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The Spectrum of the Anisotropic Transfer Equation
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The discrete values of &, for which the equation of transfer in a homogeneous medium with an arbitrary
phase function has a solution proportional to exp (+ %7), where 7 is optical depth, are studied. Various forms of
the characteristic equation, from which % can be solved, are given. The simple relation g, (k~1) — 0 for n — oo,
where g, (x) are the KuSter polynomia, is recommended for practical computation. The relation by which the
albedo for simple scattering, w,= @, depends on k& when the form of the scattering pattern is given, is derived
both for linearly anisotropic scattering (N = 1) and for the Henyey-Greenstein scattering functions. Knowledge
of the multiple values of k for one a, which may be read from the graphs presented, is helpful in estimating the
domain of practical validity of the diffusion approximation.
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1. Introduction

A host of papers in the recent and not-too-recent
literature (see e.g. four important books: Chandra-
sekhar, 1950; Busbridge, 1960; Sobolev, 1963; Case
and Zweifel, 1968) have discussed the values of the
“characteristic exponent”, or the “inverse diffusion
length” &, which occurs in solutions of the transfer
equation proportional to exp (— k7). Here 7 is optical
depth. The equation from which 4 may be solved
is usually called the ‘“‘characteristic equation” and
sometimes (incorrectly) the ‘‘dispersion equation’.
After restating the problem in Section 2, we shall
try to answer the practical question how to find
most rapidly accurate values of the eigenvalues %
(Section 3). Multiple values of k occur with a fixed
albedo if the scattering diagram is strongly aniso-
tropic (Section 6).

2. The Integral Equation

Consider a homogeneous medium with light
scattering governed by a phase function

@ (cose) = i’v w, P, (cosa) , 1)
n=0

where P, (cosx) = Legendre polynomium of the first
kind; o, is a given set of coefficients; w, = @ = single
scattering albedo, called in neutron scattering the
number of secondaries; w; = 3 ag; g = {cose) = ani-
sotropy coefficient = mean value of cosec determined

with @ (cosx) as the weight function; N = a given
number so that w, = 0 for » > N. Practical phase
functions may have N = oo, but even then w, -0
sufficiently rapidly with % — co to make the distine-
tion between infinite V and finite NV academic.

In the following, we shall write sums with the
symbol }/. These sums are finite, as in Eq. (1), if

n

N is finite and the terms contain w, as a coefficient.
They are infinite series, as in Eq. (11), if w,, is not a
coefficient.

Let a direction be defined along which we meas-
ure optical depth 7, so that the intensity of a light
beam travelling in the positive z-direction is attenu-
ated as e—*. Let 0 be the angle of any direction with
the positive 7-direction and write » = cosf. Consider
a radiation field with the intensity, independent of
azimuth, I(z, ). The radiation scattered at depth
7 then is proportional to the source function

J(z,u) = 1/2} h(u,v) I(z,v)dv, (2)
=1
where

2n
h(w, v) = 5 [ B w4 (1— w1 — 22 cosgldp.
1]

@)

An equivalent and more convenient form is

h(u,o)=2w,,P,,(u)P,,(v). (4)
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The equation of radiative transfer reads

wZEY 1w+ I )

The simplest problems of radiative transfer in
plane-parallel, azimuth-independent geometry re-
quire the simultaneous solution of Egs. (2) and (5)
with the proper boundary conditions at top and
bottom surface. In this paper we deal only with
solutions of (2) and (5) of the form

J (z, u)

I(r,u)= T— T

=CewPu). 6)

We shall conveniently take %k = 0 throughout; the
equivalent solutions with opposite sign can be ob-
tained by inverting the signs of v and . The solution
(6) automatically satisfies Eq. (5) and Eq. (2) gives
the integral equation

1
(1— ku) Plu) =5 [r@nPwdv. (@)
=1

It is seen that % is an eigenvalue and P (u) the corres-
ponding eigenfunction. The spectrum for wy <1 is
known to consist of one or more discrete values k;
in the range 0 < k; < 1 with non-singular eigenfunc-
tions and the continuum of eigenvalues & > 1 with
singular eigenfunctions. If w, = 1, one eigenvalue is
kE=0.

