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ON THE CALCULATION OF REGULATORS AND CLASS MJMBERS OF

QUADRATIC FIELDS

H.W. Lenstra, Jr.

Introduction

In this lecture we present a mathematical model that can be

used to analyze Shanks's algorithm to determine the regulator of a

real quadratic field, see [24], Let me briefly describe the

Situation.

In an earlier paper [23], Shanks indicated a method to

calculate the class group of an imaginary quadratic field. For this

method, it is convenient to view the class group äs a group of

equivalence classes of quadratic forms, the group multiplication

being oomposition of forms. A basic fact underlying the algorithm

is that every equivalence class contains exactly one reduoed form.

In the real quadratic case, this is not true any more; here every

equivalence class contains a whole oyole of reduced forms. Shanks

observed [24], that the principal cycle, corresponding to the

neutral element of the class group, displays a certain group-like

behaviour with respect to composition. In this lecture, we introduce

a group F whose properties can be used to give precise

formulations and proofs of Shanks's observations. The group is

defined äs the set of orbits of quadratic forms under L

rather than SI^CZZ) . It has a close relationship to a certain

group of idele classes. For a different approach to the analysis of

Shanks's methods we refer to Lagarias [7; 8; 9].

In the first few sections below we present the Standard

dictionary between ideal classes and classes of quadratic forms in

the way we need it, cf. [1], Each of the languages has its merits:

the ideals can be used for smooth and conceptual definitions and

proofs, and the forms are a convenient vehicle for computations. In

section 7 we describe Shanks's algorithm for imaginary quadratic

fields, the main ideas of which also play a role in the more
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complicated real quadratic case. Sections 8 to 12 are devoted to the

group F mentioned above, and section 13 gives an informal

description of how its properties can be used to calculate

regulators and class numbers of real quadratic fields. The final

section touches upon some applications of the material in this

lecture.

The correctness and efficiency of most of the algorithms that

we describe depend on the generalized Rieinann hypothesis. It would

be of interest to obtain explicit versions of all inequalities used,

assuming the Rieinann hypotheses. It would also be of interest to see

what remains if no unproved hypotheses are assumed.

The quadratic field K that we consider is supposed to be

given by its discriminant. Checking that a given integer is the

discriminant of a quadratic field involves testing squarefree-ness.

For this I know no essentially faster method than factoring the

number, and there is a good reason not to do this: namely, one of

the most efficient factoring algorithms is based on the connection

between the factorizations of the discriminant and the elements of

order two in the class group, and makes use of the ideas set forth

in this lecture; see sec. 15 for references. The only way out is

that we develop the entire theory for arbitrary Orders in quadratic

fields rather than just the maximal order.

Throughout this paper the terms "class group" and "regulator"

are used in the stviat (narrow) sense: see the definitions in

sections 2 and 6, respectively, and the end of section 13.

We denote by TZ, flj, IR and (t the ring of integers, the

field of rational numbers, the field of real numbers, and the field

of complex numbers, respectively. For a ring B with l, we denote

by B* the group of units of B. The reader should note the

distinction between W, R, P, F, G and N, R, p, F, G.

l. Orders in quadratic fields

Let K be a quadratic field extension of d). Denote by σ

the non-urivial field automorphism of K, and defirie the norm

N: K -> Q by

Ν(α) = α·σ(α), for α s K.
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Let A~ be the ring of algebraic integers in K. An order in K

is a subring A of A« with I e A and with field of fractions

K. Every order A in K satisfies 7l c A c AQ, and since An/Z

is cyclic äs an additive group, every order is determined by its

index in A„. This index is finite and called the conduotor of A.

Every positive integer f occurs äs the conductor of an order A

in K, namely A = Ώ, + f A
Q
. If A = 2Ze + ZZe„, then the

discv-im-inant Δ of A is defined by Δ = (e.a(e„) - e
2
a(e.)) ;

this is an integer which does not depend on the choice of the basis
2

β|, e„. We have Δ = f ·Δ^, where f is the conductor of A and

AQ is the discriminant of A^; we call Δ^ also the discriminant

of K. The integer Δ is not a square, and Δ = 0 or l mod 4.

Conversely, any non-square integer Δ that is 0 or l mod 4 is the

discriminant of a uniquely determined order in a quadratic field,

namely A - Κ[(Δ + /Δ)/2] <= K = (?(/Δ). It will be convenient, in

the sequel, to assume that K is embedded in (t; square-roots of

real numbers will be assumed to lie on the non-negative part of the

real or imaginary axis.

2. Invertible ideals

Let K be a quadratic field, and A c K an order of

discriminant Δ. The pvoduot Μ·Μ' of two subsets M, M
1
 c κ is

the additive subgroup of K generated by {x-y: χ e M, y e M'}.

An invertible Δ-i-deal is a subset M c K with Α·Μ = M for which

there exists M' such that Μ·Μ' = A. Its inverse Α·Μ' is t.hen

also an invertible A-ideal, and the set of invertible A-ideals is

a commutative group with respect to multiplication. We denote this

group by I.

Let M be an invertible A-ideal, and Μ·Μ' = A. We claim that

A = {a e K: aM c M}. (2.1)

The inclusion c is obvious. Conversely, if aM c M then a = a·l

e aA = aM-M' c Μ·Μ' = A, äs required.

From Μ·Μ' = A we see that there exist x. £ M, y. s M'

(l 5 i < t) such that Σ. , x.y^ = 1. Then Axj + Ax„ +...*· Ax

coincides with M, since it has the same inverse. Hence M is

finitely generated over A. It follows that M is a finitely
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generated subgroup of K, and that we can write M = TLo. + 2Zß,

where α, β e K are linearly independent over Ü).

Let conversely M = 2Za + 2Z$, with α, β e K linearly

independent over fl). Put γ = β/α (i Q), and choose a, b, c e 2Z
2

such that ay - by + c = 0, gcd(a, b, c) = 1. From M =

(71 + Ζγ)·α and ay-γ = by - c c ZS + Εγ we see that ZZCayH'M = M.

Using that

σ(γ) = -γ + (b/a), γ·σ(γ) = c/a,

gcd(a, b, c) = l

one calculates easily

Μ·σ[Μ] = 2Z[ay]-N(a)/a, (2.2)

so M is an invertible KEayD-ideal, with inverse σ[Μ]·3/Ν(α).

But by (2.1), the group M is an invertible ideal for at most one

ring. We conclude that M is an invertible Α-ideal if and only if

A = ZZ[ay], and, upon comparing the discriminants, if and only if

Δ
 = b

2
 - 4ac.

In the sequel we shall always assume that N(a)/a > 0. This

can be achieved by changing the signs of a, b, c, if necessary.

