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We propose a three-component reaction-diffusion system yielding an asymptotic logarithmic time dependence
for a moving interface. This is naturally related to a Stefan problem for which both one-sided Dirichlet-type and
von Neumann-type boundary conditions are considered. We integrate the dependence of the interface motion on
diffusion and reaction parameters and we observe a change from transport behavior and interface motion ∼t1/2 to
logarithmic behavior ∼ ln t as a function of time. We apply our theoretical findings to the propagation of carbon
depletion in porous dielectrics exposed to a low temperature plasma. This diffusion saturation is reached after
about one minute in typical experimental situations of plasma damage in microelectronic fabrication. We predict
the general dependencies on porosity and reaction rates.
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I. INTRODUCTION

The generation and propagation of interfaces in reaction-
diffusion systems is of great importance in a variety of
scientific and technological contexts. In nature, the interface
often spatially separates two macroscopically different homo-
geneous regimes in which one phase or product dominates
another one. Typically, at least one particle type diffuses
through the medium while reacting with other particles. Births
and deaths depend on the spatial location and on the presence of
other particle types. Then, when installing appropriate initial
and boundary conditions one often sees the appearance of
an interface and one asks for the typical temporal behavior
in its initial growth and further propagation. The case we
treat here is boundary driven from one side, with symmetric
bulk diffusion for one particle type that invades the region
of a second particle type, while constantly being annihilated
by yet a third type of particle. That creates a moving phase
boundary and thus goes under the general name of the Stefan
problem.1,2

The present work is inspired by experimental investigations
on plasma damage in porous low-capacitive materials (low-k,
see Ref. 3). One imagines here a porous SiOC material
which is exposed via one of its physisorbedaries to radicals
such as active oxygen atoms. These radicals diffuse through
the material while removing hydrophobic carbon-hydrogen
groups and while being chemi-adsorbed in the pores of the
material. One then observes the appearance and motion of
an interface separating a rich (pristine) carbon-phase from a
damaged (oxygen-rich) layer. It is important here to understand
the time dependence of that motion and its dependence on
diffusion and reaction parameters, which can further be related
to material and chemical properties. We come back to this
application in the separate Sec. IV.

Of course, the literature on interface motion from reaction-
diffusion equations is vast, and many different phenomena
have been reported. In particular, damage spreading and related
front propagation can take many different forms which we

cannot at all review here (see, e.g., Refs. 4–6 for general
research aspects). As just one very famous example for one-
dimensional front propagation, as we also have here, reaction-
diffusion equations such as of the type of Kolmogorov-
Petrovsky-Piskounov show interface motion between two
homogeneous phases at constant speed.7 That then takes the
form of traveling waves in which one phase advances over
the other phase. Here, however, the proposed model shows
the motion of the interface x(t) � ln(1 + at + b

√
t) (in one

dimension as a function of time t) to be logarithmic, which
means that after an initial period diffusion saturation occurs.
The main point is that the diffusive motion is boundary driven
and that the propagation is limited by the reactions. For the
purpose of the application, the logarithmic behavior is caused
by the disappearance of the oxygen radicals before reaching
the moving interface separating them for the carbon-rich
environment. The

√
t within the logarithm, mostly visible in

an initial time period, originates directly from the diffusive
motion.

The next section contains the specific mathematical model
in the form of coupled partial differential equations. They
give a mean-field description of the reaction-diffusion system.
The main finding is the change from a diffusive to a specific
logarithmic time dependence for the interface x(t) as above,
with the study of dependencies on initial conditions and
dynamical parameters. We give a physical heuristics for
understanding the basic characteristics via a linearized model.

Section III on numerical results summarizes the behavior of
our model as a function of the physical parameters. Our results
agree with the analytical results of the linearized model, but the
higher flexibility of simulations allow for obtaining additional
information and predictions concerning the dependence on the
various parameters in the model.

Section IV goes deeper into the specific application that
triggered our study, that of the propagation of damage in
porous low-k materials. We recall the main aspects and the
meaning of our result for that context. In particular, Ref. 8
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contains already the basic set of differential equations, but no
systematic analysis was performed and the distinction between
different (one-sided) boundary conditions was not considered.
The present paper also adds the interesting connections with
reaction-diffusion systems of the Stefan type.