The reason for studying this spectrum is twofold.
First, a method suggested by van Kampen, redis-
covered by Case and worked out for arbitrary ani-
sotropic phase functions by a number of further
authors (e.g. McCormick and Kusder, 1966; Shultis
and Kaper, 1969) requires the knowledge of the com-
plete spectrum, the orthogonality theorems for the
eigenfunctions, the proof of the completeness, the
expansion of the solution in terms of these eigen-
functions, and the determination of the coefficients
from the boundary conditions. This is more readily
said than done. We may refer to the cited papers
for further detail.

The second reason is that it is often sufficient to
define a “‘diffusion domain” as any range of v inside
an extended medium which is far from boundaries
and from primary source layers and to assume that
the solution in a “diffusion domain” is described
with practical precision by the superposition of two
“diffusion streams”, one in the positive and one in
negative 7-direction. Here a ‘“diffusion stream in the
positive z-direction” is called a solution of the form
(6), where k is the smallest eigenvalue and P (u) the
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corresponding eigenfunction. The effect of all other
eigenvalues, discrete or continuous is lumped to-
gether into certain empirical functions. This idea
has been worked out to a practical and accurate
method of computation (van de Hulst, 1968a, b).
The corrections correspond to solutions which are
damped out more rapidly near the boundaries and
become numerically insignificant in the diffusion
domain. Knowledge of the next-higher value of &
will certainly be helpful to estimate the depth of
the transition region.

3. Convergence of the Kuséer Polynomia
Let & be any eigenvalue, y = &k~ and
h,=2n+1—o,. (8)

Kusder (1955) defined the set of polynomia, starting
with g,(2) =1, g,(x) = ko2, and continuing by the
recurrence relation

o @ gn(®) = (1 + 1)gn 41 (@) + ngp_y (@) .  (9)
An explicit expression for g, (x) is

hoz 1
1 1 hx 2
gn (@) =77 e (10)

n—1
n—1 h,,_la:

Adopting for the solution of (7) an infinite expansion
in terms of Legendre polynomia we readily find that
the coefficients satisfy the relation (9) with 2=y
so that

Pu) =2 2n+ 1)g,(y) Pn(u), (11)
n

which also fixes the normalization gy (y) = 1. During

this derivation we obtain the finite sum

1 —ku)P(u) = Y 0, (p) Po(w) .  (12)
n
The derivation can be valid only if the infinite
series (11) converges for — 1 < u < 1. A necessary
condition, which we shall later find to be also a
sufficient condition, is:

gn(p) >0 for n—>o0. (13)

We observe that for n > N, we have w, =0,
h, = 2n + 1, so that Eq. (9) is then identical to the
recurrence relation for the Legendre functions. If,
for a fixed argument z > 1, the values g,(x) and
gm41(x) are given, these can always be written as
a linear combination of the Legendre functions of
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the first kind P,(x) and of the second kind @, (x),
of the corresponding orders m and m + 1. The re-
currence relation then states that this must be true
for all » = N and hence we have

gn (@) = A(x) Py (x) + B(@)Qu(®) (n= N). (14)
Since only @,(y) satisfies the condition (13) this
leads to A (y) = 0 and

In (7’) = BQn (7’) s (18)

where B is a constant valid for the root y.
Let us now examine the ratio

7a (@) = gn (©)/gn-1 (%) » (16)

defined for » = 1. Eq. (9) can be translated into a
recursion formula for increasing #:

b n
rn+1(x)= n+1 (n + 1) r.(z) (17)
or for decreasing n:
n
G A e e =

If r, has a limit for » — oo, then this limit r must
satisfy the quadratic equation

r=2x—1r1, (19)

which follows from (17) because w,—>0. We shall
denote the two roots by

r=2— (x2—1)12 and rl=az+ (22— 1)/2,

(20)

where # > 1, r < 1. It is known that for n — co the
first term in (14) increases as r—", the second term
decreases as r®.

