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§1 Tntroduction

Let G be an Abelian group and let S = (x1,...,xn) be a finite sequence
of elements from G (G-sequence). One is asked to give sufficient
conditions to ensure that S contains a non empty subsequence T so that

the sum of the elements of T (notation |T|) is zero. (zero-subsequence).

If G is a finite group sufficient conditions have been given putting a
restriction on the length n of S (notation 1(S)). For any finite group

G there exists a constant u{(G) so that:
1(8) > u(G) =» S contains a zero subsequence.
See for more information [1,2].

In this note we given a generalisation of the indicated theory into the
realm of infinite Abelian groups. The above given definition of u(G)
then becomes useless. However, a related notion developed in [[] can

be generalised.

Let A be a subset of G. An A-sequence is a G-sequence of elements
contained in A. An A-sequence S is called irreducible iff |S] = 0 and

iff Te 8, |T| = 0 implies T = ¢ or T = S.

We prove that for finite A there exists only a finite number of

irreducible A-sequences. This makes it possible to define for finite A:
pu(G,A) 1is the maximal length of an irreducible A-sequence.

If no A-zero-sequence exists we put up(G,A) = O.

For finite G we have u(G,A) < u(G) and u(G,6) = u(G) (cf. D]).

We give two proofs for the finiteness of w(G,A). The first more general
rroof gives no indication at all of the value of u(G,A). We use a more
general finiteness-principle (Th. (2,2)). The second proof which is more
complicated gives at the same time a recursive procedure by which an

upper limit of p(G,A) could be calculated.



§2 General proof of the finiteness of u(G,A)

Let ke IN. By A(k) we denote the additive semigroup of all k-tuples of

non-negative integers.

Alk) = {(x1,...,x ) | x. & 2, x; > 0.

k 1

A(k) is the k-dimensional semi-unit-lattice in Bk. We have also
Alk) c Zk; this makes it possible to write a ~ b for a, b e A(k). If
a - be A(k) we write a ~» b. It is clear that > is a partial order on

Alk).

Lemma (2,

we have b, < b, or b, < b, ,then B is finite.

2,1): Let Bc A(k) be a subset so that for no pair b + b,€ B

Proof: By complete induction on k.
For k = 1 the lemma is trivial. Suppose the lemma already proved for

k=n-1.

Let B be a infinite subset of A(n) such that for no pair b1 + b2€a B

b, < b, or b, = b,. Chose a bye B by = (b01’b02"'°’b0n)' For any

b = (bT,..J%Q € B there exists an integer j j =1, ..., n so that

bj < bOj' (If not by < b contradicting the assumptions).

As B is infinite there exists a infinite subcollection C ¢ B such

that for the same jO € {1,...,n} we have (01,...,cn) € C!q»cjo < bojo.
Without loss of generality we may assume jo= 1.

There exists only a finite number of integers x with 0 = x < b Hence

o1°
C contains an infinite subset D so that d€ D, d = (dT""’dn) implies

d. = m for some fixed m with 0 <m<b

1 01°

Let D1 = {(dg""’dn) [ (m’dg”‘°°dyﬂ € D}. Then D1 is an infinite

subset of A(n-1). Further by construction D1 has the property that for

d,€ D' d, ¥ d, we have 4, < d, or d

1° 1 2 2
hypothesis now D' is finite. This gives a contradiction.

no pair d i_d1. By induction



Now let X be an arbitrary collection of objects. Let Q be a property
defined on finite X-sequences. The property Q is called symmetric iff
Q holds for S if and only if Q holds for all permutations of S.

A sequence satisfying Q is called a Q-sequence. A Q-sequence is called

irreducible if it contains no proper non empty Q-subsequence.

Theorem (2,2):[finiteness—principle]. Let X be a set; let Ac X be a
finite subset and let Q be a symmetric property of X-sequences. Then

there exists only a finite number of irreducible Q-A-sequences.

Proof: Let A contain n elements. There exists a 1 - 1 correspondence

0 between A-sequences S of the type (x1,...,x1,...,xn,...,xn) and

1
points in A(n) defined by o(S) = (81,---asn)

As the property § is symmetric we may assume that any A-sequence has

the shape described above. Now let C € A(n) be the subset
C = {a€A(n) | s"(a) is a Q-sequence}.

- -1
Ifa$+beC, 0 + a < b then o 1(a) is a proper Q-subsequence of o (b)

hence 0_1(b) is not irreducible. Therefore the collection B is defined

by
B = {becC | G—T(b) is an irreducible Q-sequence}

has the property that for no pair b1 + b, € B b, < b, or b2 < b1. Hence
by lemma (2,1) B is finite. This proves that there exists only a finite

number of irreducible Q-A-sequences.

