Universiteit

w4 Leiden
The Netherlands

On the calculation of regulators and class

numbers of quadratic fields
Lenstra, H.W.

Citation

Lenstra, H. W. (1982). On the calculation of regulators and class
numbers of quadratic fields. Journées Arithmétiques 1980,
London Math. Soc. Lecture Note Ser. 56, 123-150. Retrieved
from https://hdl.handle.net/1887/3809

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from:  https://hdl.handle.net/1887/3809

Note: To cite this publication please use the final published
version (if applicable).


https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/3809

Reprinted from J.V.Armitage (ed.), Journées Arithmétiques 1980. () Cambridge
University Press 1982. Printed in Great Britain at the University Press,

Cambridge.

ON THE CALCULATION OF REGULATORS AND CLASS NUMBERS OF
QUADRATIC FIELDS
H.W. Lenstra, Jr.

Introduction

In this lecture we present a mathematical model that can be
used to analyze Shanks's algorithm to determine the regulator of a
real quadratic field, see [24]. Let me briefly describe the
situation.

In an earlier paper [23], Shanks indicated a method to
calculate the class group of an imaginary quadratic field. For this
method, it is convenient to view the class group as a group of
equivalence classes of quadratic forms, the group multiplication
being composition of forms. A basic fact underlying the algorithm
is that every equivalence class contains exactly one reduced form.
In the real quadratic case, this is not true any more; here every
equivalence class contains a whole cycle of reduced forms. Shanks
observed [24], that the principal cycle, corresponding to the
neutral element of the class group, displays a certain group-like
behaviour with respect to composition. In this lecture, we introduce
a group F whose properties can be used to give precise

formulations and proofs of Shanks's observations. The group is
1 Z
0 1
rather than SLZ(Z). It has a close relationship to a certain

defined as the set of crbits of quadratic forms under

group of idele classes. For a different approach to the analysis of
Shanks's methods we refer to Lagarias [7; 8; 9].

In the first few sections below we present the standard
dictionary between ideal classes and classes of quadratic forms in
the way we need it, cf. [1]. Each of the languages has its merits:
the ideals can be used for smooth and conceptual definitions and
proofs, and the forms are a convenient vehicle for computations. In
section 7 we describe Shanks's algorithm for imaginary quadratic

fields, the main ideas of which also play a role in the more
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complicated real quadratic case. Sections 8 to 12 are devoted to the

group F mentioned above, and section 13 gives an informal
description of how its properties can be used to calculate
regulators and class numbers of real quadratic fields, The final
section touches upon some applications of the material in this
lecture.

The correctness and efficiency of most of the algorithms that
we describe depend on the generalized Riemann hypothesis. It would
be of interest to obtain explicit versions of all inequalities used,
assuming the Riemann hypotheses. It would also be of interest to see
what remains if no unproved hypotheses are assumed.

The quadratic field K that we consider is supposed to be
given by its discriminant. Checking that a given integer is the
discriminant of a quadratic field involves testing squarefree-ness.
For this I know no essentially faster method than factoring the
number, and there is a good reason not to do this: namely, one of
the most efficient factoring algorithms is based on the connection
between the factorizatioms of the discriminant and the elements of
order two in the class group, and makes use of the ideas set forth
in this lecture; see sec. 15 for references. The only way out is
that we develop the entire theory for arbitrary orders in quadratic
fields rather than just the maximal order.

Throughout this paper the terms "class group" and "regulator"
are used in the striect (narrow) sense: see the definitions in
sections 2 and 6, respectively, and the end of section 13.

We denote by Z, Q, R and € the ring of integers, the
field of rational numbers, the field of real numbers, and the field
of complex numbers, respectively. For a ring B with 1, we denote
by B* the group of units of B. The reader should note the
distinction between N, R, P, F, G and W, R, P, F, G.

1. Orders in quadratic fields

Let K be a quadratic field extension of ®. Denote by o
the non-irivial field automorphism of K, and define the norm
N: K- @ by

N(a) = a+c(a), for o e K,



Let A0 be the ring of algebraic integers in K. An order in K

is a subring A of A with I ¢ A and with field of fractions

K. Every order A in K satisfies Z c A c AO’ and since AO/Z
is cyclic as an additive group, every ovrder is determined by its
index in AO' This index is finite and called the conductor of A.
Every positive integer f occurs as the conductor of an order A
in K, namely A =2 + fAO. If A= Ze] + Ze2, then the
diseriminant A& of A is defined by A = (elc(ez) - eza(el))z;
this is an integer which does not depend on the choice of the basis

e, e We have A = fZ'AO, where f 1is the conductor of A and
8o
of K. The integer A 1s not a square, and A = 0 or ! mod 4.

