | $+.189 \\ +.220$ | +1.320 | | | | 30.444 | .634 | +1.112 | +.268 | +1.380 | d ⁻¹
.215528 | 19.298
65.220 | .035
.933 | +1.175
+1.113: | +.220 | +1.395
+1.357:
+1.308:
+1.382 | | | | 5251.540
5282.390 | .650
.662 | +1.115
+1.112 | +.256
+.267 | +1.371 + 1.379 | .215520 | 4834.326 | •933 | +1.115: | +.244:
+.193: | +1.308: | | | | 5302.309 | .417
.469
.306
.691 | +1.253 | +.355 | +1.379
+1.608 | | 39.244
40.289
67.336 | .993
.218 | +1.178
+1.096 | +.204 | +1.382 | | | | 15.284
48.256 | .469 | +1.191
+1.097 | +.321
+.287 | +1.512 +1.384 | | 67.336 | .047 | +1.148 | +.139
+.206 | +1.235
+1.354 | | | | 49.244 | .691 | +1.102 | +.274 | +1.376 | | 86.251 | .124 | +1.107 | +.165 | +1.272 | | | | 5567.552 | .687 | +1.070 | +.238 | +1.308 | | 90.293
95.244 | ·995
·062 | +1.169
+1.155 | +.209
+.191 | +1.378
+1.346 | | | | 73.622
80.413 | .051
.695 | + .956 + 1.062 | +.190
+.229 | +1.146 + 1.291 | | 93.244 | .002 | 11.133 | 1.191 | 11.340 | | | | 95.370 | .518 | +1.160 | +.306 | +1.466 | V Vel * | 4521.228 | -371 | +1.299 | +.237 | +1.536 | | | | 95.370
5608.452 | .612 | +1.168 | +.308 | +1.476 | d_1 | 29.283 | .214 | +1.360 | +.274 | + 1.634 | | | | 09.377
.464 | .972
.006 | + .993
+ .980 | +.213
+.202 | +1.206 + 1.182 | .228781 | 33.299 | .133 | +1.226 | +.224 | +1.450 | | | | 11.384 | .753
.780 | +1.038 | +.225 | +1.263 | | 33.299
4885.333
86.286 | .133
.671
.889 | +1.154
+1.102 | +.152
+.126 | +1.450
+1.306
+1.228 | | | | .454 | .780 | +1.024 | +.216 | +1.240 | | 90.342 | .817 | +1.139 | +.124 | +1.203 | | | | 12.336
.450 | .124 | + .931
+ .979 | +.204
+.221 | +1.135 + 1.200 | | 93.290
95.269 | .492 | +1.249 | +.191 | +1.440
+1.206
+1.558 | | | | .556 | .200 | +1.010 | +.247 | +1.257 | | 4901.319 | •945
•329 | +1.084
+1.318 | +.122
+.240 | +1.558 | | | | 16.322 | .676 | +1.123 | +.271 | +1.394 | | 13.231 | .054
.971 | +1.147 | +.145 | +1.292 | | | | ·395
21.426 | .704
.663 | +1.082
+1.150 | +.253
+.294 | + 1.335
+ 1.444 | ' | 17.238
18.265 | .971
.206 | +1.088: | +.133:
+.271: | +1.121:
+1.620: | | | | -457 | .675 | +1.141: | +.269: | +1.410 | | 20.263 | .663 | +1.349:
+1.191: | +.143: | +1.334: | | | | 22.322
.416 | .012 | + .978
+ .974 | +.200
+.203 | +1.178
+1.177 | | _ | | | | | | | | 23.397 | .430 | +1.275 | +.366 | +1.641 | RY Vel * | 4510.345 | .365 | +1.071 | +.028 | +1.099 | | | | .485 | .430
.465
.783
.855 | +1.239
+1.016 | +.348 | +1.587 | d ⁻¹ | 12.351 | ·437 | +1.034 | 010 | +1.024
+1.036 | | | | 24.302
.487 | .703 | +1.000 | +.214
+.216 | $+1.230 \\ +1.216$ | ·0 3 5555 | 34.303
35.329 | .217 | +1.013 | $+.023 \\ +.064$ | +1.030 | | | | 25.520 | .257 | +1.050 | +.269 | +1.319 | | 36.294 | .254 | +1.090 | +.048 | +1.145
+1.138
+1.088 | | | • | 26.346 | .257
.578
.598
.639 | +1.104 | +.284
+.282 | +1.388 | | 4847.283 | ·345
·261 | +1.071 | +.017 | +1.088 | | | | .395
.502 | .590 | +1.107
+1.118 | +.282 | +1.389
+1.400 | | 4929.290
32.278 | .367 | +1.090
+1.045 | +.051
003 | +1.141 + 1.042 | | | | 27.305 | .952 | +1.017 | +.225 | +1.242 | 1 | " | | | | • | | | | 353
28.368 | .952
.970
.366
.381 | +1.018
+1.110 | +.222
+.292 | +1.240
+1.402 | RZ Vel * | 4517.244 | .471 | +1.254 | 023 | +1.231 | | | | .408 | .381 | +1.176 | +.321 | +1.497 | d ⁻¹ | 19.290
62.198
4865.348
66.281 | .471
.572
.675 | + 1.677
+ 1.596: | +.217 | +1.231 + 1.894 | | | | 29.309 | .732
.148 | +1.081 | +.246 | +1.327 | .049028 | 4865.348 | .075
.528 | +1.590: | +.147:
+.196 | + 1.743:
+ 1.845 | | | | 30.377
31.291 | .504 | + .942
+1.132 | +.194
+.289 | +1.136
+1.421 | | 66.281 | .538
.584
.563 | +1.649
+1.689 | +.203 | +1.892 | | | | .472 | .574
.659 | +1.099 | +.269 | +1.368 | | 86.243 | .563 | +1.668
+1.658 | +.207
+.302: | +1.875
+1.960: | | | | 34.257
36.236 | .659 | +1.161 | +.297 | +1.458 + 1.622 | | 4906.285
07.239 | •545
•592 | +1.619 | +.155 | +1.774 | | | | .306 | .429
.456 | +1.263
+1.236 | +.359
+.346 | +1.580 | . | | | | | | | | | 37.326 | .853 | +1.000: | +.209: | +1.209: | ST Vel * | 4834.344 | .242 | + .422 | +.045 | + .467 | | | | .371
-473 | .871 | + 1.000
+ .990 | +.206
+.213 | + 1.206
+ 1.203 | d ⁻¹ | 69.369 | .221
.104 | + .444 | +.036 | + .480 | | | | 38.347 | .251 | +1.022: | +.248: | +1.270: | .170704 | 86.260
5547.484 | .978 | + .484
+ .406 | +.081
+.014 | + .565
+ .420 | | | | 39.255 | .604
.613 | +1.115 | +.289
+.296 | + 1.404
+ 1.425 | 1 | 95.331 | .145 | + .498 | +.062 | + .560 | | | | .278
40.293 | .009 | +1.120 | +.290
+.225 | +1.425 + 1.237 | | 5612.280 | .039 | + .492 | +.067
+.083 | + .559 | | | | .381 | .043 | + .992 | +.210 | +1.202 | | 30.271 | | + .495 | +.003 | + .578 | | | | 41.288 | .396 | +1.242 | +.349 | +1.591 | SV Vel * | 4575 905 | .450 | -t 000 | +.200 | +1.292 | | | | ·394
42.211 | ∙437
•755 | +1.311
+1.066 | +.372
+.232 | +1.683
+1.298 | d ⁻¹ | 4517.395
32.377 | .513 | + 1.092
+ .995 | +.150 | +1.145 | | | | -425 | .839 | +1.008 | +.217 | +1.225 | .070937 | 72.222 | .340 | + .741 | +.027 | + .768 | | | | 43.295 | .177 | + .959
+1.040 | +.211
+.268 | +1.170
+1.308 | 1 | 4869.447 | .424 | +1.017 | +.175 | +1.192 | | | | .472
44.352 | .589 | +1.040 | +.267 | +1.359 | SW Vel * | 4570.000 | F00 | 000 | - 007 | ⊥ 9aa | | | | 46.442 | .403 | +1.111 | +.293 | +1.404 | d ⁻¹ | 4519.308
20.265 | .523
.563 | + .839
+1.120 | 007
+.161 | $^{+}$.832 $^{+}$ 1.281 | | | | 47.213
.238 | .703
.713 | +1.124 + 1.128 | +.276
+.274 | +1.400
+1.402 | d
.042600 | 21.195 | .603 | +1.234 | +.201 | +1.435 | | | | 52.264 | .669 | +1.119 | +.289 | +1.408 | 1 | 44.213 | .583
.669 | +1.208
+1.224 | +.190
+.182 | +1.398
+1.406 | | | | 54.282 | ·455 | +1.292 | +.372 | +1.664 | 1 | 46.217
4922.196 | .686 | +1.224 | +.162
+.145: | +1.406 | | | | 55.411
56.255 | .895 | + .979
+1.016 | +.193
+.246 | +1.172 +1.262 | 1 | .5 | | | | 3 | | | | 56.407 | .282 | +1.095 | +.240 | +1.356 | SX Vel | 4510.253 | .282 | +1.054 | +.204 | +1.258 | | | | 57.236 | .605 | +1.080 | +.250 | +1.330 | d ⁻¹ | 19.314 | .231 | +1.059 | +.218 | +1.277 | | | | .350
60.304 | .650
.800 | +1.078
+1.056 | +.254
+.241 | +1.332 +1.297 | .104713 | 20.283
29.269 | .332
.273 | +1.027
+1.070 | +.200
+.211 | +1.227
+1.281 | | | | -341 | .814 | +1.042 | +.222 | +1.264 | l | 4834.334 | .218 | +1.030: | +.211: | +1.241: | | | | 61.408 | .230 | + .956 | +.220 | +1.176 | l | 4921.189 | .312 | +1.024: | +.175: | +1.199: | | | | 64.209
65.360 | .320
.768 | +1.099:
+1.094 | +.265:
+.266 | +1.364:
+1.360 | | 30.185
5568.410 | .254
.085 | +1.051:
+1.048 | +.204
+.206 | +1.255:
+1.254 | | | | 67.212 | .489 | +1.051 | +.246 | +1.297 | l | 5626.223 | .139 | +1.040 | +.194 | +1.234 | | | | 68.363 | -937 | + .976 | +.203 | +1.179 | I | 36.198 | .183 | +1.058] | +.186 | +1.244 | | Table 6 (continued) | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_B$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_B$ | |--|--|--|---|--
--|--|--|--|---|---|---| | XX Vel * d ⁻¹ .143173 | d
4532·357
33.326
73.275
4839.279
95.378
4917.306
24.299 | .911
.050
.770
.854
.886
.025 | + .154
+ .084
136
+ .046
+ .111
+ .094
+ .114 | +.109
+.061
041
+.062
+.093
+.084
+.075 | + .263
+ .145
177
+ .108
+ .204
+ .178
+ .189 | CX Vel * d ⁻¹ .159871 | d
4521.206
33.272
34.221
35.236
4885.293
90.307
4921.216
22.208 | .810
.739
.890
.053
.017
.818
.760 | 187
275
163
241
223
162:
264:
158: | 040
068
032
091
081
042:
098:
077: | 227343195332304204:362:235: | | AE Vel *
d ⁻¹
.140182 | 4522.242
29.304
31.316
73.215
4865.381
86.308
95.319
4922.270 | .937
.927
.209
.082
.039
.972
.236 | + .203
+ .182
+ .250
+ .309:
+ .306
+ .266
+ .189
+ .305 | +.021
+.009
009
+.066:
+.070
+.050
005
+.059 | + .224
+ .191
+ .241
+ .375:
+ .376
+ .316
+ .184
+ .364 | DD Vel
d ⁻¹
.075787 | 4532.281
33.290
34.281
35.257
4890.331
93.251 | .488
.564
.640
.714
.624
.845 | 708
664
609
602
655:
659: | 131
172
074
129
068:
209: | 839
836
683
731
723:
868: | | AH Vel
d ⁻¹
.236565 | 4519.277
23.258
32.209
36.208
45.203
483.330
34.285
35.394
47.244
65.326
66.259
67.291
69.295
85,270 | .103
.045
.162
.108
.236
.397
.623
.885
.688
.966
.187
.431 | +2.018
+1.991
+2.046
+1.991
+2.038
+1.985
+1.910
+1.923
+1.923
+1.941
+2.052
+1.985
+1.922
+1.995 | +.317
+.307
+.327
+.317
+.320
+.284
+.261
+.260
+.245
+.271
+.328
+.283
+.265
+.246 | +2.335
+2.298
+2.373
+2.308
+2.358
+2.269
+2.171
+2.213
+2.168
+2.212
+2.380
+2.268
+2.187
+2.146 | DP Vel * d ⁻¹ .182336 | 4918.251
20.237
29.196
4510.295
31.297
32.309
44.249
4895.281
4921.257
22.241
29.213
5223.356
51.293 | .739
.890
.569
.389
.219
.403
.580
.586
.322
.502
.773
.406 | 629:662:691: 402582387383391496:382:522:360335 | 167:183:130: +.002168044046041028: +.004:135:012 | 796:845:821:400750381429432524:378:657:372350 | | AM Vel *
d ⁻¹
.132921 | 93.238
95.232
4908.208
13.208
18.218
4533.236
34.209
35.205
4834.315
65.339
5535.434 | .569
.041
.110
.293
.478
.562
.692
.824
.582
.706
.775
.826 | +1.934
+1.979
+1.994
+2.053:
+1.906:
-1.153
950:
911
-1.120:
949
913 | +.262
+.285
+.312
+.297;
+.260;
070
+.045;
+.141
+.041;
+.116
+.181 | +2.146
+2.264
+2.306
+2.350:
+2.166:
-1.223
905:
770
-1.079:
833
732
780 | DR Vel * d ⁻¹ .089286 | 4536.280
61.203
4865.366
86.296
95.292
4917.248
29.225
30.195
5223.376
24.377
56.295 | 026
· 252
· 409
· 278
· 081
· 041
· 111
· 197
· 374
· 464
· 314 | + .433
+ .546:
+ .501
+ .566
+ .440
+ .445:
+ .454:
+ .570:
+ .529
+ .471
+ .567 | 124
074:
150
069
121
121:
111:
057:
129
168
090 | + .309
+ .472:
+ .351
+ .497
+ .319
+ .324:
+ .343:
+ .513:
+ .400
+ .303
+ .477 | | AP Vel * d ⁻¹ .319795 | 73.429 5609.318 4522.209 31.225 35.221 4869.357 85.280 4919.255 5194.435 5223.339 | .596
.180
.063
.341
.196
.288
.153
.154 | -1.180
+ .459
+ .350
+ .389
+ .383
+ .398
+ .277:
+ .227
+ .264 | +.130
084
+.190
+.140
+.146
+.151
+.076:
+.079
+.095 | - 1,264
- 1,264
+ .649
+ .535
+ .535
+ .534
+ .559
+ .353:
+ .306
+ .359
+ .087 | EX Vel * d ⁻¹ .075558 | 85.216
86.220
4510.281
36.247
65.233
73.201
4893.273
95.260
4920.251 | .896
.985
.788
.750
.940
.542
.726
.876 | + .342
+ .413
235
277
359
550:
317
240
215: | 190
157
088
081
117
137:
107
125
104: | + .152
+ .256
323
358
476
687:
424
365
319: | | AX Vel * d ⁻¹ .385518 | 56.282 4519.268 22.197 29.229 4833.323 34.278 35.384 39.238 47.237 61.322 | .933
.259
.388
.099
.333
.701
.128
.613
.697 | + .092
+ .921
+ .891
+ .911
+ .901
+ .969
+ 1.077
+ 1.059
+ .938: | 005 +.208 +.229 +.199 +.185 +.247 +.221 +.290 +.270 +.205: | +1.129
+1.120
+1.110
+1.086
+1.223
+1.190
+1.367
+1.329
+1.143: | EZ Vel *
d ⁻¹
.028956 | 21.238
22.226
5224.362
85.203
4531.279
32.292
33.309
34.289
35.270 | .839
.914
.742
.339
.208
.237
.266
.295
.323 | 259:
261:
287
546
561
500
493
518
523 | 102:
185:
097
238
136
110
122
103
157 | 361:446:384784697610615621680 | | BG Vel * | 67.284
69.291
85.263
89.270
4907.224
14.226
17.204
5194.424
5256.260 | .426
.199
.357
.902
.823
.523
.671
.544
.383 | + .897
+ .922
+ .856
+ .930
+ .940:
+ I.010:
+ .949
+ .875
+ I.092? | +.196
+.196
+.182
+.234
+.215
+.218:
+.269:
+.229
+.190
+.068? | +1.093
+1.118
+1.038
+1.164
+1.148
+1.158:
+1.279:
+1.178
+1.065 | FG Vel * d ⁻¹ .154962 | 4517.277
29.294
31.305
32.319
4895.308
4922.256
24.237
29.235
5253.244 | .006
.868
.180
.337
.587
.763
.070
.844 | 379384416488562530:446:397:382 | 095
074
167
203
240
113:
067:
125: | 474
458
583
691
802
643:
513:
522:
502 | | d-1
144434 | 17.266
29.275
30.266
32.260
4833.382
34.362
39.252
47.269
65.356
67.344
69.378
85.302
90.317
95.252
4901.306
06.307
18.241
19.265
21.227 | .447
.181
.324
.612
.105
.246
.953
.110
.723
.010
.304
.604
.328
.041
.915
.638
.361
.509 | +1.286
+1.116
+1.225
+1.259
+1.156:
+1.156:
+1.162
+1.207
+1.208
+1.238
+1.226
+1.114
+1.156
+1.237
+1.242:
+1.281 | +.078010 +.052 +.038044 +.026:025043 +.011034 +.031 +.041 +.039038026 +.022 +.049: +.048009: | +1.364
+1.106
+1.277
+1.297
+1.071
+1.182:
+1.137
+1.050
+1.218
+1.239
+1.239
+1.279
+1.265
+1.076
+1.130
+1.259
+1.291:
+1.329
+1.329
+1.329
+1.329
+1.329 | W Vir * d ⁻¹ .057887 | 5303.206 10.194 5188.597 5308.331 09.261 5555.582 67.532 5608.420 09.435 11.488 12.350 21.406 22.333 23.358 24.262 26.318 27.262 28.333 | .795
.878
.352
.283
.337
.596
.288
.655
.713
.832
.460
.519
.519
.572
.691
.745 | 466
385:
+ .161
+ .016
+ .069
+ .380
+ .582?
+ .404
+ .325
+ .262
+ .262
+ .424
+ .638?
+ .419
+ .420
+ .420
+ .393 | 137
086:
+.285
+.197
+.221
+.246
+.239
+.062?
+.211
+.168
+.146
+.284
+.325
124?
