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§ 1 Tntroduction

Let G be an Abelian group and let S = (χ.,.,.,χ ) be a finite sequence

of elements from G (G-sequence) . One is asked to give sufficient

conditions to ensiire that S contains a non empty subsequence T so that

the sum of the elements of T (notation |l| ) is zero. (zero-subsequence)

If G is a finite group sufficient conditions have been given putting a

restriction on the length n of S (notation l(S)). For any finite group

G there exists a constant μ(θ) so that:

l(S) >_ μ(θ) =̂ · S contains a zero subsequence.

See for more Information |j ,2J .

In this note we given a generalisation of the indicated theory into the

realm of infinite Abelian groups. The above given definition of μ(θ)

then becomes useless. However, a related notion developed in [Q can

be generalised.

Let A be a subset of G. An A-sequence is a G-sequence of elements

eontained in A. An A-sequence S is called irreducible iff |s| =0 and

iff Tc S, | T =0 implies T = 0 or T - S.

We prove that for finite A there exists only a finite number of

irreducible A-sequences. This makes it possible to define for finite A:

y(G,A) is the maximal length of an irreducible A-sequence.

If no A-zero-sequence exists we put μ(θ,Α) = 0.

For finite G we have y(G,A) <_ μ(θ) and μ(θ,θ) = p(G) (cf. [l]).

We give two proofs for the finiteness of μ(θ,Α). The first more general

proof gives no indication at all of the value of μ(θ,Α). We use a more

general finiteness-principle (Th. (2,2)). The second proof which is more

complicated gives at the same time a recursive procedure by which an

upper limit of μ (G, A) could be calculated.



§2 General proof of the finiteness of μ(G,A)

Let ke IN. By A(k) we denote the additive semigroup of all k-tuples of

non-negative integers.

A(k) = {(xis...,xk) | x£& Z , x£ j_ 0}.

l£
A(k) is the k-dimensional semi-unit-lattice in (R . We have also

A(k)c 2 ; this makes it possible to write a - b for a, b e A(k). If

a - b e A(k) we write a _̂ b. It is clear that _>_ is a partial order on

A(k).

Lemma (2,1): Let B c. A(k) be a subset so that for no pair b., =)= b e B

we have b. <_ b? or b_ <_ b ,then B is finite.

Propf: By complete induction on k.

For k = 1 the lemma is trivial. Suppose the lemma already proved for

k = n - 1 .

Let B be a infinite subset of A(n) such that for no pair b ^ b & B

b-, ± b2 or b2 l-V Chose a bQ6 B bQ = (bQ1 ,bQ2,.. . ,bQn). For any

b = (b.,...b )e B there exists an integer j j = 1, ..., n so that

b. <- b„ .. (If not b _^ b contradicting the assumptions).

As B is infinite there exists a infinite subcollection C c. B such

that for the same j_ e {1 ,... ,n} we have (c c ) & C -*. c .. < bQ. .

Without loss of generality we may assume j = 1.

There exists only a finite number of integers χ with 0 ^ x. < b 1 . Hence
— u ι

C contains an infinite subset D so that de D, d = (d d ) implies

d. = m for some fixed m with 0 <_ m <- b .

Let D1 = {(dg,... ,d ) (m,d2,...,d )e D}. Then D is an infinite

subset of A(n-l). Further by construction D has the property that for

no pair d , d 6 D d =f= dg we have d <-_ dg or dg <_ d1 . By induction

hypothesis now D is finite. This gives a contradiction.



Wow let X be an arbitrary collection of objects. Let Q be a property

defined on finite X-sequences. The property Q is called Symmetrie iff

Q holds for S if and only if Q holds for all permutations of S.

A sequence satisfying Q is called a Q-sequence. A Q-sequence is called

irreducible if it contains no proper non empty Q-subsequence.

Theorem (2,2) : [finiteness-principle"] . Let X be a set; let A c X loe a

finite subset and let Q be a Symmetrie property of X-sequences. Then

there exists only a finite number of irreducible Q-A-sequences.

Proof: Let A contain n elements. There exists a 1 - 1 correspondence

σ between A-sequences S of the type (χ ,.,.,χ. χ , ...,χ ) and

points in A(n) defined by o(S) = (s.,...,s

As the property Q is Symmetrie we may assume that any A-sequence has

the shape described above. Now let CC A(n) be the subset

C = {aeA(n) | σ~ (a) is a Q-sequence}.

If a =j= b e C, 0 =j= a <_ b then σ~ (a) is a proper Q-subsequence of σ~ (b)

hence σ~ (b) is not irreducible. Therefore the collection B is defined

B = {bec I σ~ (b) is an irreducible Q-sequence}

has the property that for no pair b1 =j= b G B b. £ bp or b„ <_ b . Hence

by lemma (2,1) B is finita. This proves that there exists only a finite

number of irreducible Q-A-sequences.