9
is the discriminant of AO; we call AO also the discriminant

Conversely, any non—-square integer A that is 0 or 1 mod 4 is the
discriminant of a uniquely determined order in a quadratic field,
namely A = Z[(A+VA)/2] ¢ K = @(V/A). It will be convenient, in
the sequel, to assume that K 1is embedded in €; square~roots of
real numbers will be assumed to lie on the non-negative part of the

real or imaginary axis.

2, Invertible ideals

Let K be a quadratic field, and A ¢ K an order of
discriminant A. The product M-M' of two subsets M, M' ¢ K is
the additive subgroup of K generated by {x-y: xe M, y e M'}.
An Znvertible A-ideal is a subset M < X with A+M =M for which
there exists M' such that MeM' = A. Its Znverse A+M' is then
also an invertible A-ideal, and the set of invertible A-ideals is
a commutative group with respect to multiplication. We denote this
group by TI.

Let M be an invertible A~ideal, and M:M' = A. We claim that

A= {a ¢ K: oM < M}. (z.1)
The inclusion ¢ is obvious. Conversely, if oM c¢ M then a = o-!
€ 0A = aM«M' c M:M' = A, as required.

From M-M' = A we see that there exist x; € M, v € M’

(1 £1i < t) such that ZE_ Xy, = 1. Then Ax] + sz + ... FAX

=1
coincides with M, since it has the same inverse. Hence M is

t

finitely generated over A, It follows that M is a finitely
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generated subgroup of X, and that we can write M = Zo + ZZB,
where o, B ¢ K are linearly independent over Q.

Let conversely M = Zo + ZR, with o, B € K linearly
independent over Q. Put vy = /o (£ @), and choose a, b, c € Z

2
such that ay - by + ¢ =0, gecd(a, b, ¢) = 1. From M =

(Z + Zy)+o and ayey =Dby - c ¢ Z + Zy we see that ZlaylM =M.

Using that

o(y) = -y + (b/a), yeo(y) = c/a,

ged(a, b, ¢) =1
one calculates easily

Meo[M] = ZlLay]l+N(a)/a, (2.2)
so M 1is an invertible Z[ay]-ideal, with inverse o[M]-a/N(a).
But by (2.1), the group M is an invertible ideal for at most one
ring. We conclude that M 1is an invertible A-ideal if and only if

A = Zl[ay), and, upon comparing the discriminants, if and only if
A= b2 ~ bac.

In the sequel we shall always assume that N(a)/a > 0. This

can be achieved by changing the signs of a, b, ¢, 1if necessary.

Further, we assume that in y = (b * VA)/(2a) the +-sign holds.

This can he achieved by multiplying b and B8 by +1, We see that

the invertible A-ideals are precisely the subgroups of K of the

form

~ b+ VA
M= (Z + I P Yea

where o € K¥, a, b e Z are such that
c = (b2 - A)/(4a) e z,
N(a)/a > O.

Given M, the numbers o, a, b

ged(a, b, ¢) =1,
} (2.3)

are not unique. For o we can take

any element of M that is part of a Z-basis of M or,

equivalently, that is primitive, i.e. does not belong to nM for

any ne¢ Z, n>1, Given M and o, it is easy to check that a

is uniquely determined, and that b 1is only uniquely determined

A mod 2.
The norm NM) of Mc I

modulo 2a. DNotice that b

i

is defined by N®) = ldet(¢) ],

where ¢ 1is any Q-linear endomorphism of K for which ¢[A] = M.
We have N(Aa) = |N(a)| for o e K¥, and if M
o, a, b as above, then N(M) = N(a)/a.

is specified by

From (2.2) we see that
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Meo[M] = A-N(M).

It follows that N: I - Q:O is a group homomorphism.