Further, we assume that in γ = (b ± /A)/(2a) the +-sign holds.

This can be achieved by tnultiplying b and β by ±1. We see that

the invertible A-ideals are precisely the subgroups of K of the

form

M = (
Κ + Ζ

£ ΐ Α ) . α

where α e K*, a, b e E are such that

c = (b - A)/(4a) e E, gcd(a, b, c) = l, -.

N(d)/a > 0. }
 ( 2

'
3 )

Given M, the numbers a, a, b are not unique. For α we can take

any element of M that is part of a 2Z-basis of M or,

equivalently, that is primitive, i.e. does not belong to nM for

any n e ZZ, n > 1. Given M and a, it is easy to check that a

is uniquely determined, and that b is only uniquely determined

modulo 2a. Notice that b Ξ Λ mod 2.

The norm W (M) of M c I is defined by W (M) = |det(<j>) | ,

where φ is any OJ-linear endomorphism of K for which φ[Α] = M.

We have W(Aa) = |N(a)| for α e K*, and if M is specified by

a, a, b äs above, then W(M) = N(a)/a. From (2.2) we see that
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Μ·σ[Μ] = Α·Μ(Μ).

It follows that W: Ι -» Q* is a group homomorphism.

Let Μ̂  , M e I, and let M. be given by ά., a., b. äs

above, for i = l, 2. We show how to calculate M„ = M ·Μ . We

choose

c»
3
 = ct^/d, (2.4)

where d is the unique positive integer for which a.a„/d is a

primitive element of M_. Since M, e I, we have

b + /Δ

for certain a„, b„ e K satisfying the analogue of (2.3). From

W(M )N(M„) = W(M
3
) and W(M

i
) = N(a

i
)/a

i
 we see that

a
3
 = a^/d

2
. (2.5)

The equality M. M = M„ now becomes

97

a a a a„

Comparing the /A/2-coordinate we see that Z2a + 2Za. +

Hb, + b
2
)ZZ(a

1
a

2
)~

1
 = ZZ(a

]
a

2
)~

1
 -d, i.e.

d = gcd(a
2
, a,, i(b, + b

2
)). ' (2.7)

The integer b., is determined, modulo 2a,j, by the proper ty that

(b., + /A)d/(2a.a
2
) belongs to (2.6). Hence, if λ, μ, ν are

integere such that

\&
2
 + \ia

}
 + v|(bj + b

2
) = d (2.8)

then

b
3

 3
 J

( A a
2

b
l

 + P a
l

b
2

 + V
^

b
i

b
2

 + Δ ) ) m o d 2 a

3
- (

2
'

9)

From (2.7), (2.5), (2.8), (2.9) we see that a.^, b^ can be

calculated if a
(
 , bj, a , b

2
 af e given. The gcd in (2.7) and

integers λ, μ, v such that (2.8) holds can be determined using

the Euclidean algorithm. If in addition α , α are given, a„

can be calculated using (2.4). For computationai purposes it is

useful to note Shanks's formula [23]

a
2

 b
l ~

b
2

b, s b. + 2-=-(\ - ^— - - vc„) mod 2a„
J L Q i i J



b
, -

b
2

where c„ = (b„ - Δ)/(4α
2
>, and where λ —

2
 vc

2
 may be taken

modulo a /d. It is proved by eliminating \J.a from (2.8) and

(2.9).

If M is given by a, a, b, then it follows easily from

(2.2) that M is given by a/α (or |a|/a), a, -b.

A prineipal Α-ideal (in the strict sense) is an additive

subgroup of K of the form Ad, with α ε K*, Ν(α) > 0. The

prineipal ideals are exactly the invertible ideals that have a = l

for a suitable choice of a. They form a subgroup P of I. The

alass group C (in the strict sense) of A is defined by C = I/P.

It is well known that this is a finite group, cf. sec. 4. Its order

is called the ßlass number (in the strict sense) of A, and denoted

by h.

3. Quadratic forms

Let Δ be an integer. A primitive integral hinary quadratia
2 2

form of disariminant Δ is a polynomial aX + bXY + cY e 5ΖΓΧ, Υ]
2

for which gcd(a, b, c) = l and b - 4ac = Δ. For brevi ty, we

shall simply speak of forms, or forms of disariminant Δ, and we

impose the extra condition that a > 0 if Δ < 0. Forms of

discriininant Δ exist if and only if Δ = 0 or l mod 4. From now

on, we fix such an integer, and we assume for simplicity that Δ is

not a square; see [4; 7] for the case that Δ is a square. We l e t

K = <ζ(/Δ) and A = ΖΖ[(Δ + /Δ)/2] be äs in the preceding sect ions.
2 2

We shall denote the form aX + bXY + cY by (a, b, c ) , or

simply by (a, b ) , since c is determined by a, b and Δ.

The group SL^(Z) = {2x2-matrices over ZZ with detertninant

1} acts on the r ight on K[X, Y] äs a group of ring automorphisms

by XT = tX + uY, YT = VX + wY, for T = [ t U] e SL„(Z). This
l̂ v wj 2

action transforms the set of forms of discriminant Δ into i t s e l f .

Two forms are called equivalent if they are in the same orbi t under

SL2(ZZ). It is well known that there is a natural b i ject ion

C = I/P -> {forms of discriminant A}/SL„(2Z).

This bi ject ion maps the class of M e I to the SL (5Z)-orbit of

the form N(Xa +· Yß)/N(M), where α, β satisfy

M = Zta + KB, (β·σ(α) - α·σ(β))//Δ > 0. (3.1)
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If M = (K + 2(b + /A)/(2a))ct äs in sec. 2, then a short
2 2

calculation shows that the above form equals aX + bXY + cY ,
2

where c = (Δ - b )/(4a). For further details, see [1].

The above bijection can be used to transport the group

structure of C to the set of SL„(5Z)-orbits of forms of

discriminant Δ. The product of the orbits of (a , b ) and

(a„, b„) is the orbit of (a^, b„) , where a,, b_ are given by

(2.7), (2.5), (2.9). The inverse of the orbit of (a, b) is the

orbit of (a, -b). For a different algorithm to multiply classes of

quadratic forms, depending on "united" or "concordant" forms, we

refer to [14, fifth Supplement; 3; 7]. It will not suit our needs in

sec. 8, cf. [6].

4. Reduction

A form (a, b, c) is called redueed if

Ι/Δ - 2|a| | < b < /Δ if Δ > 0,

|b| < a < c

, n · r ii. ι /> if Δ < 0.

b δ 0 if Ibl = a or a = c '

We denote the set of reduced forms by R. For (a, b) e R, we have

|a| < /Δ if Δ > 0,

0 < a < /| Δ | /3 if Δ < 0.