II. MODEL AND MAIN FINDINGS

There are three types of particles. The first are called free O
particles, which can diffuse but can also change into bound O
particles and further annihilate with either bound O particles
or with C particles

free O
α→ bound O, free O + bound O

κ→ ∅,

free O + C
R→ ∅,

and no other reactions or diffusions take place. The letters
are chosen in the context of the later application in Sec. IV
with O for oxygen and C for carbon. The word “free” will
there be understood as “reactive” and “bound” will mean
adsorbed to the inner surface, either physically or chemically.
Once oxygen atoms are absorbed on the surface they start to
move around until they recombine and desorb. In other words,
since in the experimental conditions desorption of bounded
oxygen molecules typically occurs through recombination,
reversible desorption is not taken into account.9,10 For the
moment we continue to use the more general words “free” and
“bound,” as the mathematical setup can have different natural
realizations.

The dynamics is further determined by the initial condition
at time zero when there are only C particles with homogeneous
density and by the boundary conditions. The physics we have
in mind concerns a three-dimensional region of locations
(x � 0,y,z), which is isotropic over the (y,z) coordinates. For
the boundary conditions at the x = 0 plane we consider two
possibilities. The first, of Dirichlet type, specifies a constant
density of free O particles at x = 0; the second, of von
Neumann type, gives a constant flux of particles entering the
region at x = 0. For the questions and the problem at hand we
restrict ourselves to an effective mean-field treatment, ignoring
fluctuations or microscopic inhomogeneities, and the geometry
is one-dimensional.

We consider the coordinate x � 0 in which to express
the profile of particle densities as a function of time t � 0.
There are thus three types of concentrations ρ(x,t), c(x,t),
and m(x,t), respectively, for free O particles, C particles,
and bound O particles. The reaction-diffusion system is then
defined via the equations

ρ̇ = Dρ ′′ − κρm − Rcρ − αρ,

ċ = −Rcρ, (1)

ṁ = −κρm + αρ,

where the dotted left-hand sides are time derivatives. The
concentration ρ (of the free O particles) undergoes a second
spatial derivative in the right-hand side of the first line of
Eq. (1); the parameter D > 0 being the diffusion constant.
The other parameters κ , R, and α are positive reaction rates.

The initial condition (t = 0) specifies

c(x,t = 0) = 1, ρ(x,t = 0) = m(x,t = 0) ≡ 0, for x > 0,

(2)

meaning that we start with C particles fully occupying the
material. On the other hand, the boundary conditions (x = 0)
can be taken either

Dirichlet type: ρ(x = 0,t) = V,

or von Neumann type: ρ ′(x = 0,t) = −J, (3)

where we can take V = 1 without loss of generality; the
J > 0 stands for the rate of free O particles entering the
region, which for the moment we leave as a parameter. It
seems more natural to opt for von-Neumann-type boundary
conditions for the specific application we have in mind, but we
checked that after a transient time there is really no difference
between Dirichlet and von Neumann conditions. In the case of
von-Neumann-type boundary conditions, the value ρ(x = 0,t)
converges from being zero at time zero to a fixed finite value
(equal to some V > 0 depending on J ) exponentially fast
as time evolves. As a consequence, we mostly concentrate
on just one type, that of Dirichlet boundary conditions with
ρ(x = 0,t) = 1 for all times, but further discussion on possible
differences will follow below.

The results of numerical integration of the differential
equations (1) are detailed in Sec. III. Our main finding
is that the concentration c(x,t) of C-particles (defining the
absence of damage in the application of Sec. IV) shows
an interface x(t) separating a C-poor from a C-rich phase.
There are a priori a number of different possible mathematical
definitions of the position of the interface x(t). A first one is to
solve c(x(t),t) � 1/2 (or some other number) for x(t), which
certainly makes sense when the interface is sharp enough, after
some transient time, but is less useful for very small times. A
second definition uses the same conditions as above, but we
add the equation ẋ(t) = −D ρ ′[x(t),t] for the interface speed.
That brings the problem in the natural neighborhood of Stefan
problems,1,2 also valid for very small times but more involved
numerically. Whatever (reasonable) definition we take for
x(t) we invariably find that the motion is logarithmic of the
general form x(t) = A ln(1 + at + b

√
t) in a typical range of

parameters for diffusion and reaction rates D,κ,R, and α. The
coefficients A,a, and b depend on these parameters, see also
in Sec. III. For small times the motion is diffusive x(t) ∼ √

t

while it saturates as x(t) ∼ ln t for large times t . The transition
between the two regimes is basically determined by the amount
of reactivity, the more the O particles can be annihilated, the
faster saturation sets in.