Let Ml’ M2 € I, and let Mi be given by Gis A, bi as
above, for 1 =1, 2. We show how to calculate M3 = MI-MZ. We
choose

4y = a]az/d, (2.4)

where d 1is the unique positive integer for which alaz/d is a

primitive element of M3. Since M3 € I, we have

b, + VA
M. = (Z + W—§—~———)'0L
3 " 2a 3
3
for certain aqs b3 € ZZ satisfying the analogue of (2.3). From
N(MI)N(MZ) = N(M3; and N(Mi) = N(ai)/ai we see that
ay = alaz/d . (2.5)

The equality MIMZ = M3 now becomes
b, + VA b, + VA J(b b, +A)+ E(b, +b,)VA
7 172 i 2

1 2
L+ Lyt = 72 a
1 2 172 2.6
| b34-/A (2.6)
= T + U,
d 2a.a
172
Comparing the vA/2-coordinate we see that Za;] + Za;] +
-1 ~1 .
1 = .
z(b] + bz)z(a]az) Z“alaz) d, 1i.e.
d = ged(a,, a, 1(b, + by)). (2.7)
The integer by is determined, modulo 2a3, by the property that
(by + /A)d/(ZaIaz) belongs to (2.6). Hence, if XA, p, v are
integers such that
Xaz +ouay + \)%(b1 + bZ) =d (2.8)
then
=1 1
by = g(Aa,b, + uajby *+ vi(b b, + 4)) mod 2a,. (2.9)

From (2.7), (2.5), (2.8), (2.9} we see that ags b3 can be
calculated if as bl’ a,s b2 are given. The ged in (2.7) and
integers A, u, v such that (2.8) holds can be determined using
the Euclidean algorithm. If in addition 0y, o, are given, ag
can be calculated using (2.4). For computational purposes it is
useful to note Shanks’s formula [23]

a, b1 ~b

2

b3 = b2 + 27T{A

~ vcz) mod 2a3



b, - b
where ¢, = (bi - A)/(4a2), and where X—l—z——g - ve, may be taken
modulo al/d. It is proved by eliminating ua

(2.9).

i from (2.8) and

If M is given by a, a, b, then it follows easily from
(2.2) that M_] is given by a/a (or lal/a), a, ~b.

A principal A-ideal (in the strict sense) is an additive
subgroup of K of the form Aa, with o e K¥, N(a) > 0. The
principal ideals are exactly the invertible ideals that have a =1
for a suitable choice of o. They form a subgroup P of I. The
class group € (in the strict sense) of A is defined by C = I/P.
It is well known that this is a finite group, cf. sec. 4. Its order

is called the class number (in the strict sense) of A, and denoted
by h.

3. Quadratic forms

Let A be an integer. A primitive integral binary quadratic
form of discriminant & 1is a polynomial aX2 + bXY + cY2 e Z[X, Y]
for which gecd(a, b, c) =1 and b2 - 4ac = A.

For brevity, we
shall simply speak of forms, or forms of discriminant A, and we

impose the extra condition that a > 0 if A < 0. Forms of

discriminant A exist if and only if A = 0 or 1 mod 4. From now

on, we fix such an integer, and we assume for simplicity that A is
not a square; see [43 7] for the case that A
K = Q(/A) and A = Z[(A + V/2)/2] be as in the preceding sectioms.
We shall denote the form aX2 + bXY + cY2

is a square. We let

by (a, b, ¢), or
simply by (a, b), since ¢ is determined by a, b and 4.

The group SLZ(Z) = {2x2-matrices over 7% with determinant
1} acts on the right on Z[X, Y]
by XT = tX + uY¥,

as a group of ring automorphisms
YT = vX + wY, for T = |C 3] € SLZ(Z). This

v

action transforms the set of forms of discriminant A into itself.

Two forms are called equivalent if they are in the same orbit under
SLZ(Z). It is well known that there is a natural bijection

C = I/P -» {forms of discriminant A}/SLZ(Z).
This bijection maps the class of M e I to the SLZ(%)—orbit of

the form N(Xa + YB)/N(M), where a, B satisfy

M= Za + ZB, (Bro(a) ~ n+a(B))Y/VA > 0. (3.1)



If M= (Z + Z(b + VYA)/(2a))e as in sec. 2, then a short
calculation shows that the above form equals ax® + bXY + ch,
where ¢ = (A - b2)/(4a). For further details, see [11].