It follows that the set K is finite.

We describe an efficient reduotion algorithm, which for any

form (a, b) of discriminant Λ produces a reduced form equivalent

to it. The algorithm consists of succeesive applications of the

following two types of elements of St (5Z) :

(i) T = ' ™ , with m e Z. We have

(a, b)T = (a, b + 2am).

(ii) T =
 Q

 . We have

(a, b, c)T = (c, -b, a).

#Using (i), we can bring b in any interval J of length
3.

2 a|. For this interval we choose

J = {x e K: -|a| < χ < |a|}
3.

if either Δ < 0, or Δ > 0 and |a| > /Δ,

J = {x £ H: /Δ - 2|a| < χ < /Δ}
3.

if Δ > 0 and |a| < /Δ.
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Taking the second choice for all a, when Δ > 0, äs Gauss does

[4; 14], leads to a worse algorithm, äs was noted by Lagarias [7].

If, after this application of (i), the form (a, b) is

reduced, stop. Otherwise, replace (a, b, c) by (c, -b, a), using

(ii), and go to ".

It can be shown that no more than 0(maxi l, log(|a|//|Δ|)})

applications of (i), (ii) are needed to reduce a form (a, b) by

this algorithm, cf. [7].

It follows that any form is equivalent to a reduced form.

Since R is finite, this implies that the class number h is

finite.

5. Reduced forms and the class group

Let Δ < 0. In this case every form is equivalent to exaetZy

one reduced form, see [14]. Hence the set R may be identified with

the class group C. An efficient algorithm for the group

multiplication RxR ~> R is obtained by combining the formulae of

sec. 2 with the reduction algorithm of sec. 4. The inverse of

(a, b, c) £ R is (a, -b, c), except if b = a or a = c, in

which cases (a, b, c) = (a, b, c). This provides us with an

explicit model for the class group.

Next let Δ > 0. In this case it is not true that every form

is equivalent to exactly one reduced form. Let p: R -> R describe

the effect of performing a reduction step on a form that is already

reduced. More precisely, put p((a, b, c)) = (c, b'), where

b' & J
c
, b' = -b mod 2c; this form is equivalent to (a, b, c),

and it belongs to R. It can be proved that p is a permutation of

R, see [14, sec. 77]. The inverse of p is given by p = τρτ,

where f((a, b, c)) = (c, b, a). By a eycle of R we mean an orbit

of R under the action of the powers of p. Since the leading

coefficients alternate in sign, every cycle contains an even number

of reduced forms.

It is a fundamental theorem that two reduced forms are

equivalent if and only if they belong to the same cycle [14, sec.

82]. Hence C may be identified with the set of cycles of R. The

cycle corresponding to the neutral element of C is called the
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pvinoi-pal oycle, notation: P; this is the cycle containing the

form (l, b„), with b
Q
 e Jj, b

Q
 = Δ mod 2.

The number of reduced forms in a cycle is 0(Δ
2
 ) for every

e > 0, by (6.2) and (11.4), and the exponent | is best possible

[8]. If Δ is large, it may be very difficult to decide whether two

reduced forms are equivalent (see sec. 13 for an 0(Δ
4 ε

) -

algorithm). Thus, while we can still do calculations in C using

R, we have no efficient equality test. The way out of this

difficulty is that, for the purposes of computation, we abandon the

group C in favour of a group F, which resembles K more

closely. The group ΐ is defined in sec. 8; here we describe the

phenomena that it is meant to explain.

We can define a multiplication *: RxR -» R äs follows. Let

(a , b ), (a„, b„) e R, and let (a^> t>3) be defined by the

formulae o£ sec. 2. Let (a,, b.) e R be the form obtained by

reducing (a,, b~) using the algorithm of sec. 4. Then we put

(a,, b.) * (a„, b„) = (a,, b,). This multiplication satisfies the
I I z. Z. 4 4

commutative law, the form (l, b.,) defined above is a neutral

element, and every (a, b) e R has an inverse (a, b'), with

b' = -b mod 2a, b' e J . If the associative law were satisfied,
3.

then R would be a finite abelian group with subgroup P c R, and

there would be an exact sequence

0-»P->R->C->0.

It would follow that the cycles are the cosets of P, and that they

all have the same cardinality. It is easy to find examples where

this is not true, e.g. Δ = 40. It can in fact be shown that *

makes R into a group if and only if all (a, b) e R are

ombiguous, i.e. satisfy b s 0 mod a. This occurs for only finitely

many Δ, like 5, 8, ..., 5180, which can be effectively

determined if the generalized Eiemann hypothesis for the L-functions

L(s, (—)) is assumed.

Even if R is no group, it exhibits a certain group-like

behaviour. We have, for example, an approximate associative law:

F* (G* H) = p"((F * G) * H ) , with n & TL, (5.1)

In "small",

for F, G, H ε R. Also, the cycles behave äs the cosets of a cyclic
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subgroup:

(pkF) * (p^G) = p m ( k' £ )( F * G) for k, leTZ, (5.2)

where m(k,i.) is a function of k and ü that exhibits certain

monotonicity properties in both variables, like k + i does. These

observations are basically due to Shanks [24],

The group ΐ to be defined in sec. 8 can be used to analyze

the above Situation, and in particular to prove precise versions of

(5.1) and (5.2); e.g., "small" in (5.2) can be replaced by 0(log Δ),

äs we shall see in sec. 12.

6. The analytic class number formula

Denote by χ the Kronecker Symbol (—), and let L(s, χ) =

Σ°°_ χ(η)η for s ε (E, Re(s) > 0. First let Δ < 0. Then we

have

. w/TÄT . ,, ·,
h = — 2Ϊ — L ( 1

'
 x )

(see [14]) where w is the number of roots of unity in A; so w

= 2 for Δ < -4 . The number L(l, χ) may be expressed by the

slowly converging product

L ( I , χ) = π . Γι - x lEl ]- 1

' λ ' p prime *· p ' ,

see [13, sec. 109]. The class number formula can be rewritten äs a

finite sum
w ι ίΔΐ: , .2 -

if Δ = Δ«. However, the number of terms is so large that for

practical purposes the sum may be said to converge even slower than

the non-absolutely converging product for L(l, χ).

Next let Δ > 0. Let η be the smallest unit of A for

which η > l and Ν(η) = 1. The Regulator R (in the strict

sense) of A is defined by R = log η. The class number formula

now reads

hR = /A-L(1, χ)

(see [14]) where L(l, χ) is given by the same infinite product äs

above. The finite sum
„ ..[ |Δ] / s , ι , 2πΐη/Δ ,

hR = -2'^^j x(n)log|l - e |

(for Δ = Δ_) is again useless for our purpose.