An approximate treatment toward the second Stefan-like
definition of the interface motion described above can already
be made visible for a much simpler linear system to which
we turn next. We simplify Eq. (1) to a one-component
reaction-diffusion equation by imagining an autonomous
linear dynamics for ρ of the form

ρ̇(x,t) = Dρ ′′ − βρ. (4)

Equation (4) mimics the first line of Eq. (1) in the approxi-
mation κm + Rc + α = β > 0 constant, which we expect to
be mostly reasonable when c = 0 and m = constant, which
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makes sense in the damaged region [0 < x < x(t)] where
the carbon was depleted. The right boundary denoted by � in
what follows therefore plays the role of interface. We also can
think of β as a measure of reactivity and interaction, while D

measures the diffusion. The main advantage is, of course, that
now Eq. (4) can be solved exactly with boundary conditions
ρ(x = 0,t) = 1,ρ(x = �,t) = 0 and initially ρ(x,t = 0) = 0.
The solution is

ρ(x,t) = ρ�(x) + e−βt

∞∑
1

an e
− D n2π2

�2 t sin
nπ

�
x, where

ρ�(x) = 1

1 − e2k�
ekx + 1

1 − e−2k�
e−kx, k ≡

√
β/D

= −
∞∑
1

an sin
nπ

�
x which determines the an, (5)

and ρ� is the stationary solution on [0,�]. In fact we see that
ρ(x,t) converges exponentially fast to ρ� with rate β > 0
uniformly in �. We can already learn a great deal from the
behavior at the edge x = �. It is easy to find that

ρ ′
�(�) = −k

sinh k�
. (6)

We think now of � as the position x of the interface and −ρ ′
�(�)

is then the speed of the interface, so that Stefan’s condition
ẋ(t) = D k/ sinh[kx(t)] can be integrated to give

x(t) =
√

D

β
ln[1 + βt +

√
2βt + β2t2]. (7)

We clearly recognize the behavior x(t) ∝ √
D/β ln t for large

times t resulting in a straight line in Fig. 1 and intersecting
the vertical axis (small t) at

√
D/β ln(2β). For small times t

Eq. (7) gives x(t) ∝ √
t and x(t = 1) � √

2D for small β > 0.
We can thus find the effective D and β for Eq. (4) from the
intersections of the x(t) as a function of ln t with the vertical
axis, as in Fig. 1, which provide consistency checks for our
modeling equations.
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FIG. 1. Position of the interface x(t) as a function of time. For
longer times, the curve approaches a straight line, indicating that
asymptotically x(t) = A ln(1 + at).

Similarly, we can also solve Eq. (4) with von-Neumann-
type boundary condition ρ ′(x = 0,t) = −J but still putting
ρ(x = �,t) = 0 and initially ρ(x,t = 0) = 0. The solution is

ρ(x,t) = ρs(x) + e−βt

∞∑
1

bn e
− D (n−1/2)2π2

�2 t cos
(n − 1/2)π

�
x,

where

ρs(x) = J

k

[
e−kx

1 + e−2k�
− ekx

1 + e2k�

]
, (8)

k ≡
√

β/D = −
∞∑
1

bn cos
(n − 1/2)π

�
x

which determines the bn.

Exponentially fast in time t , ρ(0,t) = J/k + O(e−k�), and

hence we find that for J ∼
√

β

D
the von Neumann condition

imitates the Dirichlet condition with fixed ρ(0,t) = 1 and
ρ�(x) � ρs(x) � exp −kx for large �, at least for β �= 0.
Clearly then, when the rate β would go to zero, some
differences between Dirichlet and von Neumann (one-sided)
boundary conditions can be expected, as we indeed recover in
Sec. III B for the real model. The next section goes back to the
full nonlinear model equations (1), but we will find the many
general features to be similar to our chosen approximation
above.

III. NUMERICAL RESULTS

We now turn to the full set of Eq. (1), and switch to computer
simulations. First, we study the system for a specific set
of parameters D = 1.0, κ = 0.1, R = 1.0, and α = 0.1, and
apply Dirichlet boundary conditions; the primary motivation
for this specific choice of the parameters lies in their numerical
convenience. We apply a forward Euler integration scheme
to Eq. (1) with a time step of �t = 0.001, and store the
density profiles of C particles, free and bound O particles
at times t = 1,2, . . . . Based on our analytic solution (7) of the
simplified description (4), we expect that for long times the
interface position x(t), defined as the (linearly interpolated)
location where the C-particle density equals 1/2, changes
in time as x(t) ≈ A ln(1 + at), for some values of A and a

which are determined by the system parameters D,κ,R, and α.
Figure 1 shows that this expected long time behavior is
confirmed by the simulation data.

