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Abstract

We explore the effects of the proximity to a superconductor on the level
density of a büliard for the two extreme cases that the classical motion in
the büliard is chaotic or integrable. In zero magnetic field and for a
uniform phase in the superconductor, a chaotic billiard has an excitation
gap equal to the Thouless energy. In contrast, an integrable (rectangular or
circular) billiard has a reduced density of states near the Fermi level, but no
gap. We present numerical calculations for both cases in support of our
analytical results. For the chaotic case, we calculate how the gap closes äs a
function of magnetic field or phase difference.

There exists a way in quantum mechanics to distinguish
classically chaotic Systems from integrable Systems, by
looking at correlations between energy levels [l, 2]. In a
billiard with integrable dynamics, on the one band, the
energy levels are uncorrelated, and the spectrum has
Poisson statistics. In a chaotic billiard, on the other band,
level repulsion leads to strong correlations and to Wigner-
Dyson statistics [3]. Although the level correlations are dif-
ferent, the mean level density does not distinguish between
chaotic and integrable billiards.

In a recent paper [4] we have shown that the proximity
to a superconductor makes it possible to distinguish chaotic
from integrable billiards by looking at the density of states.
In a chaotic billiard, on the one band, we have found (using
random-matrix theory) that the coupling to a superconduc-
tor by means of a point contact opens a gap in the density
of states of the order of the Thouless energy ET = ΝΓδ/2π.
Here N is the number of transverse modes in the point
contact, Γ is the tunnel probability per mode, and δ is half
the mean level spacing of the isolated billiard. In an integra-
ble rectangular billiard, on the other band, the density of
states vanishes linearly near the Fermi level, without a gap.
We have argued (using the Bohr-Sommerfeld
approximation) that the absence of an excitation gap is
generic for integrable Systems. In these Proceedings we
present numerical calculations for a chaotic billiard in
support of the random-matrix theory, and we consider the
effects of a magnetic field perpendicular to the billiard. We
also present calculations for an integrable circular billiard,
both exact and in the Bohr-Sommerfeld approximation.

The System studied is shown schematically in the inset of
Fig. 1. A billiard consisting of a normal metal (N) in a per-
pendicular magnetic field B is connected to two supercon-
ductors (Sj, S2) by narrow leads, each containing N/2
transverse modes at the Fermi energy EF. The order param-
eter in St and S2 has a phase difference φ e [Ο, π]. Mode n
couples to a superconductor with phase φη = φ/2 for
l «Ϊ n < N/2, φη = -φ/2 for l + N/2 < n < N. For simpli-
city, we assume in this paper that there is no tunnel barrier

in the leads (Γ = 1). (The generalization to Γ ^ l is straight-
forward [4].) The excitation spectrum of the billiard is dis-
crete for energies 0 < E < Δ, where Δ denotes the excitation
gap in the bulk of the superconductors. We compute the
spectrum starting from the scattering formulation of Ref.
[5]. The billiard with the leads but without the supercon-
ductors has an N χ N scattering matrix S0(E), at an energy
E relative to the Fermi level. The modes in the leads which
form the basis of S0 are chosen such that their wave func-
tions are real at the NS interface. Evanescent modes in the
leads are disregarded. The energy dependence of S0 is set by
the Thouless energy Ετ, which is inversely proportional to
the dwell time of an electron in the billiard. Andreev reflec-
tion at the superconductors scatters electrons (at energy
E > 0) into holes (at energy —E), with a phase increment
— φη — arccos (E/A). (Normal reflection at the superconduc-
tors can be neglected if A <ζ EF.) We assume that E and ET

are both <ξΑ, so that we may replace arccos (E/A) by π/2,
while retaining the E-dependence of S0. The excitation spec-
trum is obtained from the determinantal equation [5]

Det = 0, (1)

where φ is a diagonal matrix with the phases φη on the
diagonal.

The scattering matrix SQ can be expressed in terms of the
Hamiltonian matrix H of the isolated billiard [6],

S0(E) = l - 2niW\E - H + i [W. (2)

The dimension of H is M χ M, and the limit M -» oo will be
taken later on. The M χ Ν coupling matrix W has elements

W -
"

m = l , 2,...M, n=l,2,...N. (3)

The energy δ is one half of the mean level spacing of H. For
the chaotic billiard, we assume that the Hermitian matrix H
has the Pandey-Mehta distribution [3, 7]

P(H)o:exP- M ( 1 + 2 ) [(Re + a-2(Im Hy)
2]

/

(4)

with λ = 2Μδ/π. The parameter α e [0, 1] measures the
strength of the time-reversal symmetry breaking. The rela-
tion between α and the magnetic flux Φ through a two-
dimensional billiard (area A, no impurities, Fermi velocity

%) is [8, 9]
1/2, (5)
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with c a numerical coefficient of order unity. (For example,
c = f ,/π for a circular billiard which is chaotic because of
diffuse boundary scattering [9].) Time-reversal symmetry is
effectively broken when Μα2 ~ N, which occurs for Φ <ξ h/e.
The effect of such weak magnetic fields on the bulk super-
conductor can be ignored.

A key step [10] is to write the determinantal equation (2)
äs an eigenvalue equation for an effective Hamiltonian Heff,

Det (E - Hrff) = 0,

H
*eff ' -H*

(6a)

(6b)

The average density of states p(E) of the chaotic billiard
results from

p(£) = -π'1 Im Tr <9(E + iO+),

where <· · ·> denotes an average of H with distribution (4).
The matrix Green function <$ inherits the 2 x 2 block struc-
ture from the effective Hamiltonian Heft. Because of this
block structure, it is convenient to define the 2 x 2 Green
function

21

G12

r1

G22

λ /Tr 'u

M V T r

Tr

Tr
'12

(8)

Using the diagrammatic method of Refs. [11] and [12],
adapted for a matrix Green function, we have derived a self-
consistency equation for G. To highest order in l/M, this
equation reads

M

πνν

ζ-λΟ 22

-l

(9)

where we have abbreviated w2 = (Wei^WT)„„ and
χ = (l — «2)/(l + a2). Equation (9) is complemented with
the boundary condition G -» λ/ζ for \ z \ —» oo.