Satisfactory estimates for the rate of convergence of the
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infinite product can be given if the Riemann-hypothesis for the

zeta function of K is assumed. Then we have, both for Δ > 0 and

Δ < 0:

Π >
χ
 (l - - = l + 0(x(log|A| + log x)) (6.1)

for χ S 2, the constant implied by the 0-symbol being absolute and

effectively computable. This can be deduced from [11, theorem 1.1];

cf . [18, theoreme 3].

Schur [22] proved that

|L(1, χ)| < ilogUl + loglog|A| + 1. (6.2)

If Δ > 0, the term loglog |Δ| can be omitted [5],

7. Shanks's algorithm for negative discriminants

Shanks described in [23] an algorithm to calculate h in the

case that Δ < 0. We indicate the main points of this algorithm.

Let X be some "large" integer, specified below. Calculate an

integer h that differs by at most l from

w/TÄT.n r, _ x(ph-i.
2ir p prime, p < X *· p '

Then we expect that
h is "dose" to h. (7.1)

Select a form F e R. By Lagrange' s theorem in group theory, we

have

Fh = l, (7.2)

where l denotes the unit element of R. We try .to determine h

by combining (7.1) and (7.2). More specitically, we calculate F

and search for an integer n with

F^ = Fn, |n "small". (7.3)

Then h - n is a likely value for h. Searching among the divisors

of h - n, we can determine the crder e of F in the group R.

If e is large, which it usually is, then h - n is the only

multiple of e that is sufficiently close to h, and we must have

h = h - n. In that case we are done. If, on the other hand, e is

small, then we select a second form G g R and determine the order

of the subgroup of R generated by F and G in a like manner.

We proceed until a subgroup S c R has been found for which only

one multiple of =I*S is sufficiently close to h to be equal to h.

The exact meaning of "large", "close", "small" in the above
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algorithm depends on how well one is able to estimate the

convergence of the infinite product in see. 6. Let us assume that

(6.1) holds. Then we take for X an integer of order of magnitude

|Δ| . Let ε > 0 be an arbitrary real number. The calculation of

h can then be done in 0(|Δ|
 £

) Steps. From (6.1) and (6.2)

we get

Ih - h < Y with Υ = 0(|Δ|
( 2 / 5 ) + ε

) ,

and this inequality can be made completely explicit. The calculation

of F , for F e R, can be done in 0(|Δ|
ε
) Steps, by repeated

squarings and multiplications using the binary representation of h.

Searching for n äs in (7.3), with "small" now meaning "S Y",

requires 0(1 Δ ) Steps if one proceeds in the naive way. A

significant improvement is made possible by using Shanks's "baby

Step - giant step" technique: if we write n = iy + j, where y

has order of magnitude /2Ϋ and i | , | j | < iy = 0( |Δ | *" ),

then (7
A
3) can be rewritten äs

AF-iy = FJ.
So we just have to multiply F by small powers of F~ , and wait

until a small power of F appears; here the small powers of F are

assumed to be calculated beforehand. In this way, determining n äs

in (7.3) can be done in 0( Δ| '
 + e
) steps. Factoring h - n

can be done in 0(l Δ|
(
'

/ 8 ) + e
) steps, see [19]. If e = order(F)

is larger than |n + Y then we must have h = h - n, and we are

done. So let e be smaller; then e = 0(|Δ| ), and we have

to proceed with a second form G. We have to determine the earliest

power of G that is in the subgroup generated by F. By a strategy

similar to the baby step - giant step technique this can be done in

0(|Δ| ) steps. In the same way we proceed with further

forms, if necessary.

Assuming some extra Riemann hypotheses, besides those needed

for (6.1), one can show that the selection of the forms F, G, ...

can be done in such a way that no more than 0((log|A ) ) forms

need be considered, see [10, Cor. 1.3],

We conclude that, modulo the Riemann hypotheses, the above

method determines h in 0(|Δ|
 e

) steps, for every ε > 0.

If one does not stop before F, G, ... generate the entire class



135

group, one obtains an algorithm that determines the structure of the

class group which runs in 0(|Δ| ) Steps. In the present

case of negative discriminants there is an additional technique,

employing the decomposition of the class group in its p-primary

subgroups, that reduces the exponent 1/4 to 1/5 in many cases;

cf, [23, sec. 3]. This technique is, however, far less useful in the

case of positive discriminants.

8. The group F

Let Γ denote the subgroup { ™ : m e 22} of SL„(ZZ). It

is easy to see that two forms (a, b) and (a
1
, b') are in the

same orbit under Γ if and only if

a = a', b = b' mod 2a.

We denote the orbit space {forms of discriminant Δ}/Γ by F.

Each orbit contains exactly one form (a, b) with b belonging to

the interval J defined in sec. 4. It will be convenient to
a

identify F with the set of such forms.

From Γ c SL„(Zi) we see that there is a natural surjective

map F -» {forms}/SL„(2Z) = C. We claim that there is a natural

group law on F that makes this map into a group homomorphism. The

easiest way to see this is, again, to use the connection with

invertible ideals.

Consider the group Ι φ (K*/fl)* ) with I äs in sec, 2.

Elements of this group are pairs (M, ctfll* ) with M £ I and α e

K*, and α can, in its coset mod Q*„, be uniquely chosen such

that it is a primitive element of M. Choose β e M such that

(3.1) holds; it is unique up to translation by TLa.. Mapping the

pair (M, αφ* ) to the F-orbit of the form N(Xa + Yß)/M(M), äs

in sec. 3, now defines a surjective map

I ® (K*/flj*0) -» F.

Using that the form N(Xct + Yfä)/N(M) equals (a, b) , where β/α =

(b + A)/(2a), one checks that two pairs (M, afl>* ) and

(M', o'Q*
0
) have the same image in F if and only if there exists

γ e K* such that

γΜ = Μ', γα(ξ*
0
 = u'$*

Q
, Ν(γ) > 0.

So if we embed K*
> Q
 = {γ ε Κ*: Ν(γ) > 0} in I e (K*/Q*

Q
) by
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mapping γ to (Αγ, TQ*
Q
) » then we get a bijection

(i* (K*/Q*
0
))/K*

>Q
-F.

The left band side is a group, hence so is the right band side, by

transport of structure. Multiplication and Inversion in F can be

done by the fortnulae of sec. 2. We shall denote the unit element of

F by 1; it is (the Γ-orbit of) the form (l, b
Q
) with b

Q
 e J

}
 ,

b„ = Δ mod 2. It is obvious that the natural map F -> C is a group

homomorphism.