+.277
+.242
+.231
+.219 | 603
471:
+ .446
+ .213
+ .290
+ .626
+ .317
+ .615
+ .493
+ .433
+ .546
+ .749
+ .662
+ .662
+ .662
+ .661 | | TABLE | 6 | (continue | d | |-------|---|-----------|---| | IABLE | 6 | (continue | a | | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | |--------------------|---|--|--|--|--|--|---|--|--|---|--| | | d
5629.298
30.335
31.280
32.302
34.218
37.284
41.249
52.251
67.199 | .863
.923
.978
.037
.148
.325
.555
.192 | + .338
+ .268
+ .192
+ .160:
+ .029
+ .157
+ .392
044
+ .037 |
+.198
+.169
+.138
+.018:
+.165
+.283
+.290
+.143
+.111 | + .536
+ .437
+ .330
+ .178
+ .194
+ .682
+ .099
+ .148 | U Vul *.
d ⁻¹
.125146 | d
5302.515
43.337
5647.442
52.396
54.429
55.509
61.428
68.480
69,462 | .589
.697
.755
.375
.629
.764
.505
.388 | +1.534
+1.488
+1.494
+1.307
+1.562
+1.526
+1.420
+1.308
+1.432 | +.033
+.034
.000
087
+.047
.000
013
074
004 | +1.567
+1.522
+1.494
+1.220
+1.609
+1.526
+1.407
+1.234
+1.428 | #### REMARKS T Ant Elements of max.: 2435619.31 + 5.8993 E. The counting of periods between HOFFMEISTER's epoch (K.V.B.B. Nr 27, 15) and the new epoch is slightly uncertain. Elements of max.: 2435625.60 + 4.47093 E. The counting of periods between Selivanov's epoch (Variable Stars 5, 21) and the new epoch is un- This variable was discovered by Oosterhoff and V 493 Aql published in B.A.N. 9, 385, star 16, 1943. No period could be derived from the few observations at that time, although it seemed rather certain that the decimal fraction of the reciprocal period was .33 and that the variable was an RR Lyraetype star or a Cepheid. For a period of nearly three months in 1956 the star was observed at least once every clear night. These observations prove that the star is a Cepheid and that its period is very close to three days. A first trial yielded the reciprocal period d-1.33394. The observations are clustered in three narrow groups in the lightcurve: one group shortly after maximum, the second on the descending branch and the third at the bottom of the ascending branch. The provisional period was improved with the aid of the observations in the last group. The best elements for maximum brightness are now: 2435626.18 + 2.98553 E. The epoch of maximum is uncertain as no observations were made near maximum. V 600 Aql The elements of maximum, derived from Kuroch-KIN's epoch (Variable Stars 6, 307) and the new epoch are: 2435665.44 + 7.24154 E. The counting of the number of periods elapsed between the two epochs is uncertain. RY CMa Combining the epoch given by Solovyev (General Catalogue of Variable Stars, 1948) with the new epoch we derived the following elements of max.: 2435612.17 + 4.67825 E. RZ CMa Improved elements of max.: 2435547.30 + 4.25498 E. TV CMa Elements of max.: 2435567.16 + 4.6708 E. The number of periods elapsed between Florya's epoch (Gen. Cat. Var. Stars) and the new epoch could not be determined. TW CMa Elements of max.: 2435547.00 + 6.99485 E. TW Cap Cepheid of population II. Elements of max: 2435664.8 + 28.5578 E. Elements of max.: 2434528.2 + 38.7560 E. The epoch given by Gaposchkin (H.A. 115, No. 5, 1946) does not fit these elements, but the still older observations by Roberts and by Hertzsprung are in full agreement. V Car Improved elements of max.: 2435612.16 + 6.69638 E. Y Car The observations show a large dispersion and the light-curve is probably variable. Improved elements of max.: 2434847.28 + 3.639760 E. UW Car Elements of max.: 2434886.33 + 5.345773 E. UX Car Elements of max.: 2434531.22 + 3.682246 E. UY Car Elements of max.: 2434907.28 + 5.543726 E. UZ Car VY Car Elements of max.: 2434936.24 + 5.20466 E. According to Gaposchkin (*H.A.* 115, No. 5) the period is variable and has steadily shortened. If we combine Gaposchkin's epoch with those from SOHON (B.A.N. 3, 204), from the General Catalogue of Variable Stars and from the present observations, we obtain the following solution: | max. | E | O-C | |------------|------|------| | d | | d | | 2410009.50 | 0 | 08 | | 2423937.66 | 734 | +.58 | | 2429508.48 | 1028 | 88 | | 2434907.99 | 1313 | +.35 | and the elements: $\max. = 2410009.58 + 18.990 E - .000021 E^2$ This ephemeris is in good accord with the Harvard observations. The best linear elements for the present time are: max. = 2434907.99 + 18.9349 E. Elements of max.: 2434925.15 + 4.67681 E. WW Car WZ Car The period seems to be increasing. The best representation of all observations is given by the following elements of maximum: $2434914.86 + 23.0075 E + .000025 E^2$. According to GAPOSCHKIN the period is variable. XX Car The best elements of maximum are at present: 2434917.03 + 15.71624 E - .0000034 E^2 . XY Car ROBINSON's epoch (H.A. 90, 47, 1933) combined with the present observations yields the elements of maximum: 2434834.49 + 12.43483 E. However the epoch of maximum 2423074.034 given by GAPOSCHKIN (H.A. 115, No. 5) does not fit these elements. According to Mrs Payne Gaposchkin (H.A. 115, YZ Car No. 6) the period is variable. Combination of the present observations with the old epochs from Miss Leavitt (H.C. No. 170, 1912) and from Sohon (B.A.N. 3, 204, 1926) yields the following elements of maximum: $2434907.04 + 18.1631 E + .0000022 E^2$. AQ Car Elements of maximum: 2435309.17 + 9.76896 E. CC Car Elements of maximum: 2435253.18 + 4.75965 E. | | | Elements of maximum: $2434510.24 + 4.93261 E$. | |------------------------|--------|---| | $\mathbf{C}\mathbf{Y}$ | Car | The epoch given in the Gen. Cat. Var. Stars cor- | | | | responds with a point on the ascending branch and | | | | not with maximum. Elements of max.: 2435568.49 $+$ 4.26593 E . | | DY | Car | Elements of max.: $2435224.36 + 4.67473 E$. | | ER | | Elements of max.: $2435623.31 + 7.7187 E$. | | EY | | Dispersion of the observations is larger than nor- | | | | mal. The light-curve may be variable. Elements | | | | of max.: $2435567.52 + 2.87601$ E. | | FN | | Elements of max.: $2434546.20 + 4.58569 E$. | | $\mathbf{G}\mathbf{H}$ | | Elements of max.: $2435567.82 + 5.72557 E$. | | | Car | Elements of max.: $2434521.40 + 4.43061 E$. | | GX | | Elements of max.: 2434523.02 + 7.19646 E. | | GZ | Car | Elements of max.: $2434924.27 + 4.15885 E$. | | | | The observations show a considerable dispersion. The light-curve is probably variable. | | HK | Cor | Elements of max.: $2434535.35 + 6.69574 E$. | | | Car | Elements of max.: $2434535.35 + 0.09574 E$.
Elements of max.: $2435567.45 + 7.5356 E$. | | | Cai | The number of periods elapsed between Hertz- | | | | SPRUNG'S epoch 2424214.92 $(B.A.N. 9, 63, star w)$ | | | | and the present epoch may be 1506 or 1507. It | | | | remains uncertain which of the two solutions is | | | | the correct one. | | | Car | Elements of max.: 2435619.7 $+$ 35.5412 E . | | | Cen | Elements of max.: $2434869.61 + 5.49397 E$. | | | Cen | Elements of max.: $2434570.31 + 17.0936 E$. | | UZ | Cen | The observations show an abnormal dispersion. | | | | The light-curve is probably variable. Elements of max.: $2435574.54 + 3.334369 E$. | | VW | Con | Elements of max.: $2434867.11 + 15.03618 E$. | | XX | | Elements of max.: $2434807.11 + 15.03018 E$.
Elements of max.: $2435349.23 + 10.9558 E$. | | | Cen | Elements of max.: $2435349.23 + 10.9330 E$. | | | Cen | Elements of max.: $2435223.36 + 3.21266 E$. | | | | The counting of periods between this new epoch | | | | and the old ones published by HERTZSPRUNG | | | | (B.A.N. 3, III, star u) and DE JAGER $(B.A.N. 10,$ | | | | 248) remains uncertain. | | 10 | Cen | The phase-shift between light-curve and colour | | | | curve indicates that this Cepheid probably belongs | | | | to population II. Elements of max.: $2434572.29 + 3.31926 E$. | | кĸ | Cen | Elements of max.: $2434889.98 + 12.1803 E$. | | | Cen | Elements of max.: 2435247.63 + 34.019 E. | | | Cen | Elements of max.: $2434869.40 + 3.71861 E$. | | OO | Cen | Elements of max.: $2435611.13 + 12.8805 E$. | | V 339 | | Elements of max.: $2434890.45 + 9.4672 E$. | | V 378 | Cen | Elements of max.: $2434936.27 + 6.45930 E$. | | V 381 | Cen | Elements of max.: 2434932.29 + 5.07878 E. | | V 419 | Cen | | | | | The counting of periods between O'Connell's | | | | epoch $(A.N. 264, 141, 1937)$ and the new epoch is | | V | Con | very uncertain. This is a Cophoid of population II. The observe | | V 420 | Cen | This is a Cepheid of population II. The observations by MERGENTALER (Lwow Contr. No. 10, 14, | | | | 1939) and the present observations cannot be | | | | represented by a linear ephemeris. A satisfactory | | | | ephemeris seems to be: | | | | $\max = 2425350.67 + 24.7678E000090E^2.$ | | | | \pm 54 \pm 14 (m.e.) | | V 496 | | Elements of max.: $2434517.60 + 4.42413 E$. | | | CrA | | | KQ | CrA | | | | | 2435650.1 + 30.864 E. The counting of periods | | | | between this epoch and Miss Swope's epoch | | V 347 | CrA | (H.A. 109, No. 10, 1943) is somewhat uncertain. This Cepheid probably belongs to population II. | | • 54/ | J. 1 1 | Elements of max.: 2435329.1 $+$ 15.3489 E . | | | | ニョンンファット ・フェンコーフ・ニー | ``` R Cru Elements of max.: 2434922.31 + 5.82575 E. T Cru Elements of max.: 2434534.47 + 6.73322 E. X Cru Elements of max.: 2435188.29 + 6.21997 E. SU Cru Elements of max.: 2434934.12 + 12.8476 E. The range of the colour curve is larger than the range of the light-curve in yellow light. TY Cru Elements of max.: 2434916.28 + 4.98851 E. VW Cru Elements of max.: 2434902.45 + 5.26485 E. VX Cru Elements of max.: 2434530.31 + 12.2126 E. AD Cru Elements of max.: 2434931.01 + 6.39844 E. AG Cru Elements of max.: 2434847.37 + 3.83733 E. TX Del Elements of max.: 2435683.44 + 6.16654 E. This Cepheid probably belongs to population II. β Dor Elements of max.: 2435580.7 + 9.842603 E. The epoch of maximum is not very well deter- mined. AP Her Elements of max.: 2435637.68 + 10.4088 E. The star may belong to population II. BB Her Elements of max.: 2435636.81 + 7.50774 E. RX Lib Elements of max.: 2435628.0 + 24.9459 E. The star belongs to population II. SV Mon Elements of max.: 2435568.7 + 15.2318 E. TX Mon Elements of max.: 2435595.42 + 8.7001 E. The present light-curve shows two maxima of which the second in phase is slightly brighter than the first. The epoch given above corresponds with this
highest maximum. The epochs given by Dubyago (A.N. 239, 15, 1930), Oosterhoff (H.B. No. 900) and VAN BUEREN (Leiden Ann. 20, stuk 5) probably correspond with another phase and therefore the period derived by Kukarkin and Parenago (Gen. Cat. Var. Stars) has been retained here. R Mus Elements of max.: 2434847.38 + 7.50990 E. S Mus The light-curve shows two equally high maxima, about P.15 apart. The elements for the first maximum are: 2434580.62 + 9.65869 E. RT Mus Elements of max.: 2434905.30 + 3.08608 E. UU Mus Elements of max.: 2434835.12 + 11.63596 E. S Nor Elements of max.: 2434586.39 + 9.75418 E. U Nor Elements of max.: 2434572.38 + 12.64133 E. SY Nor Elements of max.: 2434920.46 + 12.6449 E. TW Nor The period is probably slightly variable. Elements of max.: 2425441.58 + 10.7837 E + .0000028 E^2. 10 (m.e.) UX Nor Elements of max.: 2434920.38 + 2.38577 E. The range in blue light is large for a Cepheid of so short a period, namely about 1^m.6. The variable probably belongs to population II. It also is remarkably blue. GU Nor Elements of max.: 2434920.47 + 3.45281 E. Y Oph Elements of max.: 2434921.5 + 17.11946 E. BF Oph Elements of max.: 2434941.08 + 4.06782 E. RS Ori Elements of max.: 2435579.45 + 7.56704 E. и Pav The period is strongly variable (see: PARENAGO, Variable Stars 6, 57, 1946). The best elements of maximum for the years 1955 and 1956 are: 2435636.17 + 9.0636 E. X Pup Elements of max.: 2435188.76 + 25.9583 E. RS Pup Elements of max.: 2434533.4 + 41.3876 E. ST Pup Belongs probably to population II, as the colour curve is shifted relative to the light-curve. Elements of max.: 2435617.45 + 18.8864 E. VW Pup Elements of max.: 2435554.86 + 4.28519 E. VZ Pup Elements of max.: 2434864.90 + 23.1640 E. Elements of max.: 2435256.71 + 8.9385 E. ``` WY Pup Elements of max.: 2434834.39 + 5.25080 E. ``` WZ Pup The epochs of maximum given by VAN HOUTEN (Leiden Ann. 20, stuk 10, 287) and the epoch derived from our observations are not represented satisfactorily by a linear ephemeris. The most probable quadratic elements are: \max. = 2434869.27 + 5.03308 E + .00000177 E^2. 土 15 AD Pup Elements of max.: 2434532.67 + 13.5940 E. EK Pup Elements of max.: 2435573.46 + 2.62603 E. U Sgr Elements of max.: 2434947.51 + 6.74523 E. W Sgr Elements of max.: 2434587.26 + 7.594710 E. X Sgr Elements of max.: 2435643.31 + 7.01225 E. VY Sgr Elements of max.: 2434567.8 + 13.5572 E. WZ Sgr Elements of max.: 2434960.6 + 21.8502 E. AP Sgr Elements of max.: 2434907.39 + 5.057813 E. BB Sgr Elements of max.: 2435303.49 + 6.63699 E. V 350 Sgr Elements of max.: 2435358.43 + 5.15424 E. V 626 Sgr This Cepheid belongs to population II. Elements of max.: 2434979.3 + 26.745 E. The counting of periods between the epochs given by VAN HOUTEN (Leiden Ann. 20, stuk 10) and the new epoch could not be determined. V 741 Sgr The star may belong to population II. RV Sco Elements of max.: 2434925.38 + 6.06133 E. CQ Sco Probably population II. KQ Sco Elements of max.: 2435281.4 + 28.6896 E. Elements of max.: 2434980.1 + 28.6195 E. V 446 Sco Probably population II. V 470 Sco Elements of max.: 2435308.32 + 16.2615 E. V 482 Sco Elements of max.: 2434931.70 + 4.52780 E. Counting of periods somewhat uncertain. V 500 Sco Elements of max.: 2434925.64 + 9.31665 E. V 542 Sco Elements of max.: 2435303.3 + 15.2405 E. The star may belong to population II. Elements of max.: 2434906.47 + 6.79663 E. V 636 Sco Y Sct Elements of max.: 2434947.20 + 10.341504 E. Z Sct Elements of max.: 2434930.96 + 12.9014 E. RU Sct Elements of max.: 2435331.6 + 19.6997 E. SS Sct Elements of max.: 2435315.61 + 3.671213 E. UZ Sct Elements of max.: 2435629.5 + 14.7468 E_{-} CK Sct Elements of max.: 2434989.31 + 7.41522 E. CM Sct Elements of max.: 2434578.53 + 3.91697 E. CR Ser Elements of max.: 2435631.53 + 5.30141 E. ``` | R
S | Tau
TrA
TrA
TrA | Elements of max.: 2434920.49 + 3.389287 E.
Elements of max.: 2434575.42 + 6.32344 E. | |----------|--------------------------|--| | Т | Vel | Elements of max.: $2434890.37 + 4.639779 E$. | | V | Vel | Elements of max.: $2434918.41 + 4.370991 E$. | | | Vel | Elements of max.: $2434929.6 + 28.12507 E$. | | RZ | Vel | Elements of max.: 2434906.7 $+$ 20.39652 E . | | | | The quadratic term published by Oosterhoff in | | | | B.A.N. 8, 29, 1936 appears not to be real. | | | Vel | Elements of max.: $2435630.09 + 5.85809 E$. | | | Vel | Elements of max.: $2434869.9 + 14.09707 E$. | | SW | Vel | The period is strongly variable. Elements of max.: | | | | $2434521.4 + 23.4744 E0000381 E^2$. | | vv | 3 7-1 | \pm 8 \pm 8 (m.e.) | | XX | Vel | Elements of max.: 2434895.73 + 6.98457 E. | | AE
AM | Vel | Elements of max.: 2434922.42 + 7.13357 E.
Elements of max.: 2435535.43 + 7.52326 E. | | | Vel | Elements of max.: $2435535.43 + 7.52320 E$.
Elements of max.: $2434522.37 + 3.127 E$. | | 711 | VCI | The dispersion of the observations is very large. The light-curve is probably variable. We have not tried to connect the present observations with the old ones. | | AX | Vel | The light-curve has a small range and is probably | | | | variable, as the dispersion of the observations is | | | | abnormally large. All existing observations cannot | | | | be represented by linear elements. The following | | | | provisional ephemeris for maximum was derived: | | | | $2434839.36 + 2.59391 E + .000000106 E^2$. | | D.C | X 7 - 1 | \pm 5 \pm 8 (m.e.) | | | Vel | Elements of max.: $2434918.80 + 6.92357 E$. | | | Vel
Vel | Elements of max.: 2434921.87 + 6.25505 E. | | | Vel | Elements of max.: 2435250.94 + 5.48438 E. | | | Vel | Elements of max.: 2434930.70 $+$ 11.2000 E . | | E7 | Vel | Elements of max.: 2434894.43 + 13.2341 E.
Elements of max.: 2434532.6 + 34.524 E. | | EC | Vel | Elements of max.: $2434532.0 + 34.524 E$.
Elements of max.: $2435252.44 + 6.45320 E$. | | | Vir | Belongs to population II. | | * * | A 11 | Elements of max.: 2435622.8 + 17.2751 E. | | | | The light-curve may be slightly variable. | | U | Vul | Elements of max.: 2435654.47 + $7.990698 E$. | Table 7 | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | |--|---|--|--|--|---|--|---|--|---|---|---| | V572 Aql
d ⁻¹
.261097 | d 5364-340 72.294 5643-426 54-441 55-523 60.605 69.481 81.399 82.436 83.429 85.432 86.421 87.452 88.334 | .613
.690
.482
.358
.640
.967
.284
.396
.667
.926
.449
.707 | 241193232240108262178171274:155196286223 | +.220
+.219
+.212
+.206
+.266
+.182
+.201
+.245
+.167;
+.250
+.202
+.162
+.162 | 021
+ .026
020
034
+ .158
084
061
+ .070
+ .074
107:
+ .095
+ .006
124
011 | FZ Car
d ⁻¹
.279485
GS Car
d ⁻¹
.246600 | d
4533-354
61.295
76.233
80.221
4534-338
46.263
62.283
67.226
4886.354
95.390
4931.219 | .004
.814
.988
.103
.168
.108
.059
.278
.975
.203 | 502
480
504
490:
715
746
727
778:
647
729: | +.033
+.010
+.018
027:
+.032
+.024
+.106
+.054:
+.119
+.048:
+.063: | 469
470
486
517:
683
722
621
724:
528
681:
685: | | YZ CMa
d ⁻¹
.316793 | 4811.356
12.349 | .204
.518 | 849:
740 | +.311:
+.270 | 538:
470 | HS Car
d ⁻¹
.196383 | 4569.223
4925.222 | .318
.230 | 576
598: | 026
021: | 602
619: | | XZ Car
d ⁻¹
.060060 | 4522.294
87.197 | .609
•507 | + .818
+ .691 | +.038
058 | + .856
+ .633 | IM Car
d ^{—1}
.187398 | 4569.268
74.230
4953.245 | .272
.202
.228 | 447
405:
409: | +.040
+.016:
+.029: | 407
389:
380: | Table 7 (continued) | | | | • | | TABLE / | (continuea) | | | | | | |---|--|--|--|---|--|---|--|--------------------------------------|---|---|---| | Name of
Cepheid | J.D. hel.
-2430000 | phase | $\log I_{Y}$ | $\Delta \log I$ | $\log I_{B}$ | Name of
Cepheid | J.D. hel.