In the same simulations, we also determined the concen-
trations of C particles and free O particles as a function of
position, for the times t/100 = 1,2,4,8, . . . ,8192. These are
c(x,t), respectively, ρ(x,t) in Eq. (1). The resulting profiles of
C concentration are shown in Fig. 2(a). The C-density profile
attains a sigmoid-like shape, which gradually moves deeper
into the material. As the times of the curves are separated by a
factor of 2, and the depth increases with the logarithm of time,
the curves are more or less equidistant.

The concentration profile of free O particles is shown
in Fig. 2(b). The general shape is that of an exponentially
decaying curve up to the interface position x(t), after which
it decays again exponentially, but with a much steeper
slope. Once the interface has significantly moved into the
material, the gradient of free O concentration at the surface
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FIG. 2. Profile of the C concentration (top panel) and free O
concentration (lower panel) as a function of depth, at times t/100 =
1,2,4, . . . ,8192. Note that the top panel has a linear vertical scale,
while the lower panel has a logarithmic vertical scale.

becomes constant even though we applied Dirichlet boundary
conditions. This confirms our earlier analytic observation that
the behavior for Dirichlet and von Neumann conditions soon
becomes indistinguishable.

A. Influence of diffusion

An important ingredient is to understand the influence of the
diffusion constant D on the temporal behavior of the interface.
After all, the porosity and the architecture of the material can
modify exactly that diffusive behavior.

We repeated the simulations with different values for the
diffusion coefficient: D = 0.5,1,2, and 4. Figure 3 shows the
rescaled interface position x(t)/

√
D, indicating that the main

effect of variations in D is a rescaled amplitude: A ∼ √
D, as

expected from the linear model in Eq. (7). It appears therefore
that we understand the influence of the connectivity of the
porous material on the time dependence of the interface.

B. Influence of reactivities

The adsorption of the free O-particles and the chemical
annihilation of the free O-particles with the bound O-particles
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FIG. 3. Rescaled position of the interface x(t)/
√

D as a function
of time, for simulations in which D = 0.5,1,2, and 4. For longer
times, the curves fall on top of each other, indicating that asymptoti-
cally A ∝ √

D.

(e.g. to create a O2 molecule which is chemically neutral for
C-particles) and with the C-particles is the reactive content of
our model. Obviously the C particles must remain to define
an interface at all, but we can imagine lowering very much
the adsorption of the free O particles. In the extreme case we
exclude the adsorption of free O particles by setting α = 0.
Then, we have m(x,t) = 0 always and everywhere which
simplifies Eq. (1) somewhat. In the case of Dirichlet-type
boundary condition ρ(x = 0,t) = 1, we basically have the
transport of O particles through a layer of size x(t) with
the difference in concentration fixed (and equal to 1): we
thus expect from Fick’s law that the current ẋ(t) ∼ 1/x(t)
is proportional to the concentration gradient which gives us
x(t) ∼ √

t . We have checked that this behavior is indeed found
for very small adsorption rates, α = 0 and κ = 0. Figure 4
shows the numerical evidence.

On the other hand, with von Neumann boundary condition
ρ ′(x = 0,t) = −J and for very small absorption rates α = 0

 1

 10

 100

 1000

 1  10  100  1000  10000  100000

x(
t)

t

Dirichlet
von Neumann

sqrt (x)
sqrt (x*log(x))

FIG. 4. Position of the interface x(t) as a function of time, for
simulations in which the adsorption of free oxygen is excluded. With
Dirichlet boundary conditions, the asymptotic behavior can be well
fitted by x(t) ∼ √

t ; with von Neumann boundary conditions this
becomes x(t) ∼ √

t ln t .
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and κ = 0, there is a continuous influx of free O particles
leading to a concentration of them at the surface which
increases in a power law fashion. That can be understood from
the following calculation. Let us take J = 1 and consider the
function

ρ1(x,t) ≡ √
t e−x/

√
t ,

satisfying indeed ∂tρ1(x = 0,t) = −1. Then, ∂tρ1(x,t) =
ρ1(x,t)/t [1 + x/

√
4t] and ∂2

xρ1(x,t) = ρ1(x,t)/t , so that ρ1

appears as a solution of the diffusion equation for x  √
t . We

thus conclude that ρ1(0,t) grows as
√

t . Numerically, we find
that the lack of saturation of free O concentration at the exposed
surface does not alter the asymptotic behavior of the interface,
but it does lead to a logarithmic correction. The behavior
is consistent with x(t) ∼ √

t ln t . Also for von Neumann
boundary conditions, numerical evidence is presented in Fig. 4.