9. The algebraic structure of F

Some easy diagram chasing gives rise to an exact sequence

0 -» I/H*
0
 -> F t» K*/K£

> 0
 -> 0.

Here Q*„ is embedded in I by mapping χ to Ax. To describe

φ, we first note that

° if Δ < 0, , ,
K*/

K /
 ~ {±1} if Δ > 0.

So ψ is trivial if Δ < 0. If Δ > 0, then φ corresponds to

the map sending (a, b) to sign(a) .

We claim that the above exact sequence splits. This is clear

if Δ < 0, and if Δ > 0 we can map the non-trivial element of

K*/K*
0
 to the element E of F corresponding to (A, /ΔΟ)* ) e

Ι θ (Κ*/φ* ) ; explicitly, E is the Γ-orbit of

(-Δ, Δ, (1-Δ)/4) if Δ is odd,

(-Δ/4, 0, 1) if Δ is even.

(We could also have used the form (-1, b„) to split the sequence,

but E is more convenient in the sequel.) We have proved

F = (K*/K*
>0
) Φ (I/<D*

0
). (9.2)

The group I/Q*,-, can be analyzed by Standard techniques from

commutative algebra. Let A denote the semilocal ring {r/s:

r e A, s e 7L, s Φ 0 mod p}. Then we have I = θ . (K* /A*),

p prime P

and

(9.3)0 pritne

where <p> denotes the subgroup of K* generated by p. The

groups K*/<p>A* can be calculated explicitly. The result, which

will not be used in the sequel, is äs follows.
o

Write Δ = f ·Δ
0
 äs in sec. l, and let k be the number of
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factors p in f. The character χ is äs in sec. 6, and χ
η
 is

the corresponding character for Δ,.. If k = 0 we have

K*/<p>A* = TL if χ(ρ) = l,

= 0 if χ(ρ) = -l,

= 2Z./2Z if χ(ρ) = 0.

Next l e t k > 0. In most cases we have

K*/<p>A* = TL θ (E/(p - l ) p k ~ ! Z ) if X O ( P ) = l,

= Z/(p + l ) p k " ' A if χ 0 (ρ) - - l ,

= (ZZ/2ZZ) ® (ZZ/pkZZ) if X O ( P ) = 0.

The precise list of exceptions is äs follows. The group K*/<p>A*

is isomorphic to

Z ® (Κ/221) Φ ( 2 / 2 ~ X ) if p = 2, k>2 and x
Q
(2) = l ;

(Z/22Z) Φ (K/3-2
k
~

2
2) if p = 2, k > 2 and x

Q
(2) =-i;

if p = 2, k=l and A
Q
 s -4 mod 16;

(2Z/42Z) Φ (Z/2
k
~ Έ ) if p = 2, k > 2 and A

0
 = -4mod32;

(K/32) θ (Z/2-3
k
~ 'zz) if p = 3, k>l and A

0
 = -3mod9.

Combining this description of K*/<p>A* with (9.2), (9.1) and (9.3)

we obtain an algebraic description of F. In particular, we see

that F is the direct sum of a finite group and a free abelian

group of countably infinite rank. The natural action of σ (see

sec. 1) on F is given by a(F) = F , for ¥ € f.

10. The topological structure of F

From this point onward we assume that Δ is positive. The

case of negative Δ is similar, but will not be needed in the

sequel.

The group homomorphism F -> C defined in sec. 8 maps the

coset (M, α(ξ* )K* „ to the ideal class of M. We denote by 6

the kernel of this homomorphism. The coset of (M, aOj*„) belongs to

G if and only if M = Aß for some β e K* so, dividing by ß:

G - {(A, YQ:0)K*>0: γ e
 K*}.

For Y,, Y
2
 e K* we have (A, Y,Q*

0
)K*

>0
 = (A, Y

2
Q *

0
)

K
^

> 0
 if and

only if Y,Q*
n
 = £Y;>Q*o

 f o r s o m e
 ζ £ A* with Ν(ζ) = +1. From

this it follows that the map

d: G -> H/R2Z

d((A, Y Q * ) K ) = (i log |Y/0(Y)|mod R)
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is a well defined group homomorphism; here R is the regulator of

A, defined in sec. 6. The map d is a small modification of the

"distance" defined by Shanks [24]. We have ker(d) = {l, E), with

E äs defined in sec. 9. It follows that the map

G -> CR/R2Z) Φ {±1}

obtained by combining d with the map ψ from sec. 9 is an

injeative group homomorphism. For cardinality reasons it is not

surjective. However, its image is dense in (K./RK) ® {±1); this

follows from the fact that G is infinite (sec. 9), and it can also

be seen directly.

We conclude that G may be considered äs a dense subgroup of

the product of a circle group of 'circumference' R and a group of

order two. The h cosets of G in F may be considered äs the

cosets of such a subgroup. A coset of G in F will be called a

oycle of F, and G itself is the prineipal eyele, The agreement

with the terminology introduced in sec. 5 is intentional, and will

be justified in sec. 11. Every cycle consists of two airoles, a

positive and a negative circle, containing forms with positive and

negative leading coefficients, respectively; cf. figure 1.

If Fj, F2 e F belong to the same cycle, the distanae from

F. to F2 is defined to be d(F„F ), which is a real

modulo R. The distance is zero if and only if F. = F„

F„-E. If Fj, F2 s F do not belong to the same cycle, the distance

numb er

or F, =

from F to F„ is not defined.

Replacing G by the füll group (H/RK) θ {+!}, and

similarly with the cosets, we obtain an embedding of F äs a dense

Figure F.

I E



139

subset in a compact topological space F. It is not difficult to

see that the group multiplication of F can be extended to F,

making it into a topological group. This can be done using fibred

sums, or by defining F = (Ι β ((K ® ]R)* /K*
Q
))/K*

>Q
. It is of

interest to notice that the group F can also be described äs a

certain group of idele classes of K, äs follows. For background,

see [ 2] .

Let Ä = lim A/nA be the profinite completion of A, with n

ranging over the positive integers. We may consider A äs a subring

of the restricted product 17' K , with v ranging over the finite

places of K and K denoting the completion of K at v. Hence

A* may be considered äs a subgroup of Π^ K*; for example, if A =

A„ (see see. 1) then A* = Π^ D
V
, where U consists of the

local units at v. Adding l's at the infinite places, we may

consider A* äs a subgroup of the group J of ideles of K

satisfying the product formula. Now we have

F = J^,/(K*>0-Ä*). (10.1)

This group is very similar to the group J /(Κ*·Π U ), the
K V V

compactness of which is equivalent to the conjunction of the

Dirichlet unit theorem and the finiteness of the class number. The

isomorphism (10.1), which will not be used in the sequel, indicates

what is the right generalization of F for algebraic number fields

of higher degrees.

l!. Reduced forms in F

Since no two forms in R are in the same orbit under Γ, we

may consider R äs a subset of F. ßy the fundamental theorem

quoted in see. 5, the cycles of R are preciaely the intersections

of the cycles of F with R; in

Figure 2. particular, we have P = G n R. In

fact, the cyclical structure of each

cycle of R is reflected by the way

it is sitting in the corresponding

cycle of F, äs suggested by fig. 2.