2430000 | phase | $\log I_Y$ | $\Delta \log I$ | $\log I_{B}$ | | IO Car
d ⁻¹
.073497 | d
4513.355
29.393
30.392
72.247 | .718
.897
.970
.046 |
205
226
198
150 | 053
046
+009
048 | 258
272
189
198 | | d
5681.422
82.457
83.452
86.451 | .431
.863
.278
.529 | + .475
+ .630
+ .544
+ .492 | +.131
+.216
+.125
+.140 | + .606
+ .846
+ .669
+ .632 | | BB Cen
d ⁻¹
.250165 | 4513.403
17.436
21.363
30.420 | .095
.104
.087
·353 | + .234
+ .253
+ .231
+ .302 | +.121
+.135
+.129
+.142 | + .355
+ .388
+ .360
+ 444 | BN Pup | 87.477
88.382
89.372
4835.373 | ∙957
•334
•747
.620 | + .613
+ .504
+ .616
321: | +.181
+.128
+.224
+.494: | + .794
+ .632
+ .840
+ .173: | | IZ Cen | 4885.436
4567.283
68.266 | .165
.063
.230 | + .267
775:
808: | +.137
195:
221: | + .404
970:
-1.029: | d
.073132
CO Pup | 86.230
4914.213
4510.232 | .340
.386
.610 | 365
368:
151 | +.506
+.514:
+.157 | + .141
+ .146:
+ .006 | | .169699
LV Cen | 4568.250 | .269 | 678 | 163 | 841 | d
.062438 | 13.235
30.248
44.201 | .797
.860
.731 | + .025
+ .061
+ .013 | +.209
+.151
+.215 | + .234 + .212 + .228 | | d ⁻¹
.201011
BE CrA
d ⁻¹ | 4574.532 | .056 | -1.077 | +.420 | — .6 ₅₇ | | 4833.344
34.295
35.417
5535.405 | .784
.844
.914
.620
.871 | + .069
+ .021:
+ .078
+ .027
+ .071 | +.187
+.207:
+.128
+.201
+.089 | + .256
+ .228:
+ .206
+ .228
+ .160 | | .299715
EZ Cyg
d ^{_1} | 4989.382 | .904 | 029: | 026: | 055: | | 55.444
68.398
73.414
74.325 | .680
•993
•050 | + .056
046
110
208 | +.194
+.039
+.004 | + .250
007
106
070 | | .085763
GH Gyg
d ^{—1}
.127912 | 5363.323
64.329 | .033
.162 | + .420:
+ .389 | +.054:
+.027 | + .474:
+ .416 | V383 Sgr
d ⁻¹
.060790 | 80.349
4572.544
73.546
74.512 | .426
.965
.026
.085 | 659
613
637 | +.138
+.264
+.232
+.244 | 395
381
393 | | QT CrA
d ⁻¹
.012635 | 4567.542
72.467
77.508
4919.610 | .711
•773
.837
•159 | 650
646
639
680 | +.046
+.040
+.030
+.019: | 604
606
609
661: | V ₅₃₂ Sgr | 75.552
4578.468
4980.336
5302.367 | .148
.939
.695
.115 | 656
- 1.034
897:
865 | +.206
+.029
095:
+.021 | 450
- 1.005
992:
844 | | | 52.403
79.383
89.258
5328.276 | .574
.915
.039
.323 | 669
639:
683:
644 | +.071
+.045:
+.042:
+.067 | 598
594:
641:
577 | .029254
V738 Sgr
d ⁻¹ | 5331.268
4574.450
75.513 | .961
•427
•452 | - 1.002:
430
473 | 022:
083
079 | - 1.024:
513
552 | | EK Del | 31.285
5343-372 | .361
.718 | 639
513 | +.065
+.407 | 574
106 | .023047 | 77.519
78.499
4953.461
61.336 | .498
.521
.162
·344 | 484:
494
440
609: | 102:
089
110
162: | 586:
583
550
771: | | .488590
DX Gem
d ⁻¹
.318891 | 4812.293
5555.309
67.279 | •597
•538
•355 | 099
056
002: | +.062
+.070
+.105: | 037
+ .014
+ .103: | V1077 Sgr | 5308.469
10.336
4568.555 | ·344
·387
·207 | 494
518
759 | 117
160
+.322 | 611
678
437 | | AL Lyr
d ¹ | 68.279
5343.297 | .674
.546 | 110
446: | +.090
+.052: | 020
394: | .074467
V507 Sco
d ⁻¹ | 4568.413
69.475 | .191
.281 | 999
995 | +.150
+.203 | 849
792
824 | | .077021
CN Lyr
d ⁻¹
.428090 | 5310.393
15.365
65.253 | .326
.455
.811 | 317:
225
314 | +.305:
+.348
+.296 | 012:
+ .123
018 | .084754
V549 Sco
d ⁻¹
.060423 | 70.382
4578.418
5308.399
09.323 | .358
.642
.749
.805 | 923
- 1.274
- 1.227
- 1.150 | +.099
+.258
+.197
+.165 | - 1.016
- 1.030
985 | | RV Mon
d ⁻¹
.030944 | 4574.328
76.348
77.369
78.331
4867.560
4930.420 | .548
.611
.642
.672
.622
.567 | 645
659
637
618:
707:
638 | 187
203
235
244:
204:
149 | 832
862
872
862:
911:
787 | TY Sct
d ⁻¹
.090473 | 10.274
4568.536
70.490
4988.324
89.321
5331.408 | .863
.329
.506
.309
.399 | - 1.125
378
372
410:
394:
376 | +.230
+.220
+.244:
+.244:
+.230 | - 1.023
148
152
166:
150:
146 | | TZ Mon | 5251.528
81.421
4811.335 | .503
.428
.712 | 575
608
- 1.105: | 154
128
+.336: | 729
736
769: | CO Vel | 43.270
4532.247
46.203 | .422
.052
.316 | 388
870
642 | +.233
159
140 | 155
- 1.029
782 | | d ⁻¹
.134622
BV Mon
d ⁻¹ | 12.337
4812.321
5547.384 | .846
.487
.345 | - 1.204:
244
171 | +.409:
+.050
+.101 | 795:
194
070 | .233891 | 4812.408
4914.241
18.229
5555.455 | ·579
·397
·329
·371 | 779
728:
674:
67 | 333
223:
236:
248 | - 1.112
951:
910:
926 | | .331750
CS Mon | 55.339
4812.279
5547.274 | .984
.321
.338 | 396
097
130 | +.016
+.004
058 | 380
093
188 | CP Vel | 67.375
5609.293
4517.258
36.232 | .159
.963
.030
.958 | 602
904
789
874 | 178
262
196
087 | 780
-1.166
985
961 | | .149684
EK Mon | 55.273
68.266
5547.371 | .535
.480
.654 | 240
204
206 | 052
038
061 | 292
242
267 | d
.101617 | 4812.429
4920.222
21.198 | .025
.978
.077 | 815:
766:
809: | 118:
169:
142: | 933:
935:
951: | | d ⁻¹
.252670
GR Nor
d ⁻¹ | 68.312
73.293
4567.422
69.428
77.443 | .945
.204
.367
.391
.480 | 248
048
693:
657
715: | 046
+.050
019:
029
+.017: | 294
+ .002
712:
686
698: | CY Vel
d ⁻¹
.051207 | 4513.267
31.234
32.268
33.281
34.259 | .111
.031
.084
.136
.186 | 780
913
797
771
672 | +.048
+.031
+.039
+.093
+.017 | 732
882
758
678
655 | | .510215
GZ Nor | 4922.485
79.335 | .526
.531 | 685
692
891 | +.003
+.016 | 682
676 | | 4885.318
86.274
4925.203 | .162
.211
.205 | 844
777
698: | +.105
+.072
+.013: | 739
705
685: | | d ⁻¹
.027823 | 4565.463
67.465
68.345
4921.472
25.442 | .025
.081
.105
.930
.041 | 891
965:
996:
892:
958: | +.033
+.038:
+.002:
+.018:
021: | 858
927:
994:
874:
979: | T Vul
d ⁻¹
.225450 | 5275.262
5349.290
70.331 | .130
·997
·741 | 775:
+2.071
+1.846 | 124:
+.323
+.215 | 899:
+2.394
+2.061 | | AU Peg
d ⁻¹
.417049 | 5348.370
64.352
5643.458 | .532
.198
.599 | + .607
+ .597
+ .490 | +.168
+.214
+.158 | + .775
+ .811
+ .648 | X Vul
d ⁻¹
.158243 | 4905.528
5348.356
72.280 | .265
.340
.126 | + .707?
+ .853
+ .667 | +.431?
035
121 | +1.138?
+ .818
+ .546 | | - / - | 54.469
61.464
68.521 | .191
.108
.051 | + .578
+ .603
+ .610 | +.150
+.155
+.161 | + .728
+ .758
+ .771 | SV Vul
d ⁻¹
.022151 | 5343·343
48.317 | .360
.471 | +1.551
+1.496 | +.013
066 | +1.564
+1.430 | In the first column the name of the Cepheid is given and the value of the reciprocal period which has been used in the computation of the phases, given in the third column. The heliocentric Julian Day is given in the second column. The phases have been computed with the formula: phase = $$P^{-1}$$ (J.D. hel. – 2430000). The reciprocal period used in this equation corresponds with a value of the period which was derived from the present observations in combination with old epochs. We did not try to determine the best value of the period from all available observations, but only to derive a period which can be safely used for extrapolation for a number of years. In the last three columns $\log I_Y$, $(\log I_B - \log I_Y)$ and $\log I_B$ are given. Figures marked with a colon are uncertain on account of a poor sky, a varying extinction, smoke and the like. Some figures followed by a question mark should probably be discarded altogether, as they do not agree at all with the other measures of the same variable. In some cases the wrong star may have been measured. It also has happened that a mistake was made in noting down the amplification of the photometer, which could not be overtaken. The faintest variables in Table 6 could often hardly be seen visually through the guiding telescope and it was difficult to keep these stars centred in the diaphragm. Discordant measures for these faint Cepheids are probably due therefore to inaccurate settings. At the end of Table 6 remarks are to be found about individual Cepheids marked with an asterisk behind their name. In Table 7 the individual measures of those Cepheids have been tabulated for which the number of observations is too small to derive magnitudes and colour at the phase of maximum brightness. For some of the variables in this Table 7, like QT CrA, very little variation is found in the magnitudes and colour and it seems probable that the identification of these variables has not been correct. Table 7 has been given for the sake of completeness, but no use has been made in this paper of any of the measures from this table. The colour curves and the yellow light-curves are shown for each variable in the Figures 2, 3, 4, 5 and 6. Uncertain observations have been indicated by open circles. For each variable the colour curve is at the top of the figure. The value of $\Delta \log I$ is indicated on the left-hand side of each figure, whereas the values of $\log I_Y$ are given on the right-hand side. In the abscissa tenths of phase have been indicated, zero phase with a long line and phase .5 with a somewhat shorter line. # 8. A comparison with the
magnitudes and colours derived by other authors A. Comparison with Eggen's magnitudes and colours of classical Cepheid variable stars (1951). For fourteen Cepheids from EGGEN's article we derived $\log I_B$ and $\log I_Y$ values at maximum brightness and for two of these variables we have also values for minimum brightness. The data used for two least-squares solutions and the residuals (O-C) have been collected in Table 8. The resulting equations are: $$Pg_{p} = 11.317 - 1.157 (\log I_{B} + \log I_{Y}) - 1.11 (\log I_{B} - \log I_{Y}), \\ \pm .033 \pm .26$$ (m.e.) $$Pv_p = 10.337 - 1.180 (\log I_B + \log I_Y) + .95 (\log I_B - \log I_Y).$$ $$\pm .024 + .19$$ (m.e.) This comparison is rather unsatisfactory in two respects. Table 8 | Var. | Pg_p | Pv_p | $\log I_B$ | $\log I_Y$ | $(O-C)_b$ | (O-C) | |---|---|---|--|--|--|---| | U Aql
SZ Aql
TT Aql
FM Aql
η Aql
SU Cyg
Y Opl | m
6.68
8.70
7.15
8.73
3.94
6.68
n 6.90
. 7.70 | m
5.99
7.82
6.32
7.81
3.44
6.36
5.84
6.34 | 2.000
1.171
1.764
1.143
3.161
2.027
1.898
1.572 | 1.835
1.088
1.646
1.100
2.878
1.667
1.910 | m02 +.0909 +.0508 +.0403 +.03 | m
+.02
+.07
10
+.08
04
+.04
+.01
+.02 | | S Sgr
min
U Sgr
Y Sgr
WZ Sgr
V 350 Sgr
SS Sct
SZ Tau | 7.04
6.88
5.82
8.03
7.48
8.50 | 5.23
6.03
6.14
5.27
7.18
6.87
7.82
6.30 | 2.464
1.948
1.883
2.364
1.332
1.640
1.234
1.897 | 2.182
1.863
1.733
2.113
1.262
1.417
1.064
1.687 | +.16
+.22
09
04
21
05
+.03
01 | +.II
+.II
07
02
I6
07
+.03
01 | In the first place the residuals are rather large, the mean error of one equation of condition being \pm . It is for the blue and \pm 0.82 for the yellow magnitudes. It should be kept in mind, however, that for Eggen's as well as for our own measures the values at maximum and at minimum light depend on interpolation between observations at neighbouring phases. In this respect it is interesting to notice that there exists a strong correlation between the residuals in blue and yellow light for the same star. A far more serious matter is the discordance in the photometric scales. If the scales were the same, the coefficient of the second term in the above formulae would be - 1.25. Consequently Eggen's scale differs by a factor .925 \pm .026 in the blue and by a factor .944 \pm .019 in the yellow from our scale. It is difficult to understand how such a large scale difference of nearly 6.5 percent can exist between two series of photo-electric measures. As our scale is in full agree- ## FIGURE 2 ## FIGURE 4 B. A. N. 484 106 LEIDEN 107 ment with that of the Cape 1953 S system and also with the scale of Gascoigne and Eggen discussed in the next paragraph, we conclude that the scale factor derived here for Eggen's observations is probably not correct. B. Comparison with the magnitudes and colours derived by Eggen, Gascoigne and Burr, published in the *Monthly Notices* (1957). Dr Gascoigne has been so kind to provide me with a copy of part of the typescript of this paper on magnitudes and colours of Cepheids in advance of publication. Disregarding some stars with uncertain measures we find in their list 33 Cepheids in common with ours and for 5 of these we have not only the photometric data for the phase of maximum, but also for minimum brightness. For a comparison between the two photometric systems we therefore have 38 equations of condition. The data used in the least-squares solutions have been collected in Table 9. TABLE 9 | Star | P_E | V_E | $\log I_B$ | $\log I_Y$ | $(O-C)_{P}$ | $(O-C)_V$ | Star | P_E | V_E | $\log I_B$ | $\log I_Y$ | $(O-C)_P$ | $(O-C)_{V}$ | |-----------|-----------|-----------|------------|------------|-------------|-----------|-----------|-----------|-------|------------|------------|-----------|-------------| | U Aql | м
6.73 | m
6.05 | 2.000 | 1.835 | m
.00 | m
+.04 | min. | m
7·74 | 6.38 | 1.572 | 1.715 | m
+.07 | m
+.08 | | SZ Aql | 8.72 | 7.84 | 1.171 | 1.088 | .00 | .00 | и Pav | 4.28 | 3.96 | 3.040 | 2.687 | +.02 | +.03 | | TT Aql | 7.19 | 6.38 | 1.764 | 1.646 | 10 | 10 | S Sge | 5.76 | 5.25 | 2.464 | 2.182 | +.12 | +.09 | | FF Aql | 5.74 | 5.17 | 2.424 | 2.182 | +.02 | +.01 | min. | 6.96 | 6.03 | 1.948 | 1.863 | +.13 | +.09 | | FM Aql | 8.78 | 7.82 | 1.143 | 1.100 | +.01 | +.01 | U Sgr | 7.00 | 6.25 | 1.883 | 1.733 | oI | or | | FN Aql | 8.86 | 7.95 | 1.067 | 1.013 | 10 | 08 | W Sgr | 4.67 | 4.22 | 2.827 | 2.523 | 09 | 11 | | V 496 Aql | 8.57 | 7.59 | 1.300 | 1.228 | +.17 | +.09 | min. | 5.90 | 5.00 | 2.335 | 2.219 | .00 | 07 | | l Car | 4.17 | 3.28 | 3.024 | 2.936 | 04 | 03 | Y Sgr | 5.90 | 5.37 | 2.364 | 2.113 | +.03 | +.04 | | VY Car | 7.54 | 6.87 | 1.674 | 1.501 | +.02 | +.04 | WZ Sgr | 8.12 | 7.26 | 1.332 | 1.262 | 20 | 16 | | R Cru | 6.84 | 6.40 | 1.966 | 1.687 | 01 | +.02 | YZ Sgr | 7.57 | 6.83 | 1.599 | 1.444 | 13 | 14 | | T Cru | 7.03 | 6.36 | 1.924 | 1.720 | +.10 | +.06 | V 350 Sgr | 7.50 | 6.90 | 1.640 | 1.417 | 12 | 14 | | SU Cyg | 6.75 | 6.45 | 2.027 | 1.667 | +.02 | +.02 | SS Sct | 8.48 | 7.82 | 1.234 | 1.064 | 11 | 08 | | β Dor | 3.85 | 3.39 | 3.157 | 2.890 | 10 | 04 | SZ Tau | 6.96 | 6.34 | 1.897 | 1.687 | 04 | 04 | | BB Her | 10.41 | 9.72 | .487 | .342 | +.01 | +.05 | T Vel | 8.29 | 7.68 | 1.391 | 1.178 | +.06 | +.06 | | T Mon | 6.39 | 5.60 | 2.144 | 1.996 | +.02 | 02 | V Vel | 7.77 | 7.26 | 1.647 | 1.369 | +.14 | +.10 | | R Mus | 6.36 | 5.94 | 2.186 | 1.886 | +.04 | +.05 | min. | 8.57 | 7.80 | 1.206 | 1.084 | 08 | 05 | | S Mus | 6.49 | 5.90 | 2.098 | 1.879 | 02 | 01 | RZ Vel | 7.02 | 6.44 | 1.891 | 1.677 | +.01 | +.04 | | min. | 7.26 | 6.42 | 1.786 | 1.672 | +.03 | +.01 | SW Vel | 8.21 | 7.55 | 1.437 | 1.237 | +.10 | +.07 | | Y Oph | 6.98 | 5.91 | 1.898 | 1.910 | +.06 | +.09 | AH Vel | 5.86 | 5.47 | 2.374 | 2.046 | 01 | 03 | The resulting equations are: $$P_E = + \text{ 11.537} - \text{ 1.216} \left(\log I_B + \log I_Y \right) - \text{ .88} \left(\log I_B - \log I_Y \right), \\ \pm .013 \qquad \pm .14 \qquad (\text{m.e.})$$ (5) $$V_E = + \text{10.510} - \text{1.227} \left(\log I_B + \log I_Y \right) + \text{1.25} \left(\log I_B - \log I_Y \right). \\ \pm .012 \qquad \pm .12 \qquad (\text{m.e.})$$ (6) The coefficients of the second terms are larger than those found in the last paragraph in the comparison with Eggen's magnitudes. But still they seem to be significantly smaller than the value 1.25 for equal scales. We now find the scale factors .972 \pm .010 for the blue and .981 \pm .010 for the yellow. We cannot decide here how this scale difference of about 2 percent has been caused. We understood that Eggen has changed the photometric system of the magnitudes of the more northern Cepheids, published in Ap. J. 113, 367, 1951, before they were added to the list of Cepheids in the publication by Eggen, Gascoigne and Burr. However we do not know how this change in photometric system has been brought about, although the $(P, V)_E$ system has been described in detail by Eggen (1955). The mean error of one equation of condition was found to be \pm m.084 for the blue and \pm m.073 for the yellow. As was remarked in the former paragraph, a part of these errors will be due to the uncertainty in the reading of maximum and minimum values. Also in this case there exists a strong correlation between the residuals $(O-C)_P$ and $(O-C)_V$ in Table 9. This means that the errors in the colours are considerably smaller than the errors in the magnitudes. This could be expected as colour determinations are more differential in character than magnitude determinations for stars all over the sky. As linear relation between $(P - V)_E$ and $(\log I_B - \log I_V)$ we derived: $$(P-V)_E = + 1.059 - 2.086 (\log I_B - \log I_Y),$$ (7) the mean error of one equation of condition being $\pm^{m}.033$. C. Comparison with the photographic magnitudes and colours by BADALYAN (1956). BADALYAN has published median magnitudes and median colours for a large number of Cepheids. We have only 9 stars in common with his list, for which we have derived the photometric data for maximum and for minimum brightness from which median values can be computed. The data used in the leastsquares solution have been collected in Table 10. The resulting equation is: $$m_{pg} = + \text{11.30} - \text{1.063} (\log I_B + \log I_Y) - \text{.45} (\log I_B - \log I_Y). \\ \pm .075 \pm \text{1.09}$$ (m.e.) The mean error of one equation of condition is \pm ^m.34. The scale factor deviates considerably from unity and is found to be: $.85 \pm .06$. Although these results are based on observations of 9 Cepheids only, they no doubt prove that BADALYAN's observations are inferior to the photo-electric observations. As BADALYAN has only three or four observations per Cepheid, his values for the median magnitudes and colours must be quite inaccurate. We derived the following linear relation between his colour indices and our colours: $$CI_{Bad} = + \text{ i.o3} - .83 (\log I_B - \log I_Y).$$ + .60 The mean error of the coefficient of the second term is so large that this equation has no practical meaning. A comparison was also made between our measures and colour indices for maximum brightness by VASHAKIDZE (1953). For 35 Cepheids, common to both lists, the following relation was found: $$\begin{array}{c} \mathit{CI}_{\mathit{Vash}} = + . 17 \ + \ .92 \
\mathit{SCI}, \\ \pm . 13 \ \pm . 15 \ (\mathrm{m.e.}) \end{array}$$ SCI representing our colour indices expressed in the Cape system. The mean error of one equation is \pm m.30. #### **9.** The relations with other photometric systems In section 5 we have given the relations between $\log I_B$ and $\log I_Y$ and the blue and yellow magnitudes SPg and SPv of the Cape S system of 1953. TABLE 10 | Star | m_{pg} | CI | $\log I_B$ | $\log I_Y$ | (O-C) | | | | | | | | | |---|---|--|--|--|---|--|--|--|--|--|--|--|--| | SV Mon AC Mon Y Oph VW Pup WW Pup S Sge AP Sgr V 482 Sco CK Sct | m
9.35
10.21
7.55
11.82
11.12
6.57
8.25
8.63
11.79 | m
1.27
.80
1.10
.97
.79
.81
1.13
.70 | 1.023
.222
1.735
197
.173
2.206
1.654
1.187 | .944
.219
1.812
— .260
.020
2.022
1.468
1.076 | m
+.18
62
01
+.07
+.10
15
+.36
21
+.29 | | | | | | | | | In order to obtain a relation with the photometric system of Johnson and Morgan (1953) we have observed five stars from their list, namely: | Star | Sp. | В | V | U | $(O-C)_B$ | $(O-C)_{V}$ | |--|--|-----------------------|-----------------------|-----------------------------------|-------------------------------------|------------------------------------| | 109 Vir
λ Ser
CC 1017
1 Peg A | Ao V
Go V
K ₅ V
K ₁ III | m 3.74 5.03 8.90 5.19 | m 3.75 4.43 7.74 4.09 | m
3.71
5.14
9.95
6.24 | m
014
+.005
+.002
+.036 | m
.000
012
+.004
+.024 | | 55 Peg | M2 III | 6.06 | 4.50 | 7.87 | 027 | 014 | We observed the following values of $\log I_B$ and $\log I_{\mathbf{v}}$: | | $\log I_B$ | $\log I_{Y}$ | | $\log I_B$ | $\log I_Y$ | |---------------|----------------------------------|----------------------------------|----------------|-------------------------|-------------------------| | λ Ser
mean | 2.760
2.772
2.753
2.762 | 2.486
2.489
2.484
2.486 | r Peg A | 2.705
2.710
2.708 | 2.642
2.652
2.647 | | CC 1017 | 1.181
1.194
1.192 | 1.173
1.182
1.181 | 55 Peg
mean | 2.326
2.330
2.328 | 2.475
2.481
2.478 | | mean | 1.189 | 1.179 | 109 Vir | 3.280 | 2.751 | Least-squares solutions between the B and V values of Johnson and Morgan against our own measures yield the equations: $$B = + 11.829 - 1.233 (\log I_B + \log I_Y) - 1.212 (\log I_B - \log I_Y), \\ \pm .014 \pm .078$$ (m.e.) $$B = + \text{ ii.829} - \text{ ii.233 } (\log I_{B} + \log I_{Y}) - \text{ ii.212 } (\log I_{B} - \log I_{Y}), \\ \pm .014 \qquad \pm .078 \qquad \text{(m.e.)}$$ $$V = + \text{ io.681} - \text{ ii.248 } (\log I_{B} + \log I_{Y}) + \text{ ii.127 } (\log I_{B} - \log I_{Y}). \\ \pm .009 \qquad \pm .050 \qquad \text{(m.e.)}$$ The scale factors are satisfactory, namely .986 + .011 | related by the following equation: for the blue and .998 \pm .007 for the yellow. The residuals (O-C) are shown in the little table above. $B-V=+1.215-2.29 (\log I_B-\log I_Y)$. The colours in the two photometric systems are $\pm .014 \pm .05$ (m.e.) $$B-V=+$$ 1.215 $-$ 2.29 (log $I_B-\log I_Y$). $\pm .014 \pm .05$ (m.e.) (12) B. A. N. 484 110 LEIDEN The equations (10), (11) and (12) are based on five stars only and although the mean errors are quite small, an independent confirmation of these relations would be helpful. Stoy (1956) has derived the relationship between the Cape S system and the B and V magnitudes by Johnson and Morgan. He gives the relations: $$B = SPg - .o7 SCI + .2o, \tag{13}$$ $$V = SPv + .08 SCI - .06, \tag{14}$$ $$B - V = .85 SCI + .26.$$ (15) We can derive these equations independently from a combination of our equations (1), (2), (10), (11) and (12). We then find: $$B = .985 SPg + .00 SCI + .30,$$ (13') $$V = .996 SPv + .09 SCI - .01,$$ (14') $$B - V = .89 SCI + .24.$$ (15') The agreement between the two sets of equations is not unsatisfactory, if one keeps in mind that we observed only five stars from Johnson and Morgan and a small number of stars in the E-regions at widely separated times. The difference in the constant in the equation for B is due to the small difference in scale. There are no serious inconsistencies between the two sets of equations and our photometric system seems to be reasonably well defined by the equations (1) and (2) relative to the Cape S system and by (10), (11) and (12) relative to the photometric system by Johnson and Morgan. However there remains one serious discrepancy. Eliminating ($\log I_B - \log I_Y$) from the equations (7) and (12) we obtain the relation between the colours in the system of Eggen and the colours from Johnson and Morgan. The result is: $$(P-V)_E = +.91 (B-V) -.048.$$ (16) The mean error of the scale factor should be about \pm .03. In A.J. 60, 65, 1955, Eggen derived the relation: $$(P-V)_E = + 1.0376 (B-V) - .125 (16')$$ $\pm 12 (p.e.)$ with a scale factor much larger than in equation (16). However the relation between $(P-V)_E$ and (B-V) is more complicated than is indicated by formula (16'). For the dwarfs, with (B-V) between + 1.0 and + 1.5, EGGEN derived the equation: $$(P-V)_E = +.84 (B-V) + .08. \ \pm i \text{ (p.e.)}$$ The question therefore arises what this relation would be for F-type supergiant stars, which are considerably reddened by interstellar absorption, as equation (7) between $(P-V)_E$ and $(\log I_B - \log I_Y)$ was derived for Cepheids only. As we have no other stars, but Cepheids, in common with Eggen's $(P, V)_E$ system, this relation cannot be determined in any more detail. ## 10. Some relations between the photometric data and the periods In Table 11 we have collected the Cepheids for which we made photometric observations at maximum as well as at minimum brightness. The values of log I have first been converted into magnitudes by means of the equations (1) and (2). From these magnitudes in the Cape S system the amplitudes of the light-curves in blue and yellow were derived and also the range of the colour curves. These amplitudes have been given in Table 11 under the headings A_{pg} , A_{pv} and A_{CI} . In the case of population I Cepheids the range in colour practically equals the difference between the range in blue and the range in yellow. For the Cepheids of population II this is not necessarily so, as these variables often show a considerable shift in phase between the blue and yellow lightcurves. Omitting uncertain measures, indicated by a colon, and also the Cepheids of population II, we derived the relations between the blue range and the yellow range and between the blue range and the range in colour. The following relations were found: $$A_{pv} = .615 A_{pg}$$ and $A_{CI} = .396 A_{pg}$. ± 23 ± 35 (m.e.) The residuals from these two equations are shown in Table 11 under $(O-C)_1$ and $(O-C)_2$. The two relations are shown graphically in Figures 7 and 8. Stars with uncertain data have been indicated by small dots, Cepheids of population II by circles. In Figure 7 the circles lie systematically above the line representing the equation. In other words for these stars the range in yellow is larger than for ordinary Cepheids with the same range in blue. In Figure 8 the circles do not deviate systematically from the line representing the equation, but their dispersion seems to be larger than for ordinary Cepheids. Next we have computed the relations between the logarithm of the period and the range in blue light, in yellow light and in colour. Using the same 28 Cepheids of population I as before, we found the relations: $$\Delta SPg = A_{pg} = + .32 + .91 \log P, \ \pm .20 \pm .22 \quad (\text{m.e.})$$ $\Delta SPv = A_{pv} = + .25 + .50 \log P, \ \pm .13 \pm .14 \quad (\text{m.e.})$ $\Delta SCI = A_{CI} = + .05 + .44 \log P. \ \pm .08 \pm .09 \quad (\text{m.e.})$ LEIDEN III B. A. N. 484 TABLE 11 | Var. | Pop.