The practical experience, in computing g, (z) by
means of the recurrence scheme (9) for an x which
is not precisely the root y, is that after an initial
convergence the values blow up. This is explained
by the fact that in (14) the coefficient 4 (z) may be
small but the first term will always dominate for
large n, unless we have the exact root for which
A(y)=0. If we do have this root, the series (11)
converges about as a geometric series with ratio r
so that condition (13) is also a sufficient condition.

Trying a power series in terms of #~! in (17) or
(18) we readily find that

ra(y)=r{l— (2n)1+ O(n=2)}. (21)

Figure 1 shows four illustrations of this asymptotic
behaviour. The corresponding form of g,(y), which
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Fig. 1. Ratio between successive values of the Kulder
polynomia for the main root 9 in four different examples

can be verified by substitution of (22) into (16), is
ga(y) = Cn712r{1 + O (nY);, (22)

where C is a constant.

The following remark is of practical importance
in the numerical work. If x is close to ¢ and r,(x)
= r,(y) + &,, where the error ¢, is small (in a certain
range of n), then Eqs. (17) or (18) give

Enp1=1"2¢,. (23)

This shows that the errors increase in the forward
scheme (17) but decrease, by a factor 72, in the retro-
grade scheme (18). Practical tests show that the
retrograde scheme stabilizes itself very rapidly in-
deed. It is not even necessary to start with a good
estimate (which Eq. (21) can provide) but starting
from r,,=1 or 7, =0, where m may for instance
be 20 or 10, is equally good. The choice 7, =0
corresponds to putting g, (x) = 0, ie., to solving z
as a zero of the determinant in Eq. (10) with » = m.
It is not surprising that this should give roots very
nearly equal to the correct ones.
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4. Forms of the Characteristic Equation

The preceding discussion results in the following
recommendation for finding the roots ¢ = k1. Choose
an z > 1; start at a sufficiently large » with a reason-
able estimate for r,, for instance based on (20) and
(21); use the retrograde scheme (18) to find,in » — 1
steps, r,(x) and note the result. Then vary x and
repeat until a value = v is found for which

r(y) =hoy . (24)

This recipe, which of course permits many variations,
replaces the necessity to write and solve the charac-
teristic equation.

Most earlier authors, working with the assump-
tion that N = finite, have tacitly decided that there
would be no point to consider orders » > N. With
this restriction, Eq. (13) cannot be used and it is
necessary, instead, to write a characteristic equation.
Some forms may be mentioned here.

(a) Using the exact ratio

@x+1(7)Qx () (25)

as a starting value of the retrograde steps described
above, and imposing condition (24), we find the
continued fraction

ry(y) =

.............

hyy — (N + 1) @z41(»)@x(¥)
(26)

which is an exact, though weird form of the charac-
teristic equation.

(b) A more conventional form is obtained by
substituting form (12) at both sides of Eq. (7) and
equating the coefficients of P;(u). We then obtain

9:(y) = 2 0 din(¥)9a(y) - 27)
Here
1
Py(z) Pu(x)de __ [2P4(2) @u(2), j=2n
=12 [PREGE LHESE .
-1
(28)
In particular, for j = 0, (28) becomes
Ay (2) = 2Qn(2) (29)
and (27) becomes
1=2 0,79, (7)@u(y) - (30)
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This is the simplest form of the characteristic equa-
tion, which strangely enough is not given in most
books. For isotropic scattering (N = 0) it leads to
the well known result

w.,yln'y+1 co.,]n1+k

L= gy Qo (y) = 1)

(c¢) The most familiar form of the characteristic
equation is found by again taking (27) for j = 0, and
by using Waller’s (1946) identity

R /‘P o (Z) d f R(z) P,(z) dz

z2—x z2—x ’

(32)

which is valid if R (z) is a polynomium of degree < .
Since g, () has the same degree as P, (x) we find at
once

1
o, P (1) gu(u) dpe
1= § 2 T—pfy

(33)

which, upon introduction of the characteristic func-
tion

W(ﬂ) =1/2 2 w, P, (1) 9. () (34)
n
may also be written as
1
¥(u)d,
1= [T (35)

-1

5. Solution of e, for Fixed @, (n = 1)

It is often convenient to discuss the spectrum
of the integral equation (7) not in terms of the eigen-
values k& = y~! belonging to a given set of numbers
g - - . Wy, but to solve the inverse problem, namely
to solve for one open parameter in the set w, ... wy
for a given k.