We take the limit M -> oo at fixed Μα2 and δ, and assume
in addition that N > 1. Equation (9) then simplifies to

GH = [|(Φ/Φ(;)
2σι1 - 7rz/JV«5][G2

2 + G12/cos (0/2)], (lOa)

G„ = Gn> G21 = G12: = l + G2

1;

where we have defined the critical flux Φ0 by

Μα2 =

(lOb)

(11)

The solution of eq. (10) for φ = 0 and φ = 5π/6 is plotted in
Fig. l for several values of Φ/Φ0. For Φ = 0 and 0 = 0 the
excitation gap equals £gap = αΕτ, with £T = Νδ/2π and
α = 2~3/2(y5 - l)s/2 » 0.6. The gap decreases with increas-
ing flux Φ or phase difference 0. When 0 = 0, the gap closes
at the critical flux Φ, ~ (η/ε^Νδ/ην^Α1'4. When 0 = π,
there is no gap at any magnetic field. For 0 between 0 and
π, the gap closes at the flux Φ0(0) given by

2 cos (Φ/2) Ί 1/2

cos (0/2) J
(12)

So far we have used random-matrix theory to describe the
chaotic System. As a test, we can compute the exact
quantum mechanical density of states of a specific billiard,
coupled to a superconductor. Following Doron, Smilansky,
and Frenkel [13] we study a segment of a Sinai billiard,
drawn to scale in the top inset of Fig. 2. The scattering

Fig. 1. Density of states of a chaotic billiard coupled to two superconduc-
tors by identical ballistic point contacts, for four values of the magnetic flux
Φ through the billiard. The phase difference φ between the superconductors
equals 5π/6 and 0 in the top and bottom panel, respectively. The curves are
computed from eqs (7) and (10). The Thouless energy is given by ET =
Νδ/2π, and the critical flux Φ,. is defined by eqs (5) and (11).

matrix S0(E) is determined by matching wave functions at
the dotted line separating the billiard (area A) from the lead
(width W). The NS interface is also chosen at the dotted
line. The density of states p(E) follows from eq. (1). We
average p(E) over a small Variation of EF, such that the
number of modes N = Int [mv¥ W/nti] in the lead does not
change. The result for N = 20 is shown in Fig. 2 (solid
histogram), and is seen to agree quite well with the predic-
tion from random-matrix theory (solid curve). There is no
adjustable parameter in this comparison, the mean level
spacing δ following directly from δ = nh2/mA.

We now turn from a chaotic to an integrable billiard. In
Ref. [4], we computed the density of states of a rectangular
billiard, coupled to a superconductor by a narrow lead, and
found a linearly vanishing p(E) for small E. Here, we present
data for a circular billiard (radius R) in support of our claim
that the absence of an excitation gap is generic for integra-
ble billiards. The circular billiard considered is drawn to
scale in the bottom inset of Fig. 2. The scattering matrix
S0(E) is again determined by matching wave functions at the
dotted line, which also determines the location of the NS
interface. A wedge-shaped lead (opening angle Θ) is chosen
in order not to break the rotational symmetry (which sim-
plifies the calculations). The density of states is averaged
over a ränge of Fermi energies at fixed N =
Int [_ηινρΚΘ/πΚ]. The result for N = 30 is the dashed histo-
gram in Fig. 2.

The density of states in the integrable billiard can be
approximated with the Bohr-Sommerfeld quantization rule
[4],

dsP(s) V δ(Ε-(η + (13)
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Fig. 2. Histograms: density of States of a billiard coupled to a supercon-
ductor, computed from eq. (1) and averaged over a ränge of Fermi energies.
A chaotic Sinai billiard (top inset, solid histogram) is contrasted with an
integrable circular billiard (bottom inset, dashed histogram). The number of
propagating transverse modes at the normal-metal—superconductor inter-
face (dotted Une in the insets) equals N = 20 in the chaotic billiard and
N = 30 in the circular billiard. The solid curve is the prediction from
random-matrix theory, the dashed line is the small-£ prediction from the
Bohr-Sommerfeld approximation.

Here P(s) is the classical probability that an electron enter-

ing the billiard will exit after a path length s. We have calcu-
lated P(s) for the circular billiard shown in Fig. 2, by
generating a large number of classical trajectories. The
resulting density of states pBS(E) is in good agreement with
the quantum mechanical result in Fig. (2).

To conclude, we have calculated the density of states of a

chaotic Sinai billiard, connected to a superconductor. The
result is in good agreement with the prediction from

random-matrix theory [4]. The excitation gap closes at a

critical flux <]>c through the bilhard. In order of magnitude,

required to explore the entire available phase space. The
precise value of Φ0 depends on the shape of the billiard, but

the dependence on the tunnel probability Γ and the phase

difference φ is universal:

0) = '

2 cos (φ/2)

cos (φ/2) - l + 2/Γ
(15)

time of an electron in the bilhard and Tcrgodic is the time

We have shown that the excitation gap, generic for chaotic

billiards, is absent in an integrable circular billiard. Instead,

the density of states p(E) oc E for small E, äs in the rectangu-
lar billiard considered previously [4]. The agreement with
the semi-classical Bohr-Sommerfeld approximation is better
for the circular than for the rectangular bilhard. A rigorous
semi-classical theory for this problem remains to be devel-
oped.
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