type | log P | A_{pg} | A_{pv} | A_{CI} | $(O-C)_1$ | $(O-C)_2$ | $(O-C)_{pg}$ | $(O-C)_{pv}$ | $(O-C)_{CI}$ | |-------------------------|--------------|-------|-----------|--------------|----------|-----------|-----------|--------------|--------------|--------------| | T Ant | I | .771 | m
1.30 | .82 | m
.50 | m
+.02 | m
01 | m
+.28 | m
+.18 | +.11 | | V 493 Aql | Ī | ·475 | .84: | .60: | .29: | 1.02 | .01 | 1.20 | 1 .10 | ' ' ' ' ' | | V 600 Aql | Î | .860 | 1.04 | .68 | ·39 | +.04 | 02 | 06 | .00 | 04 | | TW Cap | II | 1.456 | 1.71 | 1.23 | ·55 | 1 104 | 102 | | | | | U Car | I | 1.588 | 1.95 | 1.16 | .80 | 04 | +.03 | +.19 | +.11 | +.05 | | WZ Car | I | 1.362 | 1.90 | 1.14 | .88 | 03 | +.13 | +.34 | +.21 | +.23 | | YZ Car | I | 1.259 | 1.36 | .82 | .54 | 02 | .00 | 10 | 06 | 06 | | CC Car | I | .678 | .87 | .54 | •34 | .00 | .00 | 07 | 05 | 01 | | GZ Car | I | .619 | .52: | .31: | .20: | | | | | | | TX Cen | I | 1.233 | 1.90 | 1.14 | .76 | 03 | +.01 | +.46 | +.27 | +.17 | | UZ Cen | I | .523 | 1.11 | .73 | .39 | +.05 | 05 | +.31 | +.22 | +.11 | | AZ Cen | I | .507 | .56 | .36 | .19 | +.02 | 03 | 22 | 15 | 09 | | V 419 Cen | I | .741 | •45 | .29 | .16 | +.01 | 02 | 54 | 33 | 22 | | V 420 Cen | II | 1.394 | 1.28 | .83 | .45 | | | | | | | AL CrA | II | 1.232 | 1.55 | 1.08 | .70 | | | | | | | X Cru | I | .794 | .89 | .55 | .33 | .00 | 02 | 15 | 10 | 07 | | TX Del | II | .780 | 1.08 | .61 | .51 | | | | | | | RX Lib | II | 1.397 | 1.15: | .89: | .54: | | | | | | | SV Mon | I | 1.183 | 1.90: | 1.13: | .76: | | | | | | | AC Mon | I | .904 | 1.05 | .65 | .40 | .00 | 02 | 09 | 05 | 05 | | S Mus | I
| .985 | .78 | .50 | .27 | +.02 | 04 | 44 | 24 | 21 | | S Nor | I | .989 | .94 | .55 | .42 | 03 | +.05 | 28 | 20 | 07 | | U Nor | I | 1.102 | 1.49 | .93 | .56 | +.01 | 03 | +.17 | +.13 | +.02 | | ${f Y}$ Oph | I | 1.234 | .82 | .47 | ∙34 | 03 | +.02 | 62 | 40 | 25 | | VW Pup | I | .632 | 1.13: | .73: | .40: | | | | | | | WW Pup | I | .742 | 1.37 | .88 | .51 | +.04 | 03 | +.38 | +.26 | +.13 | | AT Pup | I | .825 | 1.41 | .87 | .56 | .00 | .00 | +.34 | +.21 | +.15 | | S Sge | I | .923 | 1.28 | .78 | .51 | 01 | .00 | +.12 | +.07 | +.05 | | W Sgr | I | .881 | 1.22 | .75 | .49 | .00 | +.01 | +.10 | +.06 | +.05 | | AP Sgr | I | .704 | 1.27 | .78 | .48 | .00 | 02 | +.31 | +.18 | +.12 | | V 626 Sgr | II | 1.427 | 1.38 | 1.08 | .54 | | | | | | | V 482 Sco | I | .656 | .98 | .61 | .36 | +.01 | 03 | +.06 | +.03 | +.02 | | V 636 Sco | I | .832 | .81 | .50 | .32 | •00 | .00 | 27 | 17 | 10 | | CK Sct | I | .870 | .78 | · 4 9 | .29 | +.01 | 02 | 33 | 20 | 14 | | ST Tau | Ī | .606 | 1.16: | .74: | .42: | | | | 1 | | | R TrA | I | .530 | .92 | .56 | .37 | 01 | +.01 | +.12 | +.04 | +.08 | | S TrA | I | .801 | 1.19 | .74 | .47 | 10.+ | .00 | +.14 | +.09 | +.07 | | U TrA
V Vel | I | .410 | 1.20: | .78: | .41: | | | | | 1 | | AX Vel | I | .641 | 1.10 | .70 | .40 | +.02 | 04 | +.20 | +.13 | +.07 | | | | .414 | .57: | .37: | .21: | | | | | | | BG Vel | I | .840 | .76 | .46 | .30 | 01 | .00 | 32 | 21 | 12 | | W Vir | II | 1.237 | 1.53: | .97: | .60: | 1 | 1 | 1 | 1 | 1 | Relation between blue and yellow amplitudes of the lightcurves. Open circles represent population II Cepheids Relation between the amplitudes of the light-curves and of the colour curves. Open circles represent population II Cepheids B. A. N. 484 112 LEIDEN The mean error per star for these three equations was found to be $\pm^m.30$, $\pm^m.19$ and $\pm^m.12$ respectively. The three relations are shown in Figure 9. As before, Cepheids of population II have been indicated by circles and stars with uncertain measures by small dots. The residuals from the equations have been given in the last three columns of Table 11. The relations between the amplitudes of the light-curves and of the colour curves and the logarithm of the periods. Open circles represent population II Cepheids Although the range of the light-curves and of the colour curves increases systematically with increasing period, the scatter of the points in the three diagrams of Figure 9 is large. The upper diagram is comparable with the combination of Figures 25 and 36 of Eggen's paper in Ap. J. 113, 367, 1951. On the basis of these two figures Eggen divided the Cepheids of population I in three types, A, B and C. According to Eggen the A- and B-type Cepheids fall in his Figure 25 on two lines with equal slope and shifted vertically over about m.14. According to him the C-type Cepheids probably fall on two other lines, which again have the same slope. The star Y Oph was considered anomalous by Eggen and not plotted in his figures. The position of Y Oph in our diagrams is also quite extreme, although V 419 Cen with a much shorter period shows a deviation of the same size. It is clear from the three diagrams of Figure 9, that it would be extremely difficult and very artificial to represent the observations by three or more parallel lines. The only stars in common between Eggen and us are S Sge and Y Oph, which are both considered as anomalous by Eggen and therefore we can only guess at the reason why our diagrams do not confirm Eggen's results. Although for some of the stars we observed, the magnitudes at maximum and minimum phase are not very certain on account of the small number of observations, it seems unlikely that the errors in our determination of the range of the light-curves could explain the observed dispersion in Figure 9. More observations will be required to settle this matter. We further derived the relation between the range of the light-curves in blue and the range of the radial-velocity curves, indicated by A_{rad} . For the latter quantity we used the values published by Joy (1937) and by Stibbs (1955b), assigning a larger weight to the observations by Stibbs, as his radial-velocity curves have been more completely observed than those by Joy. The data used have been collected in TABLE 12 (O-C)Star A_{pg} A_{rad} T Ant 1.30 45 U Car 1.95 8 52 UZ Cen 38 I.II 1 AZ Cen .56 19 V419 Cen .45 17 X Cru .89 25 RX Lib 1.15 29 SV Mon 1.90 66 .78 S Mus 36 S Nor .94 35 Y Oph .82 19 VW Pup 1.13: 41 WW Pup 1.37 34 S Sge 1.28 41 W Sgr 1.22 43 3 AP Sgr 21 1.27 V 482 Sco .98 32 V 636 Sco .8r 29 ŠT Tau 38 1.16: R TrA .02 34 S TrA 1.19 41 U TrA 1.20 41 \mathbf{v} Vel 39 1.10 AX Vel .57: 27 BG Vel .76 30 3 W Vir 1.53 LEIDEN Table 12. A solution from all the stars of Table 12 yields the equation: Omitting the two population II Cepheids RX Lib and W Vir we find: $$A_{rad} = + 8.0 + 25.3 A_{pg}.$$ $\pm 4.1 \pm 3.7$ (m.e.) If we use only the 15 stars for which STIBBS gave values of the radial-velocity range and for which the light-range is not uncertain, we derive: This last relation is shown in Figure 10. Our coefficient is somewhat smaller than that derived by Eggen for 9 stars, viz + 31.7 \pm 1.8 (m.e.). The difference 6.1 \pm 3.2 is twice its mean error. It is also smaller than the value derived by Parenago (1954), who gives 35.3. The difference however is caused mainly by the fact that in his formula, as in the formula by Eggen, no constant term has been used. ## 11. The colours of the Cepheids at maximum brightness From the measures given in Table 5 and with the aid of the Figures 2, 3, 4, 5 and 6 we derived the extreme Relation between the amplitudes of the light-curves and of the radial-velocity curves values of $\log I_B$, $\log I_Y$ and $(\log I_B - \log I_Y)$ for all the Cepheids. For most of them only values at maximum could be determined. The results have been given in Table 13. In this table the name of the variable is followed by the logarithm of the period TABLE 13 113 | Na | me | $\log P$ | l | b | $\log I_B$ | $\log I_Y$ | C | SPg | SPv | SCI | Δm_{pg} | E | r | | z | |---|--|--|---|---|---|---|--|---|--|--|---|---|--|--------------------------------|--| | Т | Ant | .771 | 232.5 | + 11.8 | 1.006
.487 | .690
.356 | .316
.123 | m
9.20
10.50 | m
8.91
9.73 | m
.29
.79 | 1.30* | .20 | 3.15 | + | 640 | | U
SZ
TT
FF
FM
FN
V 336
V 493 | Aql "" "" "" "" "" "" "" "" "" "" "" "" "" | .847
1.234
1.138
.650
.786
.977
.864 | 358·7
3·4
3·7
16.9
12.0
6.2
1.9
·7 | - 13.1
- 3.9
- 4.5
+ 5.0
5
- 4.6
- 3.5
- 3.0 | .496
.018: | 1.835
1.088
1.646
2.182
1.100
1.013
.464
— .030: | .165
.083
.118
.242
.043
.054
.032 | 6.71
8.78
7.29
5.65
8.85
9.04
10.47
11.67: | 6.03
7.89
6.50
5.17
7.86
8.08
9.45
10.69: | .68
.89
.80
.48
.99
.97
1.02
.98: | 1.15*
1.87*
1.77*
.48*
1.05*
1.03*
1.20
.84* | .59
.76
.68
.40
.90
.86
.92 | .55
1.79
.91
.33
.82
1.11
1.81
2.20 |
 -
 +
 +
 -
 - | 110
84
56
34
7
68
78
76 | | V 496
V 600
η | ,,
,, | .833
.860 | 356.1
11.6
8.7 | - 8.6
- 3.9
- 14.4 | 320:
1.300
.324'
094
3.161: | 273:
1.228
.380
.105
2.878: | 065:
.072
056
210
.283: | 12.51:
8.46
10.90
11.94
3.80: | 7.54
9.65
10.33
3.43: | 1.27:
.92
1.25
1.64
.38: | .48*
1.04*
1.20* | .83
1.15 | .70
1.50 | | 90
80
56 | | RY
RZ
TV
TW | CMa
"
" | .670
.629
.669 | 193.8
198.9
194.9
196.8 | + 1.6
+ .2
- 1.1
+ 1.3 | 1.418
.651
.290:
.760: | 1.170
.504
.210:
.570: | .248
.147
.080: | 8.17
10.09
10.99:
9.81: | 7.70
9.36
10.09:
9.20: | .47
.73
.90:
.62: | 1.42
1.00
.88
1.50 | .39
.66
.82: | 1.23
1.85
2.23
2.46 | + - + + | 15
20
74
25 | | TW | Cap | 1.456 | 357.2 | - 26.o | .675 | .273
228 | .402 | 10.03 | 9.97
11.20 | .07
.62 | 1.71* | 09 | 6.43 | - | 2700 | Table 13 (continued) | | | | | | | | Table 13 (continued) | | | | | | | | | | |---------------------------------|-----------|----------------|----------------|-----|-----------|------------------|----------------------|-------------|----------------|---------------|------------|-----------------|------------------|--------------|----------|------------| | Naı | me | $\log P$ | l | | b | $\log I_B$ | $\log I_Y$ | C | SPg | SPv | SCI | Δm_{pg} | E | r | | z | | U | Car | 1.588 | 2568 | + | ۰ | 0.707 | | .180 | m
6.27 | m | м
.64 | 1.95* | | | | | | U | Gai | 1.500 | 256.8 | + | .1 | 2.135
1.350 | 1.955
1.480 | 130 | 6.37
8.32 | 5.73
6.89 | 1.44 | 1.95 | · 4 7 | 1.34 | + | 15 | | \mathbf{V} | ,, | .826 | 242.7 | 1_ | 11.9 | 1.653 | 1.425 | .228 | 7.58 | 7.06 | .52 | .68 | .59 | .79 | _ | 160 | | $\dot{\mathbf{Y}}$ | ,, | .561 | 253.4 | _ | .2 | 1.409: | 1.090: | .319: | 8.19: | 7.91: | .28: |
.46 | .21: | 1.48 | + | 8 | | $\mathbf{S}\mathbf{X}$ | ,, | .687 | 254.4 | + | 1.4 | 1.024 | .790 | .234 | 9.15 | 8.65 | .50 | .84 | .42 | 1.85 | + | 63 | | UW | ,, | .728 | 253.2 | - | 1.7 | .838 | .642 | .196 | 9.62 | 9.02 | .60 | .71 | .52 | 2.04 | <u>-</u> | 40 | | $\mathbf{U}\mathbf{X}$ | ,, | .566 | 252.5 | + | •3 | 1.453 | 1.108 | ·345 | 8.08 | 7.87 | .22 | 1.08 | .15 | 1.56 | + | 21 | | $\mathbf{U}\mathbf{Y}$ | ,, | .744 | 254.8 | - | 3.2 | 1.060 | .810 | .250 | 9.06 | 8.61 | .46 | .99 | .38 | 2.01 | - | 92 | | UZ | ,, | .716 | 254.9 | - | 2.3 | .874 | .644 | .230 | 9.53 | 9.02 | .51 | .91 | •43 | 2.25 | | 66 | | VY | ,, | 1.278 | 254.3 | + | 1.3 | 1.674 | 1.501 | .173 | 7.52 | 6.87 | .66 | 1.59* | •54 | 1.39 | + | 45 | | WW | ,, | .670 | 255.9 | + | .1 | .733 | .514 | .219 | 9.88 | 9.34 | .54 | 1.09 | .46 | 2.40 | + | 26 | | WZ | " | 1.362 | 256.9 | - | 1.1 | .971 | ·775 | .196 | 9.29 | 8.69 | .60 | 1.90* | ·45 | 4.21 | _ | 42 | | XX | | 1.196 | 258.8 | | 4.8 | .208
.998 | .309
.780 | 146
.218 | 9.22 | 9.83
8.68 | 1.48 | 2.22 | 4.7 | 2 27 | _ | 250 | | XY | " | 1.095 | 259.0 | | 3.9 | .846 | .723 | .123 | 9.60 | 8.81 | ·54
·79 | 1.35 | .41
.67 | 3.31
2.32 | _ | 250
130 | | YZ | " | 1.259 | 253.2 | _ | 1.3 | 1.085 | •935 | .150 | 9.00 | 8.28 | .72 | 1.36* | .58 | 2.40 | _ | 32 | | | " | | -55.2 | | 3 | .540 | .600 | 060 | 10.36 | 9.10 | 1.26 | 1.3 | 1,50 | 7.70 | ļ | 3- | | AQ | ,, | .990 | 253.4 | l — | 3.1 | 1.007 | .820 | .187 | 9.19 | 8.57 | .62 | .51 | .51 | 2.21 | _ | 100 | | $\widetilde{\operatorname{CC}}$ | ,, | .678 | 256.9 | - | 1.4 | 337 | 420 | .083 | 12.56 | 11.67 | .89 | .87* | .Šı | 4.66 | l — | 45 | | | | | | | | 687 | 640 | 050 | 13.43 | 12.21 | 1.23 | | | - | 1 | | | $\mathbf{C}\mathbf{N}$ | ,, | .693 | 251.2 | - | 1.1 | .272 | .133 | .139 | 11.04 | 10.29 | .75 | •79 | .67 | 2.99 | - | 35 | | CR | ,, | .990 | 253.3 | - | .3 | 258 | 270 | .012 | 12.36 | 11.29 | 1.07 | .50 | .96 | 4.59 | + | 20 | | CT | ,, | 1.257 | 255.3 | - | 2.7 | 378: | − .430: | .052: | 12.66: | 11.69: | .97: | ∙54 | .83: | 8.87 | - | 330 | | CY | ,, | .630 | 257.2 | - | .8 | .640 | .450 | .190 | 10.11 | 9.50 | .62 | .70 | •55 | 2.23 | | 10 | | DY
ER | " | .670 | 256.5 | | .9 | .047 | 138 | .185 | 11.60 | 10.97 | .63 | .83 | .55 | 4.59 | - | 27 | | EX | " | .887 | 257.8 | + | 1.4 | 1.856 | 1.620 | .236 | 7.07
10.61: | 6.58 | .50 | •44 | .40 | .90 | + | 33 | | FI | ,, | ·459
1.129 | 255·7
255·5 | + | 2.I
.8 | ·443:
- ·340: | .235:
260: | o8o: | 12.56: | 10.04: | ·57: | .40
1.30 | .51:
1.19: | 2.51
2.30 | + | 64
53 | | FN | " | .661 | 257.3 | 1_ | .1 | 100 | 225 | .125 | 1 1. 97 | 11.18 | .78 | .90 | .70 | 4.23 | + | 36 | | FO |))
)). | 1.015 | 258.2 | l _ | 2.1 | .128 | .078 | .050 | 11.39 | 10.42 | .98 | .60 | .87 | 3.50 | <u> </u> | 91 | | FR | " | 1.030 | 258.8 | + | .6 | .615: | .515: | .110: | 10.17: | 9.33: | .82: | .70 | .71: | 2.63 | + | 54 | | $_{ m GH}$ | ,, | .758 | 258.6 | 1 | .3 | .800 | .650 | .150 | 9.71 | 9.00 | .72 | .38 | .63 | 1.84 | + | 12 | | $_{ m GI}$ | ,, | .646 | 258.0 | + | 2.6 | 1.252 | .991 | .261 | 8.58 | 8.15 | •43 | .45 | .36 | 1.51 | + | 83 | | $\mathbf{G}\mathbf{X}$ | ,, | .857 | 249.2 | | 2.8 | .842 | .674 | .168 | 9.61 | 8.94 | .67 | 1.50 | .57 | 2.13 | - | 90 | | GZ | ,, | .619 | 252.4 | | 1.8 | .369: | .230: | .139: | 10.79: | 10.05: | .75: | .52* | .68: | 2.24 | - | 52 | | | | | | i | | .163: | .103: | .060: | 11.31: | 10.36: | .95: | | | | ١. | | | HK | ,, | .826 | 257.8 | - | . •5 | .398: | .268: | .130: | 10.72: | 9.95: | .77: | .50 | .68: | 2.90 | + | 7 | | IT | ,, | .877 | 259.2 | - | 6.8 | 1.217 | 1.072 | .145 | 8.67 | 7.94 | .73 | ·40 | .63 | 1.28 | _ | 11 | | 1 | ,, | 1.551 | 250.7 | - | 0.0 | 3.024 | 2.936 | .090 | 4.14 | 3.27 | .87 | 1.21* | .70 | .27 | _ | 30 | | V | Cen | .740 | 284.2 | + | | 1.920 | 1.668 | .252 | 6.91 | 6.46 | .46 | 1.09 | .38 | .74 | + | 49 | | TX | ,, | 1.233 | 282.9 | | 1.2 | .218 | .295 | 077 | 11.16 | | 1.30 | 1.90* | 1.17 | 2.77 | - | 7 | | T 7/7 | | | | | | 542 | 170 | 372 | 13.06 | 11.00 | 2.06 | | | | | | | $\mathbf{U}\mathbf{Z}$ | ,, | .523 | 262.6 | - | 1.1 | 1.178 | .900 | .278 | 8.77 | 8.38 | .39 | 1.11* | ·33 | 1.65 | - | 9 | | VW | | | 077.0 | | | .731 | .605 | .126 | 9.88 | 9.11 | .78 | 00 | 0. | | | 6- | | XX | ,, | 1.177
1.040 | 275.2
277.3 | + | 2.0 | .438 | .369 | .069 | 10.62
7.89 | 9.69
7·33 | ·93
·56 | .99 | .80 | 3.31
1.41 | + | 60
130 | | AY | ,,
,, | .725 | 260.3 | + | 4·1
·3 | 1.527
·997 | .834 | .163 | 9.22 | 8.54 | .69 | 1.00 | ·45
.61 | 1.47 | 1 | 26 | | AZ | " | .507 | 260.5 | | .3 | 1.137 | .867 | .270 | 8.87 | 8.47 | .41 | .56* | • •35 | 1.46 | 1+ | 10 | | | ,, | 3-7 | 1 | | | .915 | .720 | .195 | 9.43 | 8.83 | .60 | 3- | 33 | | ' | | | IU | ,, | .521 | 281.1 | + | 4.1 | 450 | 690 | .305 | 12.85 | 12.36 | .32 | 1.30 | .26 | 5.65 | + | 500 | | KK | ,, | 1.086 | 262.0 | 1 | 2.5 | 040 | 120 | 080 | 11.82 | 10.92 | .90 | 1.00 | .78 | 5.35 | + | 310 | | KN | ,, | 1.532 | 275.4 | - | 2.6 | .479 | .541 | 062 | 10.51 | 9.25 | 1.26 | 1.30 | 1.10 | 2.92 | - | 81 | | MY | ,, | .570 | 273.0 | + | .8 | 527 | 385 | 142 | 13.03 | 11.56 | 1.47 | 1.30 | 1.40 | 2.04 | + | 60 | | 00 | ,, | 1.110 | 274.6 | - | 1.0 | 506: | − .333: | 173: | 12.97: | 11.42: | 1.55: | 1.90 | 1.43: | 3.30 | - | 2 | | V 339 | ,, | .976 | 281.1 | - | 1.1 | .937 | .875 | .062 | 9.37 | 8.42 | .94 | 1.02 | .83 | 1.41 | - | I | | V 378 | ,, | .800 | 273.8 | - | .I | 1.069 | .941 | .128 | 9.04 | 8.27 | .78 | .26 | .69 | 1.27 | + | 19 | | V 381 | ,, | .706 | 278.6 | + | 3.8 | 1.583 | 1.315 | .268 | 7.75 | 7.34 | .42 | .76 | •34 | 1.13 | + | 96 | | V 419 | ,, | .741 | 259.8 | + | 4.2 | 1.252 | 1.031 | .221 | 8.58 | 8.05 | •54 | ·45* | .46 | 1.24 | + | 110 | | V 420 | | T 204 | 258.8 | L | TO 0 | 1.072 | .913 | .159 | 9.03
9.81 | 8.34 | .70 | 1.28* | * 4 | 2.06 | + | 045 | | v 420 | " | 1.394 | 450.0 | + | 13.2 | .762 | ·444
.084 | .318 | 9.81 | 9.53
10.36 | 29
·74 | 1.40 | .14 | 3.96 | - | 945 | | V 496 | ,, | .646 | 272.1 | + | 1.6 | .252
.505 | .405 | .100 | 10.45 | 9.60 | .85 | 1.00 | .78 | 1.82 | + | 80 | | . 490 | " | 1 -540 | ~/4.1 | 1 1 | 1.0 | .505 | -403 | , .100 | 1 -0.43 | 9.00 | 3 | 1.55 | .,0 | 1.02 | 1 1 | J U | Table 13 (continued) 115 | TABLE 13 (continued) | | | | | | | | | | | | | | | | |----------------------|-----------|----------------|----------------|-------------|---|----------------|----------------|--------------------------|---------------------|------------------|-----------------|--------------|---------------|----------|--------------| | Nar | me | $\log P$ | l | b | $\log I_B$ | $\log I_Y$ | C | SPg | SPv | SCI | Δm_{pg} | E | r | | z | | AL | CrA | 1.232 | 323.5 | – 10 | $\begin{vmatrix} - & .162 \\ - & .785 \end{vmatrix}$ | 325