IV. APPLICATION

Low dielectric constant (low-k) materials are typically used
in semiconductor manufacturing to compensate for the RC

delay and power consumption increase in microelectronic
devices associated with their continuing scaling-down.3,11 The
microelectronics community has adopted k as a representation
of the relative permittivity or dielectric constant in contrast to
the scientific communities using εr . Nowadays, porous low-k
dielectrics based on silica and silsesquioxanes with 10–15%
of organic hydrophobic groups are the most favored class
of materials for advanced interconnect technology nodes.11

The hydrophobic groups are bonded to a Si atom in the
SiO4/2 matrix and can be represented as O3 ≡ SiCHx . To
reach a k value below 3.0, introduction of artificial porosity
is needed (the k value of air is close to 1).3 Advanced
low-k materials have a porosity of 25–50% and a typical
pore size being close to 2–2.5 nm. Although the matrix of
these materials has properties similar to traditional SiO2,
their chemical stability and reactivity strongly depend on
porosity. Materials with interconnected pores are chemically
active because of the high diffusion rate of active chemicals.
In particular, the surface diffusion of adsorbed radicals is
much faster than the desorption, which is our motivation
not to include reversible adsorption-desorption in our model
equations (1), see Refs. 12 and 13 for specific experimental
estimates.

During device fabrication, the porous low-k dielectrics
are exposed to various plasmas that might degrade their
properties. The most challenging plasma treatment is related to
plasmas based on oxygen- or hydrogen-containing chemistries
that are used to remove organic photoresist masks used for
pattern transfer from the low-k films.14 The challenge arises
from the similar chemical composition of the low-k film and
the organic photoresist mask. Both materials contain C-H
bonds. The plasma radicals that remove the organic mask
also penetrate the porous low-k dielectric film destroying its
Si-CH3 bonds. This leads to the formation of polar Si-OH
groups as a result of direct chemical reaction with active
radicals or saturation of ≡ Si• broken bonds by OH groups
from ambient moisture. The Si-OH groups are centers for
further moisture adsorption.15 The absorbed moisture with a k

value of 80 can fill the whole open pore volume of the material

significantly increasing its k value which is summarized as
damage.

Two commonly known approaches are used for the pho-
toresist mask removal: (i) a low temperature, low pressure
anisotropic plasma, where the photoresist is removed by an
ion-assisted process, oxidizing or reducing plasma chemistries
at low temperatures10 and (ii) hydrogen-based downstream
plasma (DSP) where the resist is removed at high temperatures
by a thermally activated chemical process.16 According to
recent publications,10,16 both approaches remove C from
low-k materials. However, ion-assisted processes remove
hydrophobic Si-CH3 groups and graphitized C (residual
C that remains after film fabrication), while a thermally
activated chemical process with hydrogen plasma removes
only graphitized C from low-k dielectrics. In both cases the
depth of C-carbon removal can be directly measured with
spectroscopic ellipsometry.8,14 Various experimental results
have shown the typical time dependence of the depth of C
removal. In particular, the typical logarithmic time dependence
was observed, as is the one we have derived in the present
paper.

The depth of the plasma radical penetration in the low-k
pores determines the extent of plasma damage. Clearly then,
the role of Knudsen diffusion is important and our analysis in
Sec. III A clarifies some aspects. For example, the extent of
plasma damage can be a few times higher for mesoporous
dielectrics with high porosity levels in comparison with
nanoporous dielectric with low porosity levels.17,18

As a word of caution and limitations of our approach,
plasma damage of low-k materials is a complex phenomenon
that results in changes of their bonding structure and pore
morphology.3 The complexity also increases due to the fact
that porous low-k dielectrics are usually amorphous materials
with a random pore structure.3 Our set of reaction-diffusion
equations (1) can be generalized to include some of these
aspects, but soon a more detailed simulation analysis becomes
necessary.

V. CONCLUSION

The propagation of damage when a pristine material is
exposed to diffusing and reacting particles saturates loga-
rithmically. The initial position of the interface is diffusive
∼√

t but soon saturates ∼ ln t when reactions prohibit the
propagation of the damage. The problem can be modeled as
a reaction-diffusion system of coupled differential equations
where the position of the interface can be determined by
viewing it as a Stefan problem. We have discussed Dirichlet
and von Neumann boundary conditions, solved a linear
approximation, and we have found the detailed influence of re-
activities and diffusivity. Numerical integration of the coupled
reaction-diffusion equations is in full accord with experimental
findings in the context of microelectronic fabrication of low-k
materials.
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