Corollar-y (2,3): For any Abelian group G and for any finite A C G

y(G,A) is finite.

Proof: Take in (2,2) X := G; A := A and take for Q the property |s| = 0.

There exists only a finite number of irreducible zero-A-sequences hence

the maximal length of an irreducible zero-A-sequence is defined and

finite.



An analogous Statement for Abelian semigroups and idempotents is

proved the same way.

Remark: A similar generalisation for "vord problems" äs described in

[V] where only subsequences are considered consisting of consecutive

elements is useless. Even for G = Z and A = {1,2,-1,-2} there exist

zero-words of arbitrary large length containing no proper zero-sub-

mx mx



§3 Algebraical proof of the finiteness of μ (G, A)

In this paragraph we give a more computational proof of the existence

of y(G,A) for any Abelian group G and finite A c G. The only interest

of the proof lies in the procedure it gives to find an actual upper

bound for μ (G, A). This bound is not very good and no special attention

is paid to keeping it small.

First we note the obvious fact t hat neither the existence nor the value

of y(G,A) will change if we replace G by any subgroup containing A; we

take, in particular, the subgroup generated by A, which, according to

a well-known theorem on finitely generated Abelian groups, is isomorphic

to the product of a finite number of cyclic groups. Our result follows

from the following three lemmata:

Lemma (3.1); For finite Abelian G, and A c G, μ(θ,Α) exists.

Lemma (3.2); For infinite cyclic G, and finite A C G, μ(θ,Α) exists.

Liemma (3.3J: If for j = 1, 2 G. is an Abelian group such that for any

finite A C. G. μ(θ.,Α) exists, then for any finite A C G = G., χ G
. J J

μ(Ο,Α) exists.

Froof of (3.1 ): We refer to [l] ; an estimate is μ(θ,Α) £

Proof of (3.2) : Let et gener ate the infinite group G. If ge. G,

g = na (n €. Z) , we put |g = |n|; this does not depend on the choice

of a. Now take a finite non empty subset A c G, and assume Ο φ. A. Put

n = =J4 A (number of elements in A), m = max |a| + 1. We Claim

in Λ Ν 2 aeA
μ(Ο,Α) £ nm .

2
To prove this, let S be a zero-sequence with length k >_ nm , with

elements from A. Let a 6 A appear n times in S. Then
a

Q
( 1 ) £ n = k > _ n m > n m

aeA a



so there is an a g, A with n > m. Now we identify G with 2 in such
U aQ

a way that a_ becomes positive.

If there is an a & A with a < 0, n > an, there is a proper zero-sub-
a u

sequence, because n > - a and (-a). an + an. a = 0. In that case we
aO U U

are dorie. In the other case we have aeA, a < 0 ^ n < a <_ m - 1 ,

so:

(2) l n < n(m-1)

V (n .a) > - n(m-1) . m£_l Q
a<0 a

(3) 7 n < y n . a = - Υ n . a < n(m-1)m.\ -1 ' L n L et L p . N /
a>0 a a>0 a a<0 a

Adding (2) and (3), we get:

J n < n(m -1 ) < k

aeA a

which is a contradiction with (1).

The easy task of removing the restriction Ο φ A is left to the reader.

This completes the proof of (3.2).

Proof of (3.3): For the notions and notations appearing below (such äs

"union", | S ) we refer to ["G· ̂ y π we äenote "t he natural projection

G = G. x Gp -*· Gg.

Let AC. G be finite and non empty, Ac A χ Α?, where for j = 1, 2

A. C G. is finite. Put n = μ(θ?,Α?), and let B c G, be the set of

elements of G1 that can be written äs the sum of at most n terms from

A„. B is finite, and we put m = μ(θ,,B). Now we shall prove y(G,A) < nm.
1 l —

To do this, let S be a zero-sequence with elements from A, of length

·> nm. By definition of n, ir(S) is the disjoint union of a number of non



empty zero-subsequences, say π(8.,), ..., π(8. ), each with length < n;
l κ. —

obviously k > m. For 1 ̂  i < k we have JS.| = (b.,0), with b. e B, and
— —— l -L J-

since k > m the zero-sequence ("b. 9. ..,!>, ) contains a proper zero-sub-
l K

sequence (b. ,...,b. ), 0 < t < k. Then S. U ... U S. is a non empty

11 "S; ^ l "t
proper zero-subsequence of S, so S is not irreducible. This completes

the proof of (3.3).

By the upper estimates given in the three lemmata one easily deduces

the following upperbound for y(G,A):

Let G = 2n χ F F finite and let

A = -faJ^ with a. = (â  ,. . . >ain>a£_0^ where

a.15..„,a.ne 2 and a.Q β F.

Let k = max l a. . + 1. Then we have

i=1...m 1J

j=1...n

3 n,n ι \
y(G,A) < ω(Ρ) χ (
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