765 | .250
— .020 | m
12.13
13.68 | m
11.44
12.52 | m
.46
1.16 | 1.55* | •33 | 7.76 | | 1260 | | KQ
V 347 | " | 1.480
1.186 | 319.9
321.3 | - 11 | 1340: | 510:
640: | .220:
.218: | 12.57:
12.79: | 11.89: | ·54:
·54: | 1.50
1.40 | .38:
.41: | 11.32
8.51 | | 1520
1440 | | R | Cru | .765 | 267.3 | + | 8 1.966 | 1.687 | .279 | 6.79 | 6.41 | .39 | 1.26* | .30 | .87 | + | 25 | | S | ,, | .671 | 271.1 | | 1 2.046 | 1.762 | .284 | 6.59 | 6.23 | .37 | .71 | .29 | .70 | + | 61 | | T | ,, | .828 | 267.2 | + | 2 1.924 | 1.720 | 204 | 6.90 | 6.32 | .58 | .70* | · 4 9 | .62 | + | 10 | | X | ,, | ·794 | 270.1 | + 3 | .811 | 1.004 | .163 | 8.79 | 8.11
8.66 | .69 | .89* | .60 | 1.25 | + | 94 | | SU | ,, | 1.109 | 266.9 | _ | 9 .401 | .778 | .033 | 9.68
10.70 | 9.37 | 1.02 | 1.40 | 1.22 | 1.61 | _ | 2 | | sv | ,, | .845 | 264.5 | | 6 457 | 452 | 005 | 12.86 | 11.74 | 1.12 | 1.70 | 1.03 | 4.49 | + | 14 | | TY | ,, | .698 | 265.5 | 1 | 4776: | 736: | 040: | 13.66: | 12.45: | 1.21 | .70 | 1.13 | 4.76 | + | 33 | | $ rac{ m VW}{ m VX}$ | ,, | .721 | 268.6
268.6 | | 0 .525 | .502 | .023 | 10.40 | 9.35 | 1.04 | 1.00 | .96 | 1.43 | - | 3 | | AD | " | 1.087
.806 | 266.2 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 290
021 | 083
.048 | 12.64
11.65 | 11.33 | 1.32
.98 | 1.50
.80 | 1.20
.89 | 3.96 | ++ | 150
55 | | AG | " | .584 | 269.4 | | 8 1.442 | 1.141 | .301 | 8.11 | 7.78 | .33 | .85 | .26 | 1.35 | <u> </u> | 85 | | su | Cyg | .585 | 32.4 | + 1 | 4 2.027 | 1.667 | .360 | 6.64 | 6.47 | .18 | .86* | .11 | .87 | + | 29 | | TX | Del | .790 | 19.1 | - 25 | 5 1.010 | .712 | .305 | 9.19 | 8.86 | .32 | 1.08* | .23 | 1.45 | | 610 | | | | 1,790 | -9 | -3 | •575 | .460 | .106 | 10.27 | 9.47 | .83 | 1.00 | 3 | 2.43 | | 010 | | β | Dor | .993 | 238.5 | - 32 | | 2.890 | .267 | 3.81 | 3.40 | .42 | 1.07* | .31 | .25 | _ | 130 | | W | Gem | .898 | 165.1 | | 9 1.755: | 1.575: | .180: | 7.32: | 6.68: | .64: | 1.00 | •54: | .81 | + | 50 | | AP
BB | Her | 1.017
.875 | 14.7 | 1 : | .368 | .100 | .280 | 10.80
10.50 | 10.38 | .38 | 1.17 | .27
.63 | 3.52 | ++ | 430 | | DD | " | .075 | 11.0 | - 3 | 4 .487 | .342 | .145 | 10.50 | 9.77 | .73 | 1.10 | .03 | 2.97 | 7 | 330 | | RX | Lib | 1.397 | 316.2 | + 25 | 268
730: | 412
770: | .204
005: | 12 . 39
13.54: | 11.65 | .58
1.12: | 1.15* | ·43 | 7.94 | + | 3590 | | T | Mon | 1.432 | 171.3 | - r | .1 2.144 | 1.996 | .148 | 6.34 | 5.63 | .72 | 1.42* | .57 | .86 | _ | 35 | | SV | ,, | 1.183 | 171.5 | - 2 | 2 1.403: | 1.175: | .228: | 8.20: | 7.69: | .52: | 1.90* | .39: | 2.39 | _ | 140 | | TX | | 0.40 | 181.9 | + | .643 | 713
014: | 070
.082: | 10.10 | 8.82
10.65: | 1.28 | | = 0. | 2.06 | | | | AC | " | .940
.904 | 189.4 | | .068: | 014: | .081 | 11.54: | 9.74 | .90 | .70
1.05* | .79:
.80 | 3.96
2.41 | _ | 31
61 | | | ** | 1,904 | 109.4 | | .011 | .086 | 075 | 11.68 | 10.39 | 1.30 | 2.03 | 100 | 2.4. | | 01 | | R | Mus | .876 | 269.6 | - 6 | .9 2.186
| 1.886 | .300 | 6.24 | 5.92 | -33 | 1.25* | .23 | .82 | | 86 | | S | ,, | .985 | 267.1 | - 7 | .8 2.098 | 1.879 | .219 | 6.46 | 5.93 | .54 | .78* | .43 | .64 | - | 78 | | RT | | .489 | 264.1 | _ 5 | 1.786 | 1.672 | .114
.246 | 7·24
9.08 | 6.43
8.61 | .81
•47 | .98 | 4.7 | 1.50 | | 120 | | TZ | ,, | .694 | 264.2 | , , | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 298 | .033 | 12.38 | 11.36 | 1.02 | .90 | .41
.94 | 3.60 | _ | 150 | | UU | ' >> | 1.066 | 264.4 | 1 | .4 .710 | .547 | .163 | 9.94 | 9.26 | .69 | 1.26 | .57 | 3.09 | - | 140 | | S | Nor | .989 | 295.3 | - 6 | .3 1.970 | 1.788 | .182 | 6.78
7.72 | 6.15 | .64
1.06 | ·94* | ∙53 | .66 | _ | 58 | | U | ,, | 1.102 | 293.3 | - r | .0 .720 | .788 | 068
288 | 9.91
11.40 | 8.63
9.56 | 1.28 | 1.49* | 1.16 | 1.27 | + | 5 | | RS | ,, | .792 | 296.7 | 1 | .1 .448 | .405 | .043 | 10.59 | 9.60 | .99 | 1.30 | .90 | 1.84 | - | 27 | | SY | " | 1.102 | 295.2 | | .682 | .656 | .026 | 10.00 | 8.97 | 1.04 | 1.80 | .92 | 1.88 | - | 10 | | ${f TW} \ {f UX}$ | " | .378 | 298.1
296.9 | 1 | $\begin{array}{c c} .6 &517 \\ .5 &665 \end{array}$ | 237
-1.060: | 280 | 13.00 | 11.17 | 1.82 | 1.60 | 1.71 | 1.94
8.95 | + | 22
800 | | GU | " | .538 | 298.2 | | .6 .246 | .222 | ·395:
.024 | 13.39. | 10.05 | .09:
1.04 | 1.40 | .04:
.98 | 1.59 | _ | 39 | | Y | Oph | 1.234 | 348.3 | + 8 | .6 1.898 | 1.910 | 012 | 6.95 | 5.83 | 1.13 | .82* | 1.00 | .41 | + | 71 | | BF | ,, | .609 | 324.8 | + 7 | 1.572
1.690 | 1.715 | 143
.240 | 7.77
7.48 | 6.30
7.00 | 1.47
.49 | 1.14 | .42 | .80 | + | 120 | | RS | Ori | .879 | 164.2 | + 1 | .8 1.230: | 1.035: | .195: | 8.64: | 8.04: | .60: | 1.33 | .50: | 1.56 | + | 14 | | ж | Pav | -957 | 295.4 | - 26 | 3.040 | 2.687 | .361 | 4.11 | 3.92 | .18 | 1.25* | .07 | .42 | - | 180 | Table 13 (continued) | | 1 ABLE 13 (continued) | | | | | | | | | | | | | | | | |------------------------|-----------------------|----------------|----------------|------------|------------|----------------|----------------|------------|--------------|-----------|------------|-----------------|------------|--------------|------------|------------| | Nar | ne | $\log P$ | l | | 6 | $\log I_B$ | $\log I_Y$ | C | SPg | SPv | SCI | Δm_{pg} | E | r | | z | | X | Pup | T 474 | 203.8 | | ٥ | 7.060 | 7 704 | | m
Q = = | m
7.86 | m | 2.00 | | | | | | RS | _ | 1.414
1.617 | 220.2 | ++ | ·4
·7 | 1.263
1.705 | 1.104
1.655 | .050 | 8.55
7.44 | 6.47 | .70
.98 | 1.76* | ·55
.81 | 2.51 | + | 11 | | ST | ,, | 1.276 | 214.2 | 1 | 15.5 | .903 | .512 | .391 | 9.46 | 9.37 | .10 | 1.40 | 04 | 3.96 | | 9
1090 | | VW | ,, | .632 | 203.1 | + | .6 | .030: | 110: | .140: | 11.64: | 10.90: | .74: | 1.13* | .67: | 3.91 | _ | 7 | | * ** | ,, | .032 | 203.1 | ' | •• | 424 | 410 | 014 | 12.77 | 11.63 | 1.14 | 1.13 | .07. | 3.91 | | / | | VZ | | 1.365 | 211.1 | _ | 3.0 | .844 | .654 | .190 | 9.60 | 8.99 | .62 | 2.17 | .47 | 4.39 | | 210 | | ww | " | .742 | 205.1 | + | 2.1 | .448 | .200 | .248 | 10.60 | 10.13 | .47 | 1.37* | .39 | 4.39 | + | 120 | | | " | .,, | 5 | ' | | 102 | 160 | .048 | 11.97 | 11.01 | .98 | 37 | .39 | 7.39 | ' | | | WX | ,, | .951 | 209.2 | _ | •3 | .909: | .726: | .183: | 9.44: | 8.81: | .63: | 1.00 | .52: | 2.34 | _ | 33 | | WY | ,, | .720 | 209.5 | + | 3.8 | .460 | .175 | .285 | 10.57 | 10.20 | .37 | 1.20 | .29 | 4.55 | + | 260 | | WZ | ,, | .701 | 209.6 | + | 4.5 | .575 | .300 | .275 | 10.28 | 9.88 | .40 | .90 | .32 | 3.73 | + | 250 | | AD | ,, | 1.133 | 209.6 | + | 1.1 | .750 | ·534 | .216 | 9.84 | 9.29 | .55 | 2.00 | .43 | 4.00 | + | 36 | | \mathbf{AP} | ,, | .706 | 223.1 | - | 4.9 | 1.652 | 1.401 | .251 | 7.58 | 7.13 | .46 | 1.10 | .38 | .98 | _ | 87 | | AT | ,, | .825 | 222.0 | - | .8 | 1.530 | 1.235 | .295 | 7.89 | 7.55 | .35 | 1.41* | .26 | 1.67 | _ | 29 | | | • | | | | | .962 | .879 | .074 | 9.30 | 8.42 | .91 | - | | | - | - | | ĖΚ | ,, | .419 | 208.5 | + | .2 | .269 | .066 | .203 | 11.05 | 10.46 | .58 | .50 | .53 | 2.86 | } — | 21 | | • | | | | | | · | | | | • | | | | | - | | | S | Sge | .923 | 22.6 | - | 7.4 | 2.464 | 2.182 | .282 | 5.55 | 5.17 | .38 | 1.28* | .28 | .58 | _ | 67 | | | Ū | ' | | | | 1.948 | 1.863 | .085 | 6.83 | 5.95 | .89 | | | | | • | | | | | | | | , , | Ū | | J | 0 10 | | | | | | | | U | Sgr | .829 | 341.4 | — | 5.9 | 1.883 | 1.733 | .150 | 7.00 | 6.29 | .72 | 1.07* | .63 | .57 | — | 46 | | W | ,, | .881 | 328.5 | — | 5.4 | 2.827 | 2.523 | .304 | 4.64 | 4.32 | .32 | 1.22* | .22 | .40 | - | 28 | | | | | | | | 2.335 | 2.219 | .116 | 5.86 | 5.07 | .81 | | | | | | | \mathbf{X} | ,, | .846 | 328.9 | _ | 1.2 | 2.838 | 2.560 | .278 | 4.61 | 4.23 | .39 | 1.04* | .30 | .32 | + | I | | \mathbf{Y} | ,, | .761 | 340.5 | - | 3.6 | 2.364 | 2.113 | .251 | 5.80 | 5.34 | .46 | 1.11* | .37 | .47 | - | 18 | | VY | ,, | 1.132 | 337.8 | — | 2.5 | 258 | 065 | 193 | 12.35 | 10.75 | 1.60 | 2.10 | 1.48 | 2.33 | — | 48 | | WZ | ,, | 1.339 | 339.8 | — | 2.9 | 1.332 | 1.262 | .070 | 8.38 | 7.46 | .92 | 1.76* | .78 | 1.54 | — | 39 | | YZ | ,, | .980 | 345.4 | - | 8.6 | 1.599 | 1.444 | .155 | 7.71 | 7.01 | .71 | 1.10* | .60 | .93 | - | 120 | | AP | ,, | .704 | 335.8 | - | 3.9 | 1.907 | 1.628 | .279 | 6.94 | 6.56 | .39 | 1.27* | .31 | .88 | - | 3 8 | | | | | | | | 1.400 | 1.308 | .092 | 8.21 | 7.34 | .87 | | | | | | | AY | ,, | .818. | 340.9 | - | 3.9 | .180 | .220 | 040 | 11.26 | 10.05 | 1.21 | 1.50 | 1.12 | 1.80 | _ | 79 | | BB | ,, | .822 | 342.3 | - | 10.5 | 1.761 | 1.589 | .172 | 7.30 | 6.65 | .66 | .80 | .57 | .71 | - | 110 | | V 350 | ,, | .712 | 341.4 | - | 9.4 | 1.640 | 1.417 | .223 | 7.61 | 7.08 | ∙53 | 1.09* | ·45 | .92 | | 130 | | V 626 | ,, | 1.427 | 324.8 | - | 8.6 | | 410 | .350 | 11.92 | 11.66 | .20 | 1.38* | .05 | 12.76 | - | 1590 | | * 7 | | | | | | 632 | 840 | .140 | 13.30 | 12.74 | •74 | | | | | | | V 741 | ,, | 1.181 | 330.6 | - | 8.5 | 388 | 182 | 206 | 12.68 | 11.04 | 1.63 | 1.10 | 1.50 | 1.39 | - | 170 | | RV | Sco | .783 | 318.1 | + | 4.3 | 1.818 | 1.608 | .210 | 7.16 | 6.60 | .56 | 1.10 | .47 | .76 | + | 77 | | CQ | ,, | 1.484 | 318.2 | | 8.0 | 508: | 640: | .132: | 12.99: | 12.22: | .76: | 1.50 | .60: | 9.73 | | 1100 | | KQ | " | 1.458 | 308.1 | _ | 1.9 | .316 | .528 | 212 | 10.91 | 9.26 | 1.65 | 1.70 | 1.49 | 1.71 | _ | 15 | | V 446 | ,, | 1.457 | 322.7 | | 7.4 | 550 | 740 | .200 | 13.10 | 12.48 | .59 | 1.80 | .43 | 13.06 | _ | 1350 | | V 470 | ,, | 1.201 | 317.5 | _ | 1.0 | 267 | .076 | 343 | 12.37 | 10.38 | 1.99 | 1.90 | 1.86 | 1.38 | + | 11 | | V 482 | •• | .656 | 322.9 | — | 1.2 | 1.385 | 1.203 | .182 | 8.25 | 7.62 | .64 | .98* | .56 | .96 | + | 4 | | • | • | | | | | .989 | .950 | .039 | 9.23 | 8.23 | 1.00 | | | | | • | | ${ m V}$ 500 | ,, | .969 | 326.7 | 1 — | 2.8 | .939 | .905 | .034 | 9.36 | 8.35 | 1.02 | .70 | .91 | 1.23 | — | 28 | | V 542 | ,, | 1.183 | 317.0 | 1 — | 8.1 | 554 | 775 | .258 | 13.11 | 12.57 | .44 | 1.80 | .31 | 11.64 | - | 1360 | | V 636 | ,, | .832 | 311.1 | - | 6.4 | 1.896 | 1.700 | .196 | 6.97 | 6.37 | .60 | .81* | .51 | .64 | - | 56 | | | | | | | | 1.568 | 1.498 | .070 | 7.78 | 6.87 | .92 | | | | | | | \mathbf{x} | Sct | .623 | 346.7 | _ | 2 т | E71 | ·455 | .119 | 10.28 | 9.48 | .80 | 1.20 | 72 | 1.78 | _ | | | Y | | 1.015 | 351.6 | | 3.1 | .574 | | 051 | 10.20 | 9.46 | 1.24 | 1.20 | ·73 | | _ | 55
28 | | Ż | " | 1.116 | | | 2.4 | .527
.664 | .578
.604 | .060 | 10.39 | 9.10 | .95 | 1.50 | .83 | 1.45
2.27 | _ | | | RU | ,, | 1.294 | 354.5 | | 2.3
1.2 | .660 | .724 | 064 | 10.05 | 8.79 | 1.27 | 1.70 | 1.13 | 1.71 | - | 41
1 | | SS | ,, | .565 | 355·9
352·9 | _ | 3.2 | 1.234 | 1.064 | .170 | 8.63 | 7.96 | .67 | .74* | .60 | .95 | - | 34 | | UZ | ,, | 1.169 | 346.9 | 1_ | 3.0 | 229 | 052 | 170 | 12.28 | 10.72 | 1.54 | 1.00 | 1.41 | 2.63 | _ | | | CK | " | .870 | 354.0 | _ | 1.9 | .013 | .120 | 170
107 | 11.68 | 10.72 | 1.38 | .78* | 1.28 | 1.66 | _ | 77
21 | | OIL | " | .070 | 354.0 | | 1.9 | 300 | 080 | 220 | 12.46 | 10.79 | 1.67 | .,0 | 1.20 | 1.00 | 1 | 21 | | $\mathbf{C}\mathbf{M}$ | ,, | .593 | 354.8 | _ | 1.9 | 056 | 047 | 009 | 11.85 | 10.79 | 1.13 | 1.10 | 1.06 | 2.10 | - | 26 | | | | 373 | 33 [| | - 2 | | | | | | | | | | | | | CR | Ser | •724 | 343.9 | + | 1.3 | 045 | .051 | 096 | 11.82 | 10.48 | 1.35 | 1.80 | 1.27 | 1.69 | + | 78 | | ST | Tau | .606 | 160.9 | _ | 6.6 | 1.358: | 1.122: | .236: | 8.32: | 7.82: | .50: | 1.16* | .43: | 1.24 | _ | 170 | | | | | | | | .893 | .823 | .070 | 9.48 | 8.56 | .92 | | | | | • | | SZ | ,, | .498 | 147.4 | - | 17.3 | | 1.687 | .210 | 6.96 | 6.41 | .56 | .52* | .50 | 2.34 | - | 750 | | | | | | | | | | | | | | | | | | | Table 13 (continued) | Naı | me | $\log P$ | l | | b | $\log I_B$ | $\log I_Y$ | C | SPg | SPv | SCI | Δm_{pg} | E | r | | z | |------------------------|------|----------|-------|------------|------|----------------|-----------------|--------|---------------|--------------|------------|-----------------|------|------------|----------|------| | R | TrA | | -0 | | °. | 0. | - 6 | | m | m | m | * | | 6 - | | 0 | | K | ITA | .530 | 284.5 | - | 8.4 | 1.984 | 1.692 | .292 | 6.75 | 6.40 | ·35 | .92* | .29 | .67 | _ | 85 | | S | | .801 | 289.6 | _ | | 1.614 | 1.464 | .150 | 7.67 | 6.96
6.04 | .72 | 1.19* | 24 | .80 | | *** | | 3 | ,, | .001 | 209.0 | _ | 9.0 | 2.139
1.662 | 1.839 | .300 | 6.36 | 6.78 | ·33
·80 | 1.19 | .24 | .60 | _ | 110 | | U | | 410 | 290.7 | _ | 8.9 | 1.630: | 1.535
1.270: | .360: | 7·55
7·64: | 7·47 | .18: | 1.20* | .13: | 1.27 | | 170 | | O | ,, | .410 | 290.7 | | 0.9 | 1.030: | .950: | .200: | 8.84: | 8.25: | .59: | 1.20 | .13. | 1.27 | | 1,0 | | | | | | | | 1.150. | .950. | .200. | 0.04. | 0.25. | .39. | i | | | | | | Т | Vel | .667 | 233.2 | _ | 3.2 | 1.391 | 1.178 | .213 | 8.23 | 7.68 | .56 | .93* | .48 | 1.08 | _ | 59 | | $\bar{ m V}$ | ,, | .641 | 244.2 | | 3.8 | 1.647 | 1.369 | .278 | 7.59 | 7.21 | .39 | 1.10* | .32 | 1.07 | _ | 66 | | ,
 " | 1071 | | 1 | 3.0 | 1.206 | 1.084 | .122 | 8.69 | 7.91 | .79 | 1111 | -3- | 2.07 | | • | | RY | ,, | 1.449 | 250.3 | + | 1.7 | 1.153 | 1.095 | .058 | 8.82 | 7.87 | .95 | 1.21 | .80 | 1.98 | + | 73 | | RZ | " | 1.310 | 230.5 | <u> -</u> | 1.2 | 1.891 | 1.677 | .214 | 6.98 | 6.43 | .55 | 2.00* | .41 | 1.51 | <u> </u> | 34 | | ST | " | .768 | 236.4 | _ | 4.2 | .594 | .504 | .090 | 10.23 | 9.36 | .87 | .95 | .78 | 1.85 | _ | 130 | | sv | ,, | 1.149 | 253.8 | + | 2.5 | 1.296 | 1.096 | .200 | 8.47 | 7.88 | .59 | 2.02 | .47 | 2.03 | + | 110 | | SW | ,, | 1.371 | 233.8 | | 2.3 | 1.437 | 1.237 | .200 | 8.12 | 7.53 | .59 | 2.00* | •44 | 2.58 | | 110 | | $\mathbf{S}\mathbf{X}$ | ,, | .980 | 233.2 | | 1.6 | 1.277 | 1.062 | .215 | 8.52 | 7.97 | .55 | .90 | .44 | 1.80 | _ | 48 | | XX | " | .844 | 252.6 | + | 2.1 | .280 | .163 | .117 | 11.01 | 10.21 | .80 | .98 | .71 | 3.21 | + | 150 | | \mathbf{AE} | ,, | .853 | 243.8 | | .2 | .378 | .308 | .070 | 10.77 | 9.84 | .92 | 1.10 | .82 | 2.42 | + | I | | \mathbf{AH} | ,, | .626 | 230.0 | _ | 6.3 | 2.374 | 2.046 | .328 | 5.77 | 5.52 | .26 | .48* | .19 | .49 | _ | 54 | | $\mathbf{A}\mathbf{M}$ | ,, | .876 | 233.2 | - | 3.6 | 732: | 907: | .175: | 13.55: | 12.90: | .65: | 1.00 | .55: | 13.81 | — | 870 | | AP | ,, | ·495 | 230.6 | _ | .7 | .560: | .400: | .160: | 10.31: | 9.62: | .69: | 1.00 | .63: | 1.88 | - | 24 | | AX | ,, | .414 | 230.8 | - | 7.0 | 1.285: | 1.020: | .265: | 8.50: | 8.08: | .42: | ·57* | 37: | 1.11 | - | 140 | | | | | | | | 1.055: | .870: | .185: | 9.07: | 8.45: | .63: | | | | | | | \mathbf{BG} | ,, | .840 | 239.5 | | 2.1 | 1.364 | 1.288 | .076 | 8.30 | 7.39 | .91 | .76* | .82 | .71 | | 24 | | | | | | 1 | | 1.059 | 1.102 | 043 | 9.06 | 7.85 | 1.21 | | | | | | | $\mathbf{C}\mathbf{X}$ | ,, | .796 | 240.0 | - | 2.9 | 171 | 147 | 024 | 12.14 | 10.97 | 1.17 | .90 | 1.08 | 1.65 | - | 78 | | DD | ,, | 1.122 | 239.2 | - | .9 | 685 | 600 | 080 | 13.43 | 12.10 | 1.31 | 1.00 | 1.19 | 6.05 | - | 78 | | DP | ,, | .739 | 243.1 | - | 1.0 | 344 | 340 | 004 | 12.57 | 11.46 | 1.11 | 1.20 | 1.03 | 3.55 | | 41 | | DR | ,, | 1.049 | 240.9 | + | 1.8 | .517 | .581 | 064 | 10.41 | 9.15 | 1.27 | .70 | 1.16 | 1.45 | + | 50 | | $\mathbf{E}\mathbf{X}$ | ,, | 1.122 | 241.7 | - | 1.8 | 311 | 228 | − .o83 | 12.49 | 11.17 | 1.32 | 1.10 | 1.20 | 3.86 | <u> </u> | 110 | | $\mathbf{E}\mathbf{Z}$ | ,, | 1.538 | 242.6 | - | 1.9 | 592 | 490 | 102 | 13.19 | 11.82 | 1.37 | 1.80 | 1.21 | 8.43 | <u> </u> | 190 | | FG | ,, | .810 | 243.1 | - | •4 | − .449 | − .374 | 075 | 12.83 | 11.54 | 1.30 | .70 | 1.21 | 3.19 | - | 7 | | W | Vir | T 005 | 289.4 | | 6 | | 405 | 275: | 9.85: | 0.76. | 20: | T 70* | · | 0.50 | | 2000 | | VV | V II | 1.237 | 209.4 | 1 | 57.6 | .747: | .432: | .313: | | 9.56: | .30: | 1.53* | .17: | 3.50 | — | 2990 | | | | | | | | .135: | 035: | .000: | 11.38: | 10.53: | .90: | | | | | | | U | Vul | .903 | 23.8 | - | 1.5 | 1.609 | 1.562 | .047 | 7.68 | 6.70 | .98 | 1.10 | .88 | .56 | - | 8 | The next two columns give the galactic co-ordinates according to Ohlsson's Tables (1932). In column 5 and 6 the extreme values of $\log I_B$ and $\log I_Y$ have been tabulated. Values for minimum brightness have been entered on the line below those for maximum. Uncertain values have been marked by a colon. The colour C in the 7th column is the extreme value of $(\log I_B - \log I_Y)$. In the case that the blue and yellow light-curves are shifted in phase relative to each other, the value of C does not equal the difference between the extreme values of $\log I_B$ and $\log I_Y$. In columns 8, 9 and 10 magnitudes and colour index in the Cape S system are given, as derived with the formulae (1) and (2) from the values of columns 5, 6 and 7. The remaining columns will be explained below. The colours at maximum brightness have been plotted in Figure 11 against the logarithm of the period. Cepheids of population I have been indicated by dots, large dots for stars with SPg at maximum brighter than 8, medium dots for stars with SPg at maximum between 8 and 10 and small dots for the fainter Cepheids. The Cepheids of population II have been indicated in a similar way by circles. As could be expected there is an evident increase in reddening with decreasing apparent brightness. Fur- ## Legend to Figure 11. : Pop. I Cepheid large dot $Spg \max < 8.0$ medium dot : Pop. I Cepheid 8.0 < Spg max. < 10.0: Pop. I Cepheid small dot $Spg \max. > 10.0$ large circle : Pop. II Cepheid $Spg \max < 8.0$ medium circle : Pop. II Cepheid 8.0 < Spg max. < 10.0small circle : Pop. II Cepheid $Spg \max. > 10.0$: Cepheid in Small Magellanic Cloud vertical cross : Cepheid in Large Magellanic Cloud oblique cross circle with cross : δ Cephei LEIDEN 119 B.A.N. 484 ther it is clear that at least for the stars of population I the Cepheids with short periods are on the average whiter than those with longer periods. The stars of different periods with the smallest values of the colour index fall approximately on a line which runs from SCI = .05 at $\log P = .3$ to SCI = .75 at $\log P = 1.85$. This effect is at least partially due to the fact that the average distance of the variables with long periods is larger than that for the Cepheids with short periods, as their absolute brightness is so much greater than for the stars in the left-hand side of the figure. It is a very important and difficult question which part of this phenomenon is due to systematic differences in interstellar reddening and which part is due to a real difference in the intrinsic colours of Cepheids of short and long periods. In this respect the position of the Cepheids of population II in Figure 11 is most interesting. The majority of these stars has a colour index smaller than that of the Cepheids of population I with equal period. Some of these population II Cepheids are very white, although they are nearly all fainter than the 10th magnitude at maximum. The whitest stars among them are: | Name | $\log P$ | $SPg(\max)$ | SCI(max) | |--|---|---|--------------------------| | TW Cap