The above bijection can be used to tramsport the group
structure of C to the set of SLZ(Z)—orbits of forms of
discriminant A. The product of the orbits of (al, bl) and
(ay, b2) is the orbit of (a3, b3), where ass b3 are given by
(2.7), (2.5), (2.9). The inverse of the orbit of (a, b) is the
orbit of (a, -b). For a different algorithm to multiply classes of
quadratic forms, depending on "united" or "concordant"” forms, we

refer to [14, fifth supplement; 3; 7]1. It will not suit our needs in

sec. 8, cf. [6].

4. Reduction

A form (a, b, ¢) 1is called reduced if

(Vo - 2lall < b < /A if A >0,
Ib] £ a<ec
b20 if Ibl =a or a=c } A< 0.

We denote the set of reduced forms by R, For (a, b) ¢ R, we have
lal < va if a>0,
0 < a< /TAT73 if A< o0,
It follows that the set R is finite.
We describe an efficient reduetion algorithm, which for any
form (a, b) of discriminant A produces a reduced form equivalent
to it. The algorithm consists of successive applications of the

following two tTpes of elements of SLZ(Z):

(i) T = é T , with m e Z, We have
(a, B)T = (a, b + 2am).
(ii) T = ? -é . We have

(a, b, ¢)T = (¢, ~b, a).
#Using (i), we can bring b in any interval Ja of length

2]al. For this interval we choose

Ja = {x ¢ R: -]a|l < x < |al}
if either A <0, or A >0 and |a| z VA,
J, = {x ¢ R: VA - 2lal < x < VA}

if A>0 and [a] < ¥Ya.
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Taking the second choice for all a, when A > 0, as Gauss does

[4; 14], leads to a worse algorithm, as was noted by Lagarias [7].
If, after this application of (i), the form (a, b) 1is
reduced, stop. Otherwise, replace (a, b, ¢) by (e, -b, a), using

(ii), and go to ¥.
It can be shown that no more than O(max{1, log(lal/v]|Al)})
applications of (i), (ii) are needed to reduce a form (a, b) by

this algorithm, cf. [7].

It follows that any form is equivalent to a reduced form.

Since R is finite, this implies that the class number h is

finite.

5. Reduced forms and the class group

Let A < 0. 1In this case every form is equivalent to exactly
one reduced form, see [14]. Hence the set R may be identified with
the class group C. An efficient algorithm for the group
multiplication RXR ~ R 1is obtained by combining the formulae of
sec. 2 with the reduction algorithm of sec. 4. The inverse of
(a, b, ¢) ¢ R is (a, -b, c), except if b=a or a=c¢, in
which cases (a, b, c)_] = (a, b, ¢). This provides us with an
explicit model for the class group.

Next let A > 0. 1In this case it is not true that every form
is equivalent to exactly one reduced form. Let p: R » R describe
the effect of performing a reduction step on a form that is already

reduced. More precisely, put p((a, b, c)) = (c, b'), where

b' € S b' = -b mod 2c; this form is equivalent to (a, b, ¢),

and it belongs to R. It can be proved that p is a permutation of

R, see [14, sec. 77]. The inverse of p 1is given by p-1 = TpT, L
where t((a, b, ¢)) = (¢, b, a). By a cycle of R we mean an orbit

of R under the action of the powers of p. Since the leading
coefficients alternate in sign, every cycle contains an even number
of reduced forms.

It is a fundamental theorem that two reduced forms are
equivalent if and only if they belong to the same cycle [14, sec.
82]. Hence C may be identified with the set of cycles of R. The

cycle corresponding to the neutral element of C is called the
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principal cycle, notation: P; this is the cycle containing the
form (1, bo), with b0 € Jl’ b0 = A mod 2. "

The number of reduced forms in a cycle is 0(A? e) for every
e >0, by (6,2) and (11.4), and the exponent } 1is best possible
[8]. If A is large, it may be very difficult to decide whether two
reduced forms are equivalent (see sec. 13 for an O(A%+.€)—
algorithm), Thus, while we can still do calculations in C using
R, we have no efficient equality test. The way out of this
difficulty is that, for the purposes of computation, we abandon the
group C in favour of a group F, which resembles R more
closely, The group F 1is defined in sec. 8; here we describe the
phenomena that it is meant to explain,