More precisely, if F g R, then p(F)

is the first element of R that is
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encountered if the two circles are simultaneously traversed in the

positive direction, starting from F; this fixes p (F) uniquely in

the sense that for no G e R one also has G-E e R; and, finally,

it is automatic that F and p (F) are on different circles. The

last Statement reflects the fact that the sign of the leading

coefficient is changed if p is applied.

The proof of these Statements can most conveniently be given

by interpreting R and p in terms of lattice points on the

boundary of the convex hüll of the totally positive part of a
2

lattice in K. . We do not go into the details. The fundamental

theorem quoted in sec. 5 is a consequence of the above results.

We calculate the distance from F = (a, b) e R to p(F). Let

F correspond to the coset (M, aö)*_)K* . Choosing α primitive

in M we then have

M = TLu + Zß, (βσ(α) - ασ(β))//Δ> Ο,

*(Χα + Υβ)/Μ(Μ) .

Applying p means first applying the element

aX
2
 + bXY + cY

2
 = N(Xd + Yß)/M(M).

of
0-1

l· oj
and next an element of Γ. The latter element does not chanae the0 -II
Γ-orbit, so we only have to investigate the effect of l" II. This

changes the form into N(Xß - Ya)/W(M), corresponding to the coset

(M, ß<t)*0)K*>0. Since (M, ßQ*0)(M, a^*Q)~
l = (A, (ß/a)Q*Q) and

β/α = (b + /A)/(2a), we find that the distance from F to p(F)

is given by

d(p(F)F~') =

taken modulo R.

It is of interest to determine upper and lower bounds for this

quantity. Since 0 < b < /Δ for a reduced form (a, b), we have

b + /Δ

b - /Δ

llog
/Δ

b - /Δ

(b + /Δ)'

4ac Δ.

but this i sUsing that b > l one can prove the lower bound Δ

useless. A more satisfactory lower bound is obtained by considering

the distance traversed if p is applied twice , i.e. from F to
2

p (F) . Let, with the notation äs before, p map the coset of

(M, aQ*0) to the coset of (M, ßö3*0) , and similarly (M, ßQ*0)
 t o

(M, YÜ!*Q)· Using the geometrical Interpretation with convex hulls

that we suppressed it is quite easy to see that γ| > 2|α| and
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> log 2. This gives the

following lower bound for the distance traversed if p is applied

twice:

b + A

b - /Δ

b' + /Δ
> log 2, (11.2)

where p ((a, b)) = (c, b'). A heuristic argutnent suggests that the

average of £log|(b + /Δ)/(b - /Δ)| over all reduced forms should be
2

somewhere near Levy's constant ir /(12-log 2) = 1.18656911...

Since the circumference of the whole cycle is R, we have

|b +R = Σ (Π.3)|b - /Δ l '

the sum ranging over the reduced forms (a, b) belonging to a fixed

cycle. If there are £ reduced forms in the cycle, the above

inequalities yield

| S,-log 2 < R < :U-log Δ. (11.4)

and £ forms,Therefore, if two cycles of R contain A.

respectively, we have

o /o <
 l Q
g

 A

Λ/ , / A Λ ^ -, ---- Λ ·

l 2 log 2

This is an explicit version of a theorem of Skubenko, asserting that

Ä,/£ 2
 = O(logA), see [27; 15, pp. 558, 586]. I am indebted to

A. Schinzel for mentioning this theorem to me.

12. Reduction in F

The reduction algorithm of sec. 4 can be formulated äs

follows. Extend the map p: R -> R to a map p: f ~> F by

p((a, b, c)) = (c, b'), b' s -b niod 2c,

where we assumed that b e J , As in the previous section, one
3.

shows that applying p comes down to moving along the cycle over a

distance of £log| (b + /Δ)/(b -/Δ) | = log | (b + /A)//]~4ac| l 5 also, if

|b| < /Δ, one changes to the conroanion circle. The reduction map

PQ·. F -> R is defined by PQ(
F
) - P (F) , where k is the least

Ic
non-negative integer for which p (F) is reduced. Clearly, p0
the identity on R.

The map p
n
 assigns to every form in F

a form in R that is "not too far away" from

it. More precisely, let F„, F , F„ be three

consecutive forms on a cycle of R (possibly

F
n
 = F„), and ler F e F be in the
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between F
Q
 and F„ that is opposite to F.. Then it can be shown

that PQ(
F
) is one of F„, F., F„. By (11.1) it follows from this,

that the distance from F to PA(^) i
s a t m o s t

 1°§ Δ in absolute

value. A more detailed analysis shows, in fact, that

IcKpgWF"
1
) | < JlogO + Θ/Δ) for all F e F, (12.1)

where θ = (l + /5) /2 and |x| = min{|y|: y e x} for χ e ÜR/RZi.

This is usually very small with respect to R, the circumference of

the cycle, which may have order of magnitude Δ
2
.

The multiplication * on R defined in sec. 5 is just

multiplication in F followed by the reduction map p
n
. This

remark, and the inequalities (11.2) and (12.1), easily imply the

approximate associative law (5.1), with n[ < l + 41og( l + Θ/Δ) /log 2.

We leave the pleasure of investigating the properties of m(k,£)

in (5.2) to the reader.

13. The algorithm for positive discriminants

We shall mainly be concerned with the calculation of the

regulator R, which is the circumference of each circle. It can be

determined by applying the powers of p to a fixed form F e R,
0

until we find p (F) = F, and then using (11.3). This is

essentially the classical algorithin, which is often phrased in terms

of continued fractions. It has running time 0(Δ
2
 ) for every

e > 0.

We describe two more efficient methods, which make use of the

function d defined in sec. 10. The calculations are all done in

the principal cycle 6, and mostly in P = G n R. A form F c G

is not only specified by its coefficients a, b, but also by a real

parameter δ which is such that d(F) = (& mod R). It is not oasy

to read δ directly from the coefficients, but one can keep track

of δ under all operations built up from p and multiplication

and Inversion in F, by the following rules:

l = (l, b
Q
) has 6 = 0 ;

when applying p to (a, b), add ^log
 T

-

b — /Δ
when multiplying in F, add up both δ's;

b + /Δ
to δ;

when inverting in f, change the sign of δ.