UX Nor
V 626 Sgr
ST Pup
x Pav | 1.456
.538
1.427
1.276
.957 | 10.03
11.10
11.92
9.46
4.11 | .07
.09
.20
.10 | These data suggest that the intrinsic colour of the population II Cepheids at maximum cannot be much larger than SCI=.10, as one even would expect some reddening for Cepheids as faint as the 10th magnitude. For the five stars listed above we do not find any systematic change in colour with period. It should be kept in mind however that the classification of UX Nor as a population II object is based only on the large range of the light-variation. By the courtesy of Dr Gascoigne we obtained the colours of 10 Cepheids in the Magellanic Clouds expressed in the $(P, V)_E$ system. These data have been tabulated below. | | $\log P$ | CI_E max. | SCI max. | |--------|--|--|---------------------------------| | S.M.C. | 1.254
1.276
1.504
1.818 | .28
.26
.40 | .13
.10
.28
.26 | | L.M.C. | 1.379
1.387
1.421
1.483
1.563
1.680 | ·35
·35
·25
·26
·31
·44 | .22
.22
.09
.10
.17 | In order to transfer these colours into the Cape S system we need the relation between CI_E or $(P-V)_E$ and SCI. Equation (7) of section 8 gives the relation between $(P-V)_E$ and $(\log I_B - \log I_Y)$. The difference between the relations (1) and (2) of section 5 yields: $$\log I_B - \log I_Y = +.424 - .389 SCI.$$ Eliminating ($\log I_B - \log I_Y$) from this last equation and equation (7) we find: $$SCI = -.216 + 1.233 (P - V)_E$$. This formula gives the colours in the Cape system as shown in the last column of the small table given above. These values have been plotted in Figure 11 and have been indicated by crosses. The average colour index at maximum for these ten stars is +.19. This value of the colour index can be considered as the intrinsic colour of the galactic Cepheids of similar periods if the two following conditions are fulfilled: a) the Cepheids in the Magellanic Clouds have the same properties as the galactic Cepheids, b) the Cepheids in the Magellanic Clouds are not reddened by interstellar absorption. As to a) there is little observational evidence for systematic differences between galactic and Magellanic Cloud Cepheids, although according to Shapley and McKibben NAIL (1952) the frequency curve of the periods in the Small Magellanic Cloud differs significantly from that in the galactic system. But since the discovery by THACKERAY and WESSELINK (1953) of RR Lyrae-type variables in some globular clusters of the Magellanic Clouds it seems practically certain that the Magellanic Cloud Cepheids have the same absolute magnitudes as the galactic Cepheids and that they belong to population I. We shall assume here that there exists no difference in the intrinsic colours. Item b) is more difficult to decide. For the Small Magellanic Cloud, with a galactic latitude of -45° , it may well be true that reddening is negligeable. But for the Large Cloud with a galactic latitude of -33° this assumption is not so certain, as was pointed out by Dr GASCOIGNE. Dr Gascoigne drew attention to the fact that the bright galactic Cepheid β Dor, which has the same galactic latitude as the Large Cloud and which is only six degrees distant from the centre of the Cloud, is redder than any of the Cepheids in the Cloud. However, he mentions that Mr Rodgers found some evidence that this variable may be anomalous. We conclude that the average colour index of SCI = +.19for the ten Cepheids in the Magellanic Clouds must be considered as a maximum value for the intrinsic colours of Cepheids of similar periods. The five Cepheids of population II with the smallest
colour index which have been listed above give a mean colour index of SCI = +.13. But in this B. A. N. 484 120 LEIDEN case we have no certainty at all that the intrinsic colours are the same as for the Cepheids of population I. Some years ago GASCOIGNE and Kron (1953) have already noticed that the colours of some population II Cepheids are very nearly the same as for the Cepheids in the Small Magellanic Cloud. And ARP (1955) has proved that the Cepheids in globular clusters are very blue and that the colour of these stars depends very little on the period. Finally we have plotted δ Cephei in Figure 11 by a cross and circle. In his first article on Cepheids Eggen considered δ Cephei as unreddened. Since the revision of the luminosities of Cepheids this assumption has become very doubtful. So HARRIS (1956) derived a total visual absorption for δ Cephei of about .4 magnitude. From a typescript of a paper by Code on the normal colours of galactic Cepheids we learned that Code derived a colour-excess of m .06 in the (P, V) system for this bright variable by means of a study of the absorption for neighbouring B-type stars. Gascoigne and Eggen (1957) derived a colour-index of +.34 for δ Cephei in their latest paper. They assume the colour-index + .24 as the most probable value after correction for absorption. This corresponds with a value of + .08 in the SCI system. If we would have to determine the intrinsic colours of Cepheids at maximum from Figure 11 alone, we could adopt a value of SCI = +.10 for all periods. But from the work of Code we know that there seems to be a slight progress in spectral type with period. Code determined the spectral type of some galactic Cepheids (1947). Later Feast (1956) derived spectral types at maximum for a number of Cepheids in the Magellanic Clouds. From the combined results it is evident that the spectral type varies with log P from F5 to early G for the stars with very long periods. Consequently we have adopted the following relation between intrinsic colour and period: $$SCI_{max} = +.oi +.io log P,$$ which has been represented in Figure 11 by a broken line. This equation differs very little from the one adopted by Gascoigne and Eggen, viz.: $(P-V)_E = +.10 +.13 \log P$. Using the relation between $(P-V)_E$ and SCI this last equation can be written as: $SCI = -.09 +.16 \log P$. For the short periods our relation gives a slightly larger colour index than that used by Gascoigne and Eggen, but the difference is certainly well within the uncertainty of the various assumptions made. Stibbs (1955a) has derived the relation: $$P - V = +.17 + .18 \log P$$. STIBBS computed the reddening of the Cepheids by means of a model of the reddening medium, which gives the colour excesses of B stars as a function of distance and galactic co-ordinates. According to his Figure 2 this relation yields colours for the Cepheids with long periods which are about $^{\rm m}.15$ redder than those observed for the Cepheids in the Small Magellanic Cloud. If we reduce the $({\bf P}-{\bf V})$ values to SCI with the same formula used for $(P-V)_E$, Stibbs' relation becomes: $SCI=-.01+.22\log P$, which gives somewhat larger colour indices for stars with long periods than our formula. Our formula yields intrinsic colours at maximum brightness varying from +.04 to +.18 in the Cape S system. One may ask whether these values are reasonable for stars with spectral types from F₅Ib to F8Ib. In section 9 we discussed the measures of five bright stars. In connection with U TrA we measured two other bright stars, namely ι^2 and \varkappa Nor. The results of these measures are: | | ι² Nor, Sp. Ao | | | | | κ Nor, Sp. Ko | | | | |------|---|-------------------------|-------------------------|--|-------------------------|-------------------------|-------------------------|--|--| | | $\log I_B \mid \log I_Y \mid \Delta \log I$ | | | | $\log I_B$ | $\log I_Y$ | $\Delta \log I$ | | | | | 2.568
2.565
2.568 | 2.020
2.010
2.015 | +.548
+.555
+.553 | | 2.372
2.346
2.366 | 2.289
2.270
2.286 | +0.83
+.076
+.080 | | | | mean | 2.567 | 2.015 | +.552 | | 2.361 | 2.282 | +.080 | | | Using also the measures of Table 1 from Oosterhoff's note in B.A.N. 12, 271 (No. 460), 1955 we have measures for 7 Ao and for 12 F-type stars. The magnitudes and colours in the Cape S system of these 19 stars are as follows: | | | SPg | SPv | SCI | |--------------------|--|--|--|--| | Sp. Ao | 109 Vir
t ² Nor
E8 1
E8 2
E8 3
E8 45
E9 1 | 3.49
5.27
7.51
7.61
8.50
5.30
7.82 | 3.78
5.62
7.88
8.04
8.81
5.63
8.09 | 29
35
37
43
31
33
27 | | Sp. Fo | E8 11
E9 6 | 7.67
8.91 | 7.74
8.94 | 34
07
03
05 | | Sp. F2 | E8 13
E9 7 | 7.84
7.63 | 7.69
7.56 | +.15
+.07
+.11 | | Sp. F ₅ | E8 15
E8 17
E8 18
E8 19
E9 11 | 8.26
9.32
9.48
9.72
8.34 | 8.09
9.17
9.35
9.50
8.17 | +.17
+.15
+.13
+.22
+.17 | | Sp. F8 | E6 22
E8 21
E9 16 | 8.45
9.12
10.61 | ean
 8.15
 8.84
 10.46 | +.17
+.30
+.28
+.15
+.24 | As the galactic latitudes of the *E*-regions 8 and 9 are -33° and -45° respectively we cannot expect any serious reddening for the stars in this table. We conclude that the intrinsic colours adopted for the Cepheids are not inconsistent with the colours derived for other F-type stars. With the aid of the adopted intrinsic colours we With the aid of the adopted intrinsic colours we have computed the colour excess, E, for all the Cepheids of Table 13. The values of E are given in the 11th column of that table. We have made no distinction between Cepheids of the two populations, although for some Cepheids of population II the observed colour indices are so small that the intrinsic colour probably deviates from the colour predicted by our formula. # 12. The conversion of colour excess to total absorption Before we can apply the photographic periodluminosity relation to derive the distances of the individual Cepheids, we have to know the ratio between the colour excesses which were derived above and the total photographic absorption. This ratio has been studied by many authors. Some of these determinations we shall discuss here shortly and we shall try to adapt them to the photometric system of the colour excesses used in this paper. Oort (1938) discussed several methods and adopted the value $A_{pg}/E_1 = 9$, in which the colour excess is expressed in the colour system of Stebbins and HUFFER (1934). STEBBINS, HUFFER and WHITFORD (1943) derived the same ratio from multicolour photometry of B-type stars. According to Morgan, Harris and Johnson (1953) the colours C_1 from Stebbins and Huffer are related to the colours in the (B, V) system from Johnson and Morgan by the equation: $C_1 = -.144 + .483 \ (B - V)$. The ratio between the colours (B - V) and the colours in the Cape S system, SCI, is .85 according to Stoy (1956) and .89 according to our formula (15'). If we adopt the value .87, the ratio between the total photographic absorption and the colour excess in the SCI system becomes: $$A_{pg}/E_{SCI} = 3.8.$$ Greenstein and Henyey (1941) derived a somewhat smaller value, namely $A_{pg}/E_1=8.1$. This value corresponds with: $$A_{pg}/E_{SCI} = 3.4.$$ From a study of the absorption in the Andromeda nebula Stebbins (1950) derived the relation $A_{pg}/E_{int.}=4.0$. The relation between the colours in the international system and the Cape colours has been given by Stoy (*l.c.*). Applying this relation we find: $$A_{pg}/E_{SCI} = 3.7.$$ Morgan, Harris and Johnson (1953), Hiltner and Johnson (1956) and Blanco (1956) have all adopted the ratio $A_v/E_{(B-V)}=3.$ o. Reduced to the SCI colour-system the ratio becomes $A_v/E_{SCI}=2.6$, and from this we find for the total photographic absorption: $$A_{pg}/E_{SCI} = 3.4.$$ Finally we may mention that GASCOIGNE and EGGEN in their article on "Cepheid variables and Galactic Absorption" have adopted the ratio $A_{pg}/E_{(P-V)}=4.0$. In this case however we have the difficulty that the coefficient in the relation between the (P-V) colours and the (B-V) colours in our equation (16) differs so much from the coefficient given by EGGEN in equation (16'). The two different values of this coefficient yield the following two values of the ratio required: $$A_{pg}/E_{SCI} = 3.2$$ and $A_{pg}/E_{SCI} = 3.6$, respectively. For this article we shall use the ratio: $$A_{pg}/E_{SCI}=3.5,$$ which seems to be a fair compromise between the values discussed above. ### 13. The period-luminosity relation For the slope of this relation we have used the co-ordinates given by Shapley (1940). His relation can be represented accurately by two linear formulae for values of log P smaller and larger than 1.0 respectively. These formulae are: $$\dot{M}_{pg} = -.34 - \text{i.68 log } P \ (P < \text{io}^d) \text{ and}$$ $\dot{M}_{pg} = +.03 - 2.05 \log P \ (P > \text{io}^d).$ According to Blaauw and Morgan (1954) the zeropoint of Shapley's relation needs a correction of — 1.4 magnitude. The authors estimate the part of the probable error of $\pm .3$ of this correction which is due to the uncertainty in the adopted absorption alone to be $\pm .2$. For 9 of the 18 Cepheids used they based the adopted colour excess on measures by EGGEN. But it has now been proved that the intrinsic colours used by Eggen are too red and consequently the absorption derived is too small. In their article on "Cepheid Variables and Galactic Absorption" Gas-COIGNE and EGGEN have shown that recent photoelectric determinations of the colour excess of 17 out of the 18 Cepheids used by BLAAUW