Busbridge (1967) has posed a very simple problem
in this class. She supposes that w, for n = 1 is given
and wishes to find w,. The solution is explicitly given
in Eq. (26). Upon replacing y by %~ this gets a form
which we write out completely for N = 3:

wo=1—Fk?
by — 412
hy — k2
hy — 4k Qu(k=1)/Qs (k)
Evidently, the result is a unique value of w,. It can

also be written in the form of a power series in %2,
in which the coefficient of k27 contains only the coef-

(36)
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ficients e, ... w;. The first few terms are

1 4 6 36
w°=1_fk2—h§h,k4_(h{h§+h‘{h§h,)ke+""
@37

The coefficients up to that of k* were given by
Busbridge (1967). Results equivalent to (36) and
(37) may also be derived from (30).

6. Solution of the Albedo a for a Scattering
Diagram of Fixed Form

The simple problem posed and answered in Sec-
tion 5 is not the most significant problem in its class.
A physically more useful problem emerges when we
a-3p write

o, = ab, , (38)

2.0 where by =1 and b,(n=1 ... N) is a given set of

coefficients, and then ask for @ as a function of k.
This means that the scattering pattern has a fixed
— — shape, and that only the albedo for single scattering,
a = w,, is varied. It is clear that Eq. (26), though
still correct, does not at once give the answer, be-
cause all h, contain the unknown a. This also opens
Bl the possibility that more than one solution exists.

From (10), (8) and (38) we see that g,(y) is a
polynomial of degree » in a. Consequently, for finite
] N, Eq. (30) must have N + 1 roots a. For N =0
this is the single root defined by (31); the properties
have been amply discussed in the literature on radia-
— — tive transfer (e.g. Case, De Hoffman, Placzek, 1953 ;
Grosjean, 1963).

We shall first briefly review the results for N = 1.
1.0 Here a follows from the quadratic equation

z(l—aP+{3—x— 2kQ(»)/Q(»)}(1—a)
ag - k=0, (39)
where the phase function is defined in a traditional
notation by w, = @, w, = ax and where again y = k1.
It is seen that the two roots a,,, belonging to the
same value of k are related by

1—a)) 1 —a)=—kz. (40)

Figure 2 shows these roots for z =1, i.e., for the
extreme case of linearly anisotropic scattering, which
has often been used as a practising example. The

| | 1 | Fig. 2. Two values of the albedo, a, and a,, satisfy the
0.0 characteristic equation for a given value of % for the linearly
0.0 0.2 0.4 0.6 08 k 10 anisotropic phase function defined by wy= w, (N = 1)
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Fig. 3. Relation between a and k in the main root for the Henyey-Greenstein functions over the full range of anisotropy
factors g
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Fig. 4. Relation between @ and % in the second root for Henyey-

Fig. 5. As Fig. 4, third root
Greenstein functions with strong forward scatter

values of the lower root, a,, were taken from Kaper
et al. (1970). They define a curve rather similar to
that for N = 0. The values a, were then found from
Eq. (40); this curve starts for =0 at ¢, = 3 and
finishes for k¥ =1 at @, = 2 with a vertical tangent.
Further properties may be derived from Eq. (39).