We can define a multiplication *: RxR - R as follows. Let
(a;, b)), (a,, by) € R, and let (aj, by) be defined by the
formulae of sec. 2. Let <34: b4) ¢ R be the form obtained by
reducing (a3, b3) using the algorithm of sec. 4. Then we put
(al’ bl) * (32’ bz) = (a4, bA). This multiplication satisfies the
commutative law, the form (1, bo) defined above is a neutral
element, and every (a, b) ¢ R has an inverse (a, b'), with
b' = -b mod 2a, b' € J, . 1If the associative law were satisfied,
then R would be a finite abelian group with subgroup P ¢ R, and
there would be an exact sequence

0-»P->R-»C-0,
It would follow that the cycles are the cosets of P, and that they
all have the same cardinality., It is easy to find examples where
this is not true, e.g. A = 40, It can in fact be shown that =
makes R into a group if and only if all (a, b) € R are
ambiguous, i.e. satisfy b = 0 mod a. This occurs for only finitely
many A, like 5, 8, ..., 5180, which can be effectively
determined if the generalized Riemann hypothesis for the L-functions
L(s, Gﬁ) is assumed.

éven if R 1is no group, it exhibits a certain group-like
behaviour. We have, for example, an approximate associative law:

Fx (GxH) = p" ((F % G) »H), with n e Z, (5.1)

fn| "small",

for F, G, H e R, Also, the cycles behave as the cosets of a cyclic
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subgroup:

@) * ') = "M @« @) for k, LeZ, (5.2)
where m(k,%) 1is a function of k and % that exhibits certain
monotonicity properties in both variables, like k+ & does. These
observations are basically due to Shanks [24].

The group F to be defined in sec. 8 can be used to analyze
the above situation, and in particular to prove precise versions of
(5.1) and (5.2); e.g., "small"™ in (5.2) can be replaced by 0(log 4),

as we shall see in sec. 12,

6. The analytic class number formula

oo

Denote by x the Kronecker symbol @g, and let L(s, ¥) =
Zn=l X(n)n~s for s € €, Re(s) > 0. First let A < 0. Then we

have
wv | A

h =I5, )

(see [14]) where w is the number of roots of unity in A; so w

=2 for A < -4. The number L(I, ¥x) may be expressed by the
slowly converging product

L(l, x) =T (1 _M)—l

p prime P s
see [13, sec. 109]. The class number formula can be rewritten as a

finite sum

€

R e R R

if A= AO. However, the number of terms is so large that for
practical purposes the sum may be said to converge even slower than
the non-absolutely converging product for L(1, y).

Next let A > O, Let 1n be the smallest unit of A for
which n > 1 and N(n) = 1. The regulator R (in the strict
sense) of A 1is defined by R = log n. The class number formula
now reads

hR = YAL(1, x)

(see [14]) where L(I, x) 1s given by the same infinite product as
above., The finite sum

1 o
IR = _2.222?] eéﬂln/AI

x(n)log|t -

(for A = AO) is again useless for our purpose.

Satisfactory estimates for the rate of convergence of the




infinite product can be given if the Riemann-hypothesis for the
zeta function of K 1is assumed. Then we have, both for A > 0 and
A < O:
. (1 “2(—(91) =1+ O(X_%'(lOgIAI + log x)) (6.1)

p=X P
for x = 2, the constant implied by the O-symbol being absolute and
effectively computable. This can be deduced from [11, theorem 1.1];
cf. [18, théor&me 3].

Schur [22] proved that

(L(1, )| < 4loglal + logloglal + 1. (6.2)
If A > O, the term loglog|A|l can be omitted [5].

7. Shanks's algorithm for negative discriminants

Shanks described in [23] an algorithm to calculate h in the
case that A < 0. We indicate the main points of this algorithm.

Let X be some "large" integer, specified below. Calculate an

integer b that differs by at most 1 from
w/lAl o (1 - x(p))~1
2m p prime, p<X P :
Then we expect that
h is "close" to h. (7.1)

Select a form F ¢ R. By Lagrange's theorem in group theory, we
have

Fh =1, (7.2)
where 1 denotes the unit element of R. We try to determine h
by combining (7.1) and (7.2). More specitically, we calculate Fh
and search for an integer n with

Fh = Fn, |n|  "small". (7.3)
Then h - n is a likely value for h. Searching among the divisors
of h - n, we can determine the crder e of F in the group R.
If e 1is large, which it usually is, then h - n is the only
multiple of e that is sufficiently close to E, and we must have
h=h - n. In that case we are done. If, on the other hand, e 1is
small, then we select a second form G ¢ R and determine the order
of the subgroup of R generated by F and G in a like manner.
We proceed until a subgroup S ¢ R has been found for which only
one multiple of ##S 1is sufficiently close to h to be equal to h.