and MORGAN yield a considerably larger absorption and consequently a larger correction to the zeropoint of Shapley's period-luminosity relation. For this paper B. A. N. 4 8 4 122 LEIDEN we shall adopt a zeropoint correction of -1.7 and we shall use the following period-luminosity relation: $$\dot{M}_{pg} = -2.04 - 1.68 \log P \quad (P < 10^{\rm d}) \text{ and } \\ \dot{M}_{pg} = -1.67 - 2.05 \log P \quad (P > 10^{\rm d}).$$ The absolute median photographic magnitudes derived from these equations differ very little from those adopted by GASCOIGNE and EGGEN. This relation is only valid for galactic Cepheids of population I. For the Cepheids of population II the absolute magnitudes are probably even more uncertain. From the work by ARP (1955) and others it seems to be beyond doubt that the population II Cepheids are less luminous than the ordinary galactic Cepheids. In the present paper we shall adopt absolute median magnitudes for the population II Cepheids which are 1.5 magnitude fainter than for the galactic Cepheids with the same period. With the colour excess derived in section 11, the ratio between colour excess and total photographic absorption discussed in section 12, and with the period-luminosity relation given above, the distances of the individual Cepheids could be determined, if the median photographic magnitudes were known. However this quantity can be derived from the photometric data of Table 13 for those Cepheids only for which the magnitude has been measured at maximum as well as at minimum brightness, but the number of variables for which this information is available is small. If the relation between the range of the light-curve in blue light and log P which we derived in section 10, namely: $\Delta SPg = +.32 + .91 \log P$, were strict, we could transfer the period-luminosity relation derived above into a relation between the period and the photographic magnitude at maximum. But we have shown in section 10 that the mean deviation from the period-range relation is as large as \pm .30 magnitude and therefore we would introduce considerable accidental errors in the distances if the relation between range and period would be applied as it stands. The reduction from maximum magnitude to median magnitude equals half the range and by applying our formula we would therefore introduce a dispersion of $\pm .15$ magnitude, which would produce a dispersion in the distances of about 7 per cent. In this connection it should be emphasized that little is known about the true deviations from the periodluminosity relation. It seems most unlikely that the dispersion in this relation as shown in Figure 1 of Shapley's paper quoted above is due to observational errors alone or to the combined effect of observational errors and differences in space absorption. Also we do not know of any theoretical arguments which would make us expect that the intrinsic median magnitudes of Cepheids with the same period but with different ranges of the light-curve would show no dispersion. The dispersion in Shapley's figure may be estimated to be of the order of \pm .25 magnitude, which would produce a dispersion in the distances of about 11 per cent. This last dispersion we cannot avoid, but we have tried to reduce the dispersion caused by the differences in range. We have therefore investigated the question whether the determination of the median magnitudes for the Cepheids for which we have only a magnitude at maximum could be improved by making use of the ranges published in the *General Catalogue of Variable Stars*. For 71 Cepheids of our main table we can use photo-electrical ranges, determined in this paper or by Eggen, Gascoigne and Burr. We have compared these accurate determinations with the values of the range as given in the *General Catalogue*. The comparison is rather unsatisfactory, as we find a mean error of \pm .30 magnitude for the range as published in the *General Catalogue*. This mean error, due to observational errors, therefore is as large as the dispersion from the relation we derived above between range and period. Consequently we cannot improve the determination of the median magnitudes by making use of the ranges given in the *General Catalogue* and we decided to compute the median magnitude with the aid of our relation: $$\Delta SPg = +.32 + .91 \log P.$$ Only for the Cepheids for which photo-electric measures of the range have been observed did we use the actually observed median magnitudes. In Table 13 the light-range has been given in column 11. Photo-electric observations have been indicated by an asterisk, the other values were taken from the General Catalogue of Variable Stars. Values from this catalogue which were given for visual light have been multiplied with the factor 1.67. In deriving the median magnitudes we have made no distinction between the Cepheids of the two populations. The distances of the individual Cepheids expressed in kiloparsecs have been given in the 13th column of Table 13. For the few stars with negative colour excess, we have adopted a colour excess of zero. For the two Cepheids CQ Sco and V 446 Sco distances of 19.4 and 26.1 kpc are found, if we assume these variables to belong to population I. As the galactic latitudes are -8° .0 and -7° .4 respectively, it seems practically certain that we should consider them as variables of population II. The distances given in Table 13 are based on this assumption. #### 14. The spatial distribution of the Cepheids For all the Cepheids in Table 13 we have first computed the distance z from the galactic plane. We did not use the values of the galactic latitude given in the fourth column of Table 13, which were computed with Ohlsson's tables, but we have adopted the new galactic pole derived by Westerhout (1957, page 219) from the collected Dutch measures of the interstellar hydrogen emission at 21 cm. The coordinates of this pole in Ohlsson's system are: $$l_p = 322^{\circ}$$ and $b_p = 88^{\circ}.56$. The values of the z co-ordinate have been given in the fourteenth column of Table 13. Practically without exception all the Cepheids which we have classified so far as belonging to population II have very large values of this co-ordinate. But there are a few more stars at rather great distances from the galactic plane, which probably have not yet been recognized as members of population II. It may be useful to list here all the Cepheids of our catalogue which belong or may belong to this population 1 (see table in facing column). For the stars marked by an asterisk in the last two columns the computation of the distance r and of the z co-ordinate was made on the assumption that these variables belong to population I. If they belong to population II the values of both r and z would have to be halved. The evidence that the variables CT Car, KK Cen, BB Her and V 741 Sgr should belong to population II is weak. For a more definite classification accurate light-curves and spectroscopic information would be required. However in the following | Star | $\log P$ | SPg (max) | E | r | z | |------------|----------|-----------|------|--------|----------------| | | | m | m | kpc | рс | | T Ant | .771 | 9.20 | .20 | 3.15* | + 640* | | TW Cap | 1.456 | 10.03 | 09 | 6.43 | -2700 | | CT Car? | 1.257 | 12.66: | .83: | 8.87* | - 330* | | IU Cen | .521 | 12.85 | .26 | 5.65 | + 500 | | KK Cen? | 1.086 | 11.82 | .78 | 5.35* | + 310* | | V 420 Cen | 1.394 | 9.81 | .14 | 3.96 | + 945 | | AL CrA | 1.232 | 12.13 | -33 | 7.76 | -1260 | | KQ CrA | 1.480 | 12.57: | .38: | 11.32 | -1520 | | V 347 CrA | 1.186 | 12.79: | .41: | 8.51 | 1440 | | TX Del | .790 | 9.19 | .23 | 1.45 | — 610 | | AP Her | 1.017 | 10.80 | .27 | 3.52 | + 430 | | BB Her | .875 | 10.50 | .63 | 2.97* | + 330* | | RX Lib | 1.397 | 12.39 | .43 | 7.94 | +3590 | | UX Nor | .378 | 13.39: | .04: | 8.95 | — 800 | | ST Pup | 1.276 | 9.46 | 04 | 3.96 | - 1090 | | V 626 Sgr | 1.427 | 11.92 | .05 | 12.76 | 1590 | | V 741 Sgr? | 1.181 | 12.68 | 1.50 | 1.39 | - 170 | | CQ Sco | 1.484 | 12.99: | .60: | 9.73 | -1100 | | V 446 Sco | 1.457 | 13.10 | .43 | 13.06 | -1350 | | V 542 Sco | 1.183 | 13.11 | .31 | 11.64 | -1360 | | SZ Tau | .498 | 6.96 | .50 | 2.34 | — 750 | | AM Vel | .876 | 13.55: | .55: | 13.81* | - 870 * | | W Vir | 1.237 | 9.85: | .17: | 3.50 | +2990 | discussion of the Cepheids of population I we shall omit the stars from this table. We have grouped the Cepheids of population I of our Table 13 according to distance and for each group we have computed the dispersion in the z co-ordinates and the mean value \bar{z} . The results are as follows: | | <i>r</i> < 1.0 | 1.0 < r < 2.0 | 2.0 < r < 3.0 | 3.0 < r < 4.0 | 4.0 < r < 5.0 | |---------------|----------------|---------------|---------------|---------------|---------------------------------| | number | 43
.67 | 58 | 33
2.40 | 15 | 11 | | $\frac{7}{z}$ | -37 | 1.52
—10 | -36 | 3.50
— 19 | + 18 + 18 | | σ_z | ± 68 | ± 67 | ±57 | ±130 | ±115 | Up to a distance of 4 kpc there is no systematic change in z. The result from the last group has very little weight as it contains eleven stars only and furthermore the dispersion in the last two groups is considerably larger than in the first three groups. The average value of \bar{z} computed with weights proportional to the number of stars in each distance group is -21.1 pc. We shall try to derive the true dispersion in the z co-ordinate, not affected by the errors of observation, and the best value of \bar{z} . If the accidental photometric errors, viz. the errors of observation, the errors involved in the derivation of the median magnitude and in the period-luminosity relation, etc. are assumed to be independent of the distance of the variables, the mean errors of the distances derived are proportional to these distances. Therefore we can write: $\mu_r = \alpha r$. We can make only a rough
estimate of this constant α , which depends directly on the photometric errors. The largest errors are probably due to the period-luminosity relation and to the reduction of the magnitude at maximum to median magnitude. If we adopt mean errors of \pm m.25 and \pm m.15 respectively for these two types of errors, we find $\alpha = .15$. From the relation z = $r \sin b$ it is easily derived that $\mu_z = \alpha z$. Therefore the mean error of the z co-ordinate is proportional to z itself and is independent from the distance r. The fact that we derived above larger dispersions for distances over 3 kpc can therefore not be explained by the errors of observation. However this increase in dispersion with increasing distance can be understood as follows. In the first place it has been proved by Westerhout (1957, Figure 7) and by Kerr, Hindman and Stahr Carpenter 2) that the layer of interstellar atomic hydrogen is not really flat and that spiral arms, especially in the outer parts of the galactic system, may deviate considerably from the mean galactic plane. ¹) Eggen, Gascoigne and Burr conclude that x Pavonis also may belong to population II. ²) To be published in *Nature*. B. A. N. 484 LEIDEN Further, Cepheids at a distance of several kiloparsecs suffer so much interstellar absorption that their apparent magnitude can easily be too faint to be included in our observing programme, which did not include many Cepheids fainter than $12^{\rm m}$. For stars at some distance from the galactic plane the interstellar absorption will be less and therefore the fainter stars from our programme will have systematically larger values of z than the brighter Cepheids. In the computation of \bar{z} the value of the dispersion should therefore be taken into account. The mean value of z computed from the five groups with weights proportional to n/σ^2 is: $$\bar{z} = -23.9 \text{ pc.}$$ $\pm 5.5 \quad \text{(m.e.)}$ This value differs very little from the result derived by Westerhout (1957, page 219), who found a value of $+26\pm7$ pc for the distance of the sun from the galactic plane. It certainly is interesting that the observations of Cepheids in the southern hemisphere so completely confirm the position of the galactic equator derived from the interstellar gas in the northern hemisphere. As the value of the dispersion in the first three distance groups is about the same we shall consider the value derived from these groups combined as the best value of the observed dispersion. We find: $$\sigma_z$$ (observed) = \pm 65 pc. The true dispersion must be smaller as our value is still affected by the errors of observation. We have found above that the observational mean error in z is proportional to z. If we adopt a Gaussian partition function with dispersion σ for the true z-values and a similar function for the errors of observation with a dispersion αz , the partition function of the observed z-values is: $$\frac{1}{2\pi\sigma} dz \int_{-\infty}^{+\infty} e^{-\frac{z'^2}{2\sigma^2}} \cdot e^{-\frac{(z-z')^2}{2\alpha^2z'^2}} \frac{dz'}{\alpha z'}.$$ Computing the second moment of this function we find: $$\overline{z^2} = \sigma^2 \text{ (observed)} = \sigma^2 (1 + \alpha^2).$$ We adopted the value .15 for α and consequently the reduction of the observed dispersion to the true dispersion is negligeable. From the dispersion given above it follows that only about 12 percent of the Cepheids have distances from the galactic plane larger than 100 pc. Next we have investigated the total photographic absorption per kiloparsec. Dividing the Cepheids in groups according to distance we find: | | r < 1 | I < r < 2 | 2 < r < 3 | 3 < r < 5 | |-----------------------------------|-----------|-----------|-----------|-----------| | \overline{n} | 42 | 58 | 33 | 26 | | $\frac{\Sigma_{3.5} E}{\Sigma r}$ | т
2.46 | 1.68 | 1.08 | .70 | | $\frac{\overline{3\cdot5}E}{r}$ | 2.76 | 1.68 | 1.09 | .72 | The decrease of the total absorption with distance is very strong. It is difficult to say whether this can be fully explained by the influence of selection described above, especially as the decrease sets in very clearly at a distance of only one kiloparsec. An ordinary Cepheid with M = -3.5 and at a distance of 1000 parsecs has an apparent magnitude of 6.5 if there is no absorption. With an absorption of 2^m.5 as derived from the nearest Cepheids the apparent magnitude would be 9^m.o. Stars of this brightness have certainly not been missed in our programme. The effect of the selection becomes serious at a distance of about 2 kpc. A Cepheid at this distance with M = -3.5 and with an absorption of 4^m would have an apparent magnitude of 12^m and beyond this magnitude our programme is certainly not complete. But there exists a discrepancy in the value of the dispersion in z for distances between 2 and 3 kpc, which is not larger than that for the nearer Cepheids, and the total absorption per kiloparsec, which for distances between these limits is considerably smaller than for the Cepheids at smaller distances. We shall see below that the spatial distribution of the Cepheids is far from uniform and that Cepheids at a certain distance occur at special longitudes only, especially when the distance is large. Consequently the influence of transparent and obscured regions of the Milky Way may differ considerably for the four distance groups of our table. In her article on southern early-type stars Miss HOFFLEIT (1956) remarks in point 7 of the summary: "In Sagittarius both the colour excess and the intensity of the K-line are found to increase with distance. In Carina and the H II regions no correlation between distance and colour excess is indicated. All three types of regions show some correlation between distance and the K-line intensity, but the relation is not the same in all three". It is interesting to see that the colours of the Cepheids lead to the same conclusion. The galactic Cepheids in the constellation Carina and those with longitudes between 320° and 0° were arranged according to distance and divided into four groups. The mean values of distance and colourexcess for these groups are as follows (see table on following page). It is seen that in the Carina region the colour excess is practically constant up to a distance of 4 kpc. In | | Carina | | $320^{\circ} < l < 0^{\circ}$ | | | | | |------------------|------------------------------|-------------------|-------------------------------|----------------------------|----------------------------|--|--| | n | \overline{r} | $ar{E}$ | n | \overline{r} | $ar{E}$ | | | | 9
8
8
8 | 1.17
2.07
2.46
4.01 | .45
.53
.65 | 7
8
8
7 | .48
.83
1.45
2.09 | .52
.53
1.12