In particular, we can keep track of 6 under ehe composition
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*: Ρ χ Ρ -> P from sec. 5.

The inequality R < Α-log Δ (see (6.2)) and the baby step -

giant step technique now lead to an 0(Δ
 E

)-determination of

R, äs follows. Starting from the unit form (l, b„) we build up a

stock of forms by successive applications of p ("baby steps"),

until one of two things happens. It may happen, that (i) a form

(a, b) (* (l, b,,)) is encountered that is its own inverse, i.e. for

which a divides b; in that case, R is twice the current S,

and we stop. But for most large Δ it happens sooner, that (ii) one

finds a form with δ > <5„ = (/A-log Δ)
 2
. By (l 1.2), this happens

after at most I + (26
Q
/log 2) = 0(Δ

 + e
) applications of p.

At this moment, we have a stock of forms that, together with their

inverses, cover an interval of length ä 2& along the principal

cycle. Now we start taking "giant steps", with step length a little

bit less than 2o_. More precisely, by *-squaring the current form,
-l

and applying a small power of p , one determines a form F e P

whose δ satisfies

25 - Jlog(l + Θ/Δ) - ^log Δ < δ < 2& - Jlog(l + Θ/Δ).

*i *2
The giant steps are taken by calculating F = F, F = F * F,

..., F* ' = F * (F*
1
), ... . Our inequalities guarantee that

the "step length", i.e. the distance from F
 1
 to p* , is

for all i between 6
Q
 and 2<5 . Hence after 0(R/6

n
) = 0(Δ

5 + E
)

giant steps we have traversed the entire cycle, and we will discover

F among our "baby" forms and their inverses. Then we have two

values of 6 for the same form, and the difference of these values

is the regulator.

The above algorithtn calculates the regulator to any prescribed

precision in 0(Δ
 ε

) steps. Tne fundamental unit η = e =

(u + ν/Δ)/2 cannot be calculated in 0(Δ
 ε

) steps; in fact,

since R (κ/ number of decimal digits of u and v) is often of
I

Order of magnitude Δ
2
, one caanot even wri.te down η in time less

than that, let alone calculate it. It is, however, possible to

calculate u and v modulo any fixed positive integer m in time

0(Δ ), the implied constant depending on m, by a procedure

similar to the above one, cf. [9], The same remarks apply to the

algorithm described below.
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If the generalized Riemann hypothesis is assumed, we can give

an 0(Δ^ '
 + e
)-algorithm for the calculation of R. The procedure

is analogous to the determination of the order of F in the case

Δ < 0, see sec. 7, so we only sketch the main points. Using the

class number formula, we find a number

R = /Δ-Π . h - l l E l ) -
1
, Χ ί « Δ

1 / 5
, (13.1)

p prime, p < X *· p '

that is close to an integer multiple hR of R, the difference

being 0(Δ^ '
 ε

) . The baby forrns are now made äs above, but with

& P* Δ . Next, by repeated squarings and multiplications in

V, we jump to a form F whose δ is close to R. Taking giant

steps from this F, in both directions, we encounter a form that is

already in the "baby" stock. That gives two δ's for the same form,

and the difference R# is an unknown integer multiple hR of the

regulator; here h is supposedly not far from h. If h is large

(:> Δ ), this is discovered by finding another match after taking

some more giant steps. The remaining cases h < Δ are checked

~ l

by looking if the unit form (l, b„) is found at distance —R#

from itself, for l < m <̂  Δ . We notice that the latter

technique can also be applied in the case Δ < 0, to avoid

factoring.

This finishes our sketchy description of the algorithm to

determine R. We notice that the Riemann hypothesis is only needed

to guarantee the efficiency of the algorithm; once the answer is

found, its correctness does not depend on any unproved assumptions.

The determination of the class number h now runs exactly äs

in the case Δ < 0, with P and R playing the role of the

subgroup generated by F, in sec. 7, and its order. If R is

sufficiently large, h is determined by the class number formula.

Otherwise, select a form G e R, and determine its order in F/G.

In this fashion one proceeds until a large enough subgroup of F/G

has been determined to fix h uniquely.

In this procedure one needs an algorithm that tests if a given

reduced form belongs to the principal cycle. By the baby step -

giant Step technique this can be done in 0(R
2
n

£
) Steps. In

particular, equivalence of two reduced forms can be tested in

0 ( Δ
Ο Λ ) + ε

) s t e p S i
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The conclusion is exactly äs in the case Δ < 0. Modulo the

Riemann hypotheses, h can be determined in 0(Δ
 + e

) steps

but the structure of the class group may take 0(Δ
 ε

) steps.

We have only considered the regulator, class number and class

group in the striet sense. To obtain the regulator R', class

number h' and class group C' in the orainary sense, one has to

look halfway the principal cycle, i.e. at distance |R from the

unit form (l, b ). If at this point the form (-1, b„) is found,

then

R' = JR, h' = h, C' = C.

Otherwise, one finds halfway V a form F = (a, b) wich |a| > l

and b = 0 mod a. Then ]a| is a non-trivial factor of Δ, and

one has

R' = R, h' = |h, C' = C/C
Q

where C„ c C is the subgroup of order two generated by the class

of the form (-1, b„).

The distance of two reduced froms (a, b) and (a
1
, b') is

an integer multiple of R' if and only if |a| = |a'| and b = b'.

This implies that the role of R in the above algorithm can also be

played by R'. In particular, we can replace R by |R, which is

close to the integer multiple h'R' of R'. I am indebted to

R. Tijdeman for this observation.

14. A numerical example

The algorithms described in sections 7 and 13 have been

programmed in Amsterdam by R.J. Schoof on the CDC Cyber

750 Computer System, for discriminancs of up to 28 digits [211.

Using only a hand held calculator like the HP67 one can deal with

discriminants of up to 10 digits. For much smaller discriminants

- up to 6 digits, roughly - it is often faster to apply the

classical algorithm (see sec. 13).

We give an example which was calculated using an HP67. Let

Δ = 40919537. In table l one finds forms lying on the principal

cycle P belonging to this discriminant. The first column gives an

identification number to each form. In the text below, form #n is

indicated by F . The second column shows how the form is obtained
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from previous forms in the table. Here p and the multiplication *

are äs in sec. 5, and * is multiplication with the inverse. The

next two columns contain the coefficients a, b of the form. The

final column gives δ, the distance from F, to the form, rounded

to five decimals from the value given by the calculator.

Table 1. Δ = 40919537.

tt def. a b def.