Corollary (2,3): For any Abelian group G and for any finite Ac G

u(G,A) is finite.

Proof: Take in (2,2) X := G; A := A and take for Q the property |S| = 0.
There exists only a finite number of irreducible zero-A-sequences hence
the maximal length of an irreducible zero-A-sequence is defined and

finite,



An analogous statement for Abelian semigroups and idempotents is

proved the same way.

Remark: A similar generalisation for "word problems" as described in
Eﬂ where only subsequences are considered consisting of consecutive
elements is useless. Even for G = Z and A = {1,2,-1,~2} there exist

zero-words of arbitrary large length containing no proper zero-sub-

words; take for example W= {1,2,2,000,2, =1, =2,400,=2}.

mx mx



§3 Algebraical proof of the finiteness of u{G,A)

In this paragraph we give a more computational proof of the existence
of u(G,A) for any Abelian group G and finite A ¢ G. The only interest
of the proof lies in the procedure it gives to find an actual upper
bound for u(G,A). This bound is not very good and no special attention

is paid to keeping it small.

First we note the obvious fact that neither the existence nor the value
of u(G,A) will change if we replace G by any subgroup containing Aj; we
take, in particular, the subgroup generated by A, which, according to
a well-known theorem on finitely generated Abelian groups, is isomorphic
to the product of a finite number of cyclic groups. Our result follows

from the following three lemmata:

Lemms, (3.1): For finite Abelian G, and Aec G, u(G,A) exists.
Lemma (3.2): For infinite cyclic G, and finite A € G, u(G,A) exists.

Lemma (3.3): If for j =1, 2 Gj is an Abelian group such that for any
finite A€ G. p(G.,A) exists, then for any finite AC G = G, x G,

1(G,A) exists.

Proof of (3.1): We refer to [1]; an estimate is u(G,A) < w(G).

Proof of (3.2): Let o generate the infinite group G. If ge& G,
g€ =no (ne Z), we put |g| = |n|; this does not depend on the choice

of o. Now take a finite non empty subset A € G, and assume O #-A. Put
n = ++ A (number of elements in A), m = max |a| + 1. We claim
€A
w(G,4) < nu-. 2
. . 2 .
To prove this, let S be a zero-sequence with length k > nm , with

elements from A. Let a € A appear n times in S. Then

(1) Z n, = k _>__nm2 > nm
a6h



80 there is an 2y € A with n, > m. Now we identify G with 2 in such
0

a way that a. becomes positive.

0

If there is an a € A with a < 0, n, > e there is a proper zero-sub-

O’
sequence, because n_ > - a and (-a). a, * a5. a = 0. In that case we

are done. In the othgr case we have a € A, a < 0 = n_ < &g <m -1,

so:
(2) ) n_ < n(m=1)
a<0 &
Z (n .a) » = n(m=-1) . m
a<0
(3) Z n_ < Z n .8 = - Z n .a < n(m-1)m.
a>0 a a>0 a a<0 a
Adding (2) and (3), we get:
E n, < n(m2—1) < k

aeh

which is a contradiction with (1).

The easy task of removing the restriction O é A 1s left to the reader.

This completes the proof of (3.2).

Proof of (3.3): For the notions and notations appearing below (such as

"union", |8|) we refer to [f]. By m we denote the natural projection

G = G1 x G2 - G2.

Let Ac G be finite and non empty, AcC A1 x AE’ where for j = 1, 2

Aj c Gj is finite. Put n = u(G,,A.), and let BC.G1 be the set of

27 2)
elements of G1 that can be written as the sum of at most n terms from

A1. B is finite, and we put m = “(GT’B)' Wow we shall prove u(G,A) < nm.

To do this, let S be a zero-sequence with elements from A, of length

> nm. By definition of n, m(S) is the disjoint union of a number of non



empty zero-subsequences, say n(S1), vee, m(8 k), each with length < n;
obviously k > m. For 1 < i < k we have |5, | = ,), with b. € B, and
since k > m the zero-sequence (bq""’bk) contalns a proper zero-sub-
sequence (bi seeesbs ), 0 <t < k. Then 8; V ... U8 is a non empty
proper zero-subseque%ce of 8, so S is not irreducible.tThis completes

the proof of (3.3).

By the upper estimates given in the three lemmata one easily deduces

the following upperbound for u(G,A):

Let G = 2% x F  F finite and let
- m ; -
{ai}i=1 with a, (ai1""’ain’ai0) where
s .,aine Z and aioé F.
Let k max [ ..I + 1. Then we have
i=1,..m 1J
J=1...n
3 n
-1
w(e,8) < o(F) x (VE . )"V
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