1.16 | | | Sagittarius however the colour excess is about proportional to the distance. As we shall see below, we probably are looking along a spiral arm in Carina, whereas in Sagittarius the line of sight passes two spiral arms more or less at right angles. We can make a check on our distances by computing Oort's constant A for the differential galactic rotation. We have limited this investigation to the radial velocities determined by Stibbs (1955b), who gave velocities for 52 of the Cepheids of our list. His radial velocities have first been corrected for standard solar motion: $V_{\odot} = 20 \text{ km/sec}$, $A_{\odot} = 270^{\circ}$ and $D_{\odot} = +30^{\circ}$. These corrected velocities are given as V'_r in the seventh column of Table 14 on page 127. In the fifth column of the same table we have given the value of $r\cos^2b\sin 2(l-l_{\circ})$, in which r was taken from Table 13, while l_{\circ} was assumed to be 327°. The value of A was then solved from the equation: $$V'_{r} = A r \cos^{2} b \sin 2 (l - l_{o}).$$ Using all the 52 stars we derived the value $$A = + 17.0 \text{ km/sec/kpc.}$$ $\pm 2.3 \text{ (m.e.)}$ The dispersion in the radial velocities was found to be \pm 13 km/sec. Two stars give very large residuals, namely \varkappa Pavonis and V Velorum. The first of these two Cepheids is rather anomalous. We have seen above that Eggen, Gascoigne and Burr believe that it belongs to population II. V Vel seems to be a very normal Cepheid and we find no reasons to omit this variable from the solution. A solution without \varkappa Pav yields the results: $$A = + 17.4 \, \text{km/sec/kpc}$$ and $\sigma = \pm 11.9 \, \text{km/sec.}$ $\pm 2.1 \, \text{(m.e.)}$ The residuals (O-C) are given in the last column of Table 14. This value of A agrees reasonably well with other determinations. According to Morgan and Oort (1951) the best value of A as derived from proper motions is $+20 \, \mathrm{km/sec/kpc} \pm 2 \, \mathrm{(m.e.)}$, whereas the average value derived from radial velocities in combination with secular parallaxes for stars with strong galactic concentration is $+19 \, \mathrm{km/sec/kps} \pm 2 \, \mathrm{(m.e.)}$ according to these authors. Our value does not deviate significantly from the other deter- minations, which may be considered as an indication that our system of distances is about correct, at least to a distance of about 2 kpc. We shall now discuss the spatial distribution of the galactic Cepheids in more detail. The projection of the galactic Cepheids on the galactic plane is shown in Figure 12. The aggregates of high-luminosity stars of classes O - A, investigated by Morgan, Whit-FORD and CODE (1953) have been indicated in the figure by open circles. The markers on the two lines through the sun indicate distances of one kiloparsec. The clearest feature of this diagram is the concentration of Cepheids in the direction $l = 250^{\circ} - 270^{\circ}$. Many of these Cepheids belong to the constellation of Carina. That many Cepheids of very different apparent magnitudes are present in this interval of longitude is explained by the fact that the line of sight from the sun follows the Carina spiral arm for three
or four thousand parsecs. At a distance of four kiloparsec the number of Cepheids decreases rapidly on account of the magnitude limit of our programme and it becomes difficult to trace this spiral arm any further. But when we follow this spiral arm to the neighbourhood of the sun, the situation becomes rather interesting. Although at longitudes from 250° to 320° no Cepheids are found at a distance from the sun of about one kiloparsec, it seems clear that the Carina spiral arm passes along the sun between longitudes from 260° to 20° at a distance of only .6 or .7 kpc. Many of the Cepheids in this region belong to the constellation of Sagittarius, but this rich group of Cepheids does not belong to the spiral arm to which SCHMIDT (1957) has given the name Sagittarius arm. We shall discuss this arm below. It has been proved by many investigations that the sun is situated just outside or on the border of the Orion arm, which at a longitude of 150° passes the sun at a distance of about 600 pc. Therefore if the Cepheids are concentrated in the spiral arms, which seems almost certain, the sun seems to be situated more or less in between the Orion and the Carina arms. As we have no Cepheids in our catalogue with longitudes beyond 20° it is difficult to say what happens to this arm at higher longitudes. The four associations I Vul and I, II and III Cyg seem to form a continuation of this arm, but according to Plate B by SCHMIDT (1957) the arm seems then to come to an end somewhere in between the Orion and the Sagittarius arm. In the article on southern early-type stars mentioned already above, Miss Hoffleit draws attention to the fact that the early-type stars of high luminosity in the direction of Carina seem to show concentrations at distances of 1.2 and 2 kpc with less well defined concentrations at still larger distances. This effect is clearly shown in her Figure 5. Although the distances do not agree exactly we find similar conB. A. N. 484 LEIDEN Projection of the galactic Cepheids on the galactic plane. Open circles represent aggregates of high-luminosity stars of classes O — A, investigated by MORGAN, WHITFORD and CODE centrations of Cepheids in this direction. Such regions rich in Cepheids are found at distances of .7, 1.4 and 2.2 kpc. Miss Hoffleit considers the possibility that these concentrations of early-type stars in the direction of $l = 260^{\circ}$ do not belong to one and the same spiral arm, but that each of these concentrations would indicate the intersection of the line of sight with a spiral arm running more or less parallel with the Orion and Perseus arms. In her Figure 5 she has drawn three such arms. The arm nearest to the sun passes through the concentration at 1.2 kpc and through the Sagittarius arm, in which several associations were found by Morgan and co-workers. Our plot of the Cepheids does not confirm this suggestion by Miss Hoffleit, which would result in inner spiral arms making large angles with the circles around the galactic centre. The concentrations of early-type stars and Cepheids in the Carina spiral arm seem to be well established. But it has been suspected for many years that spiral arms are not very regular structures and therefore such concentrations and irregularities are in no way surprising. Between the longitudes 290° and 10° we find a second concentration of Cepheids at a distance of 1.5 or 2 kpc. This group of Cepheids probably forms a continuation of Schmidt's Sagittarius arm. It is interesting to see that seven associations practically co-incide with this group of Cepheids. On the other hand it is quite remarkable that of the eight associations between $l=310^{\circ}-350^{\circ}$ seven are situated in this continuation of the Sagittarius arm, while only one, II Sco, is situated in the nearer arm, which we have considered as a continuation of the Carina arm, though both concentrations of Cepheids are nearly equally rich. Following some suggestions made during the last symposium on "Co-ordination of Galactic Research", which was held in Saltsjöbaden in June 1957, we have investigated the distribution of the Cepheids of population I in the region between longitudes 320° and 20° in some more detail. The nearly complete absence of O associations in the continuation of the Carina spiral arm in this region and the presence of seven associations in the Sagittarius arm could imply that the Cepheids in these two arms are on the average of different age, which probably would result in a different frequency distribution of periods in these two accumulations of Cepheids. In the following table we derived some mean values for these two groups of Cepheids: | | Continuation of
Carina arm | Sagittarius arm | |---|---|--| | | o < r < 1.2 kpc | 1.3 < r < 3.0 kpc | | number of stars
mean latitude
dispersion in latitude
mean distance
mean log period
mean max. magnitude | 19
- 4°.1
± 5°.7
.68 kpc
.826
7 ^m .04 | 16
- 2°.6
± 1°.3
1 .84 kpc
.943
10 ^m .72 | It is clear that the dispersion in latitude is much smaller for the more distant group of Cepheids than for the Cepheids in the continuation of the Carina arm, even more so than could be expected from the ratio of the mean distances of these two groups. Although young stars can be expected to show a smaller dispersion in the z co-ordinate than old stars, the values of \pm 68 pc and \pm 42 pc, which result from the figures in the table, are not sufficiently accurate to guarantee that this difference is real. In this connection it should be mentioned that most of the Cepheids of population I in the general direction of the galactic centre are situated to the south of Wes-TERHOUT'S new galactic equator. This fact may be partly due to heavy obscuration to the north of this equator and this would cause an apparent reduction in the dispersion in latitude and in z co-ordinate. It is also clear from the table that the periods of the Cepheids in the Sagittarius arm are on the average longer than for the Cepheids in the nearer accumulation in the Carina arm. Of the 19 variables in this last group only 2 have periods larger than 10 days, while in the more distant group of 16 stars 7 variables have periods over 10 days. This could be an indication that the Cepheids in the Sagittarius arm, in which several associations occur, are relatively young, but we have to be careful with such a conclusion. The mean photographic magnitude at maximum brightness is 7.04 and 10.72 for the nearer and for the more distant group respectively. As we have not observed many variables fainter than 12.0 at maximum, a number of Cepheids with short periods and consequently with low absolute magnitude in the Sagittarius arm may not have been included in our programme and therefore the difference in the frequency distribution of the periods in the two groups may be at least partly explained by selection. Nevertheless the differences found here between the Cepheids in the continuation of the Carina arm and in the Sagittarius arm are sufficiently interesting to ask for more observations of faint Cepheids in this part of the sky. If the programme were complete down to magnitude 14, the questions raised here could be answered definitely. In the direction of Canis Major and Puppis we find two rather isolated groups of Cepheids, at $l=200^{\circ}$, r=2.4 kpc and at $l=209^{\circ}$, r=4.1 kpc. Both groups may have an extension towards smaller values of the longitude, but our programme is not complete any more in that region. These groups practically coincide with an arm which is clearly shown on Plates A and B of B.A.N. No. 475. The Carina spiral arm is one of the main features of Figure 1 in the article by Kerr, Hindman and Stahr Carpenter. But in this figure we find no indication of any arms in the direction of $l=236^{\circ}$ up to a distance of 4 or 5 kpc from the sun. However, in our diagram about one dozen Cepheids is found in this direction with distances from .5 to 2 kpc. It could well be that this group of Cepheids is situated in an extension of the Orion arm. Finally we may remark that in the longitudes from 300° to 340° only one Cepheid occurs with a distance slightly larger than 2 kpc, while at other longitudes we found distances of 5 kpc and even more. This fact is probably due to a strong increase in the interstellar absorption in the direction of the galactic centre. The present investigation has shown that the Cepheids are very suitable objects for an exploration of the detailed structure of our galactic system. But it is as clear that this programme should be extended to much fainter Cepheids. It is to be expected that the discovery of such faint Cepheids is far from complete at this moment and consequently the search for faint Cepheids should be encouraged. The work involved could be considerably reduced by limiting this search to a small strip along the galactic equator. At a distance of 4 kpc nearly all Cepheids should be situated within 2° from this equator. But above all a similar investigation of the Cepheids in the northern hemisphere is badly needed. TABLE 14 | | | | IABLE 1 | 4 | | | | |-------------|-------|----------------|---------|--------------|---------------|---------------|--------------------------------------| | Star | l | b | r | V_r | V_r' | (O-C) | $ \frac{r\cos^2 b}{\sin 2 (l-l_o)} $ | | | 0 | 0 | | | | | | | T Ant | 232.5 | +11.8 | 3.15 | +29.5 | +15.2 | + 7.0 | + .471 | | V 496 Aql | 356.1 | - 8.6 | .70 | + 5.2 | +14.1 | + 4.0 | + .582 | | l Car | 250.7 | - 6.8 | .27 | + 1.4 | -11.9 | - 9.8 | 122 | | U Car | 256.8 | + .1 | 1.34 | + .4 | -10.5 | + 4.4 | 854 | | V Car | 242.7 | -11.9 | | +16.1 | + .6 | + 3.2 | 150 | | Y Car | | | .79 | | | |
802 | | ER Car | 253.4 | 2 | 1.48 | -5.8 -18.1 | -17.6 -28.6 | -3.6 -18.4 | | | GI Car | 257.8 | + 1.4 | .90 | | l . | | 597 | | IT Car | 258.0 | + 2.6 | 1.51 | -21.4 | -31.7 | -14.2 | -1.008 | | UX Car | 259.2 | — I.I | 1.28 | -14.0 | -24.4 | - 8.9 | 889 | | | 252.5 | + .3 | 1.56 | +10.4 | - 1.6 | +12.4 | 803 | | VY Car | 254.3 | + 1.3 | 1.39 | - 1.2 | -12.6 | + 1.1 | 790 | | V Cen | 284.2 | + 2.8 | .74 | -22.3 | -24.8 | -12.0 | 736 | | AZ Cen | 260.5 | 3 | 1.46 | -12.3 | -22.3 | - 3.7 | -1.067 | | UZ Cen | 262.6 | — 1.1 | 1.65 | - 5.1 | -14.6 | + 7.8 | -1.285 | | XX Cen | 277.3 | + 4.1 | 1.41 | - 15.7 | -20.2 | + 3.9 | -1.385 | | V 339 Cen | 281.1 | – 1.1 | 1.41 | -24.3 | -28.3 | - 3.8 | -1.410 | | V 378 Cen | 273.8 | ı | 1.27 | - 17.7 | -23.8 | - 2.6 | -1.218 | | V 381 Cen | 278.6 | + 3.8 | 1.13 | -30.8 | -34.9 | -15.4 | -1.118 | | V 419 Cen | 259.8 | + 4.2 | 1.24 | -17.2 | -26.8 | -11.5 | 88r | | R Cru | 267.3 | + .8 | .87 | -13.5 | -21.4 | — 8. 2 | 758 | | S Cru | 271.1 | + 4.1 | .70 | - 6.6 | -15.8 | - 4.6 | 646 | | T Cru | 267.2 | + .2 | .62 | - 6.0 | -14.0 | - 4.6 | 539 | | X Cru | 270.1 | + 3.5 | 1.25 | -25.0 | -31.7 | -11.9 | -1.139 | | AG Cru | 269.4 | + 2.8 | 1.35 | - 4.5 | -11.5 | + 9.7 | -1.219 | | β Dor | 238.5 | -32.3 | .25 | + 8.1 | - 8.6 | - 8.4 | 009 | | R Mus | 269.6 | - 6.9 | .82 | + 3.8 | - 4.4 | + 8.4 | 734 | | S Mus | 267.1 | - 7.8 | .64 | +11.8 | + 2.8 | +12.3 | 546 | | RT Mus | 264.1 | - 5.4 | 1.50 | - r.8 | -11.4 | + 9.6 | -1.206 | | S Nor | 295.3 | - 6.3 | .66 | + 3.3 | + 3.2 | +13.3 | 582 | | BF Oph | 324.8 | + 7.2 | .80 | -31.4 | -20.8 | -19.7 | 061 | | и Pav | 295.4 | -26.3 | .42 | +37.6 | +35.0 | (+40.2) | 301 | | AP Pup | 223.1 | - 4.9 | .98 | +17.9 | ı | – 8.0 | + .453 | | AT Pup | 222.0 | 8 | 1.67 | +28.8 | -11.2 | -25.7 | + .835 | | WX Pup | 209.2 | 3 | 2.34 | +53.4 | +34.9 | + 1.3 | +1.930 | | U Sgr | 341.4 | - 5.9 | .57 | + 3.9 | +16.9 | +12.2 | + .272 | | W Sgr | 328.5 | - 5.4 | .40 | -26.4 | -16.4 | -16.8 | + .021 | | X Sgr | 328.9 | - 1.2 | .32 | -13.7 | - 3.0 | - 3.4 | + .021 | | RV Sco | 318.1 | + 4.3 | .76 | -18.3 | - 9.9 | - 5.9 | 231 | | V 482 Sco | 322.9 | - 1.2 | .96 | +11.1 | +20.2 | +22.6 | 137 | | V 500 Sco | 326.7 | – 2.8 | 1.23 | -13.8 | - 3.9 | - 3.7 | 012 | | V 636 Sco | 311.1 | - 6.4 | .64 | + .8 | +5.7 | +11.5 | 333 | | R TrA | 284.5 | - 8.4 | .67 | - 0.1 | -12.9 | - 1.5 | 653 | | S TrA | 289.6 | - 9.0 | .80 | + 6.6 | + 4.4 | +17.5 | 753 | | U TrA | 290.7 | - 8.9 | 1.27 | -13.7 | -15.6 | + 5.0 | -1.183 | | T Vel | 233.2 | - 3.2 | 1.08 | + 8.0 | - 8.4 | -10.9 | + .142 | | V Vel | 244.2 | - 3.8 | 1.07 | -28.7 | -43·I | -38.5 | 265 | | AH Vel | 230.0 | -6.3 | .49 | +26.0 | +8.8 | +6.8 | + .117 | | AX Vel | 230.8 | - 7.0 | 1.11 | +24.2 | + 7.0 | + 2.9 | + .235 | | BG Vel | 233.8 | - 2.3 | .71 | +10.9 | - 4.6 | - 6.0 | + .079 | | RZ Vel | 230.5 | - 2.3
- 1.2 | 1.51 | +25.5 | + 8.9 | + 3.0 | + .340 | | SV Vel | 253.8 | + 2.5 | 2.03 | +25.5 + 4.5 | - 6.9 | +12.6 | -1.120 | | SX Vel | | - 1.6 | 1.80 | _ | 1 | +12.6 | + .237 | | DA VEI | 233.2 | _ 1.0 | 1.00 | +30.9 | +14.7 | T10.0 | 1 .43/ | ## REFERENCES H. C. ARP 1955, A.J. 60, 10, Figure 28. G. S. BADALYAN 1956, Publ. Burakan Obs. Nos 3, 8 and 17. A. Blaauw and H. R. Morgan 1954, B.A.N. 12, 95 (No. 450). V. M. BLANCO 1956, Ap. J. 123, 64 A. D. Code 1947, Ap. J. 106, 309. O. J. Eggen 1951, Ap. J. 113, 367. O. J. EGGEN 1955, A.J. 60, 65. O. J. EGGEN, S. C. B. GASCOIGNE and E. J. BURR 1957, M.N.R.A.S. 117, 406. M. W. Feast 1956, M.N.R.A.S. 116, 583. S. C. B. GASCOIGNE and G. E. KRON 1953, P.A.S.P. 65, 32. S. C. B. GASCOIGNE and O. J. EGGEN 1957, M.N.R.A.S. 117, 430. J. L. GREENSTEIN and L. G. HENYEY 1941, Ap. J. 93, 327. D. L. Harris 1956, Ap.J. 123, 549. W. A. HILTNER and H. L. JOHNSON 1956, Ap. J. 124, 375. D. Hoffleit 1956, Ap.J. 124, 79. - H. L. Johnson and W. W. Morgan 1953, Ap. J. 117, 313. A. H. Joy 1937, Ap. J. 86, 363. - H. R. MORGAN and J. H. OORT 1951, B.A.N. 11, 379 (No. 431). W. W. Morgan, D. L. Harris and H. L. Johnson 1953, Ap. J. - W. W. MORGAN, A. E. WHITFORD and A. D. CODE 1953, Ap. J. 118, 318. - J. Ohlsson 1932, Lund Obs. Ann. 3. - J. H. Oort 1938, B.A.N. 8, 233 (No. 308). P. Th. Oosterhoff 1951, B.A.N. 11, 299 (No. 425). P. P. Parenago 1954, "Fourth conference on cosmogonical problems, Moscow", 311. M. Schmidt 1957, B.A.N. 13, 247 (No. 475), (see 268 and Distance). - Plate B). - H. Shapley 1940, Proc. Nat. Ac. Sciences, 26, No. 9, 541, Table 3. H. SHAPLEY and V. McKibben Nail 1952, Harvard Reprint No. 360. - J. STEBBINS and C. M. HUFFER 1934, Publ. Washburn Obs. 15, part 5. - J. Stebbins, C. M. Huffer and A. E. Whitford 1939, Ap. J. 90, 209, and also Ap.J. 98, 20, 1943. - J. Stebbins 1950, The Observatory 70, 206. - D. W. N. STIBBS 1955a, M.N.R.A.S. 115, 323. - D. W. N. STIBBS 1955b, M.N.R.A.S. 115, 363. - R. H. Stoy 1956, "Vistas in Astronomy", 2, 1099. - A. D. THACKERAY and A. J. WESSELINK 1953, Nature 171, 693. - M. A. VASHAKIDZE 1953, Abastumani Obs. Bull. 13, 83. - G. WESTERHOUT 1957, B.A.N. 13, 201 (No. 475).