1

2

!>

L·H·

5

6

7

8

9

10

11

12

1 ̂
l J

14

15

16

1 7
l /

18

19

20

21

22

23

24

25

26

= unit

= PÜ)

= p(2)

n f7\

- p \:>)
= p(4)
= P(5)

= p(6)

= P(7)

= p(8)

= p(9)

= P(10)

= p(11)

n Π 9Ί
— μ ̂  l L)

= P03)

= p(i4)

= p(15)

- n ( 1 fi 1

= P(17)

= p(18)

= p(19)

= p(20)

= 19*19

- 22*22

= 23*23

= 23*24

= 25*25

I

-5878

518

9171
/ 1 / 1

3904

-916

1882

-1477

86

-959

3788

-2308

IQ 1 Q
*jj ι y

-566

3929

-2296

3832

-857

4606

-1264

1178

7

49

2401

-157

-172

6395

5361

6035

OA/i Q

zo^y
5159

5833

5459

6357

6371

5137

2439

2177

Sfift 1
-J DU I

5659

2199

2393

527 i

5013

4199

5913

5867

6385

6385

2465

6151

61 13

0

4

5

7

8

10

1 1

14

17

18

19

1 Q
i y

21

22

22

9?
<£· J

24

25

26

27

51

103

206

308

617

.42393

.63858

/ A (1 Q r)

.HUo9y

.84756

.96447

.50290

.77140

.65578

.75720

.86435

.26591

fi9n'i7
. u^.uo /

.01860

.41539

.77375

1 ft^Q9
* 1 D O y i.

.33607

.39088

.17737

.79557

.50454

.00908

.01816

.07526

.15922

27 =

28 =

29 =

30 =

31 =

32 =

33 =

34 =

35 =

36 =

37 =

38 =

39 =

40 =

41 =

42 =

43 =

44 =

45 =

46 =

47 =

26*26

27*27

28*28

29*29

30*22

3U22

32τ22

33^22

34^22

35*22

36*22

30*22

38*22

39*22

29*22

28*21

42*3

P(43)

36*27

37*22

46*22

2654

-364

-137

-512

-3584

1586

-614

2294

2857

562

3934

-3584

-3581

86

-959

-842

794

-5003

-1477

-56

-8

2391

6159

6371

5671

4647

3695

6129

3371

3553

5345

1973

5671

1479

6371

6371

5735

5003

5003

5459

6343

6391

1234

2469

4936

9873

9822

9770

9719

9668

9616

9566

9514

9925

9976

10027

4988

2496

2502

2503

8331

9461

9409

.67199

.19812

.94461

.63784

.13330

.79649

.95084

.63890

.67814

.02209

.51755

.14238

.97826

.06848

.44915

.66310

.05241

.10318

.90585

.41380

.90926
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Taking X = 100 in (13.1) we find R = 9839.22. Baby steps

are taken from Fj to F2] . Then we jump to F3Q, which has

ö w R. Taking giant Steps backward (F3Q to F3y) we find no baby

form, but going forward (F3g to F^) we find one after three

Steps: F.,, = F„. Therefore R divides R# = 0(40) - 6(9) =

10012.41270 = hR, say. Since no other baby form, or inverse baby

form, is found in the interval from F37 to F, w e must have

R > 10012.41270 - 6(37) + 6(21) > 525, so h < 20.

Looking halfway R*1 we find another match: F, = F , since

6371 = -5137 mod 2-959. Notice that 6(^1) + 6(10) = JR#. Hence h

is even. Looking again halfway we find F.» with 6 close to |R#

and a = -842. Since ±842 is not in the baby list, this means

that 4 does not divide h, and that exactly at |R# a non-

trivial factorization of Δ will be found. Looking there, out of

curiosity, ve find the ambiguous form F,,, yielding Δ = 5003-8 1 79.

To test if 3 divides h, we look near (5/6)R# and find

- 1 ~ ^
the match F, _ = F

0
 . Therefore 6 divides h. and h = 6 or 18

<o o

We exclude the latter possibility by taking one tnore giant step

(F/i) to improve the above upper bound to R > 578, h < 18. We

have now proved that R = (1/6) R*
1
 = 1668.73545.

The tnost likely value for the strict class number h is h =

h = 6. We show that in any case 6 divides h. By sec. 13, end,

h is even. To see that 3 divides h we dearch for a form that is

obviously a cube: e.g., F
 4 ?
 = ^^^

2
2

 h a s a =
 ~

8
'

 a n d it: i s
'

 i n

F, the cube of F = (-2, 6395) (we could also havs used F
7
,-

:
F ).

We have 6(^7) = 9409.90926 = -602.50344 mod R, so if F were on

the principal cycle it would have δ = (-602.50344)73 mod R/3, so

δ s -200.83448, 355.41067 or 911.65582 mod R. Multiplying F by

^24 or by F,, , or raising it to the l 1-th power, we derive in

e
ach of the three cases a contradiction. We conclude that F has

order 3 in the class group, and that 6 divides h.

If one checks that 5003 and 8179 are primes, it is not

difficult to prove that h = 2 mod 4. So i£ h * 6 then h > 18,

and

Π f] - X ) ~ > 3.05

p prime, p > 100 *· p
 J

which is very unlikely.
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We leave to the reader the pleasure to find out how

multiplicative relations between the a's can be exploited to

shorten the above calculations.

15. Concluding remarks

(i) The algorithms described in this lecture can be used for

an experimental approach to Gauss's class number problems [4, secs

302-307]. Thus, they have been employed in the search for fields

with irregulär class groups, see [20] for references. It would also

be interesting to investigate the decreasing density of fields with

class number one among the real quadratic fields with prime

discriminants, cf. [25, sec. 5; 12; 16, sec. 1].

(ii) The connection between the factorizations of the

discriminant and the elements of order two in the class group gives

rise to interesting factorizatioD algorithms. Using negative

discriminants, äs Shanks does in [23], one obtains an algorithm

factoring any positive integer n in 0(n E) Steps, if we

assume the Riemann hypotheses. Positive discriminants can be used

in several ways. We can look halfway the principal cycle (cf. the

end of sec. 13), for discriminants that are small multiples of n.

Modulo the Riemann hypotheses it can be shown that this also leads

to an 0(n )-algorithm, A second factoring method employing

positive discriminants will be described by Shanks [26], cf. [28;

17]. This method has expected running time 0(n e ) , for

composite n. It is so simple that it can be programmed for a

pockeL calculator like the HP67 for numbers of up to twerty digits.

(iii) As Shanks suggested in [25, sec. 1; 29, sec. 4.4], it

should be possible to adapt his techniques for number fields of

higher degrees, like complex cubic fields. Frotn sec. 10 we know

that the "right" group to consider is a group whose "size" is

essentially the product of the class number and the regulatoi. The

main complication is that the circles are replaced by higher

dimensional tori.
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