The obvious generalization of this result for any
finite N is that N + 1 real, non-negative values of

a correspond to one k. We shall not prove this con-
jecture, but simply remark that at 4 =0 the N + 1
non-trivial solutions of (12) are defined by

hi=0:gl=1’gn=0 (n+j,j=0--N). (41)

We shall now show some detailed results on these
multiple solutions for one particular example with
N = o, namely the Henyey-Greenstein phase func-
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0.0 0.2 0.6 0.6 08 k 1o tion, defined by

I 1 [ | W, = (27 + 1)ag®, (42)

g=0.90 a where — 1 < g < 1. This phase function has been

employed in many transfer computations by van de
Hulst, Irvine and others and many properties of the

spectrum of eigenvalues are known from the work

\ of Grosjean (1963) and Vanmassenhove (1967); see
1.0 also Vanmassenhove and Grosjean (1967).

\a Figures 3 to 5 show the three smallest values of

2 k for given combinations (a, g). A variety of numerical

methods have been used; they are all based on the
condition (13) or on one of the forms of the charac-
a, teristic equation explained above. All three roots go
to the limit £ = 1 — a for g — 1. For any a < 1 the
second root exists only if g > 0.50 (approximately)
and the third root if g > 0.71 (approximately). A
similar situation exists for g < 0, i.e. for predomi-
- nantly backward scattering. All roots go to
k= (1 — a®?'2for g— 1. We do not present further
details because these values of g do not find much
— application.
The three roots are jointly shown for two parti-
cular values of g in Fig. 6. The starting points at
| | | 0.0 k=0 are at a=1, a=g, and a = g2, in accor-
’ dance with (8), (41) and (42).
By analogy with Fig. 2 we expect that each root
reaches a finite value @ in the limit & = 1. These
I I [ ] values are found along the top of Figs. 4 and 5 and
9=0.975 a along the right edge of the drawings in Fig. 6.

To find these limits precisely we may observe that

— — (30) or (35) require in the limit £ = 1 that

2¥(1) =X wu9,(1) =0, (43)

1.0 which, together with (9) or (10) and (42) fixes the
relation between a and g for each root at k= 1.
Vanmassenhove (1967, Table 4) has computed a few
values. Let a;(g) be the j-th root belonging to a value
of g; the main root is a, = 0. We find it convenient
to use the products a;g’ because it can be shown
that these approach for g = 0 the finite limit j/(27 + 1).
The combined available values are

g= 0 0.1 0.3 0.5 0.7

ag = 0.333 0.374 0.411 0.33 0.15
ayg? = 0.400 0.412 0.439 0.46 0.33
asg®= 0.429 - - 0.47 0.45

| Fig. 6. Two examples showing the relations between a and %
0.0 in the first three roots for a Henyey-Greenstein phase function
0.0 0.2 0.4 0.6 08 k 10 with fixed anisotropy
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+ 4
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Fig. 7. Final form of the curves of Fig. 6 when g — 1 and the
coordinates are expanded accordingly: y = (a—1)/(1—g),
z-1= k/(1—g)

It appears likely that near g =1 the approximate
behaviour is @, = 2.4(1 — g)?, and similarly for a,,
but the coefficient is uncertain and the matter has
not been pursued. It should be noted that knowledge
of the exact a;(g) relations for & = 1 would not help
much in drawing the curves in Figs. 4 and 5 because
of the horizontal tangents.

The behaviour of the main root near the point
k =1, a = 0 for an arbitrary phase function has been
studied in detail by Maslennikov and Sushkevich
(1964).

Finally, we have looked what happens to the
curves in Fig. 6 if we let g — 1. The answer is shown
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in Fig. 7. If we define

_e—-1 __k
y—‘ l—g’ X = l—g

(44)

and then let g — 1, the curves from Fig. 6 approach
those of Fig. 7. We may compute z as an eigenvalue
for which the set of equations

@n+1)(n—g)zlgy= (n+ 1)gni1 + ngpy  (45)

has a solution satisfying g,, — 0 for n — co. This equa-
tion and this condition follow at once from (9) and
(13). A computation showed that the value y = 0 is
reached for z = 3.7900, 6.9830, 10.1466, etc. It may
be noted that these zeros differ little from the zeros
of the Bessel function J, (x).
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