The exact meaning of "large", 'close", "small” in the above
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algorithm depends on how well one is able to estimate the

convergence of the infinite product in sec. 6. Let us assume that
(6.1) holds. Then we take for X an integer of order of magnitude
NEE

h can then be done in O(IAl(l/S)i-E) steps. From (6.1) and (6.2)

Let € > 0 be an arbitrary real number. The calculation of

we get
lh - bl <Y with Y = o(|a](3/5) *&y,

and this inequality can be made completely explicit. The calculation

of Fh, for F € R, can be done in O(IAIE) steps, by repeated

squarings and multiplications using the binary representation of h.

Searching for n as in (7.3), with "small" now meaning "< Y",

|(2/5) + e

requires O(|A ) steps if one proceeds in the naive way. A

significant improvement is made possible by using Shanks's ''baby

step - giant step" technique: if we write n

"

iy + j, where y
has order of magnitude V2Y and |i}, |j| < iy = O(!Ai(1/5>4ﬂe),

then (7,3) can be rewritten as
A R A

So we just have to multiply Fh by small powers of Fiy, and wait
until a small power of F appears; here the small powers of F are
assumed to be calculated beforehand. In this way, determining n as
in (7.3) can be done in O(IA|<1/5)4-€) steps. Factoring h-n

l(1/8) +e

can be done in O0O(]A ) steps, see [191., If e = order(F)

is larger than |n| + Y then we must have h = h - n, and we are

done. So let e be smaller; then e = O(]Al(z/s)i-a), and we have
to proceed with a second form G. We have to determine the earliest
power of G that is in the subgroup generated by F. By a strategy
similar to the baby step — giant step technique this can be done in

0(‘Al(l/5)4-e)

steps. In the same way we proceed with further

forms, if necessary.

Assuming some extra Riemann hypotheses, besides those needed
for (6.1), one can show that the selection of the forms F, G, ...
can be done in such a way that no more than O((log[AI)z) forms
need be considered, see [10, Cor. 1.3].

We conclude that, modulo the Riemann hypotheses, the above

method determines h in O({Af(1/5>4'g) steps, for every € > O.

If one does not stop before F, G, ... generate the entire class
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group, one obtains an algorithm that determines the structure of the

‘(1/4) + gy

class group which runs in 0(]A steps. In the present
case of negative discriminants there is an additional technique,
employing the decomposition of the class group in its p-primary
subgroups, that reduces the exponment 1/4 to 1/5 in many cases;
cf, [23, sec. 3]. This technique is, however, far less useful in the

cagse of positive discriminants.

8. The group F

Let I denote the subgroup {[é ?}: me Z} of SLZ(Z). It
is easy to see that two forms (a, b) and (a', b') are in the
same orbit under T if and only if

a=a', b = b' mod 2a.

We denote the orbit space {forms of discriminant A}/T by F.
Each orbit contains exactly one form (a, b) with b belonging to
the interval I, defined in sec. 4. It will be convenient to
identify F with the set of such forms.

From T c SLZ(Z) we see that there is a natural surjective
map F - {forms}/SLz(Z) =2 ¢, We claim that there is a natural
group law on F that makes this map into a group homomorphism. The
easiest way to see this is, again, to use the connection with
invertible ideals.

Consider the group I @ (K*/Qto) with I as in sec. 2.
Elements of this group are pairs (M, aQ:O) with M e I and o ¢
K¥, and o can, in its coset mod Qio, be uniquely chosen such
that it is a primitive element of M. Choose 8 ¢ M such that
(3.1) holds; it is unique up to translation by Zo. Mapping the
pair (M, thO) to the T-orbit of the form N(Xa + YB)/N(M), as
in sec. 3, now defines a surjective map

Ie (K*/Qjo) - F.
Using that the form N(Xo + YR)/N(M) equals (a, b), where B/a =
(b + vA)/(2a), one checks that two pairs (M, anO) and
m', a'Q:O) have the same image in F if and only if there exists
Yy € K¥ such that

YM = M', yoQ¥, = G'Qfo, N(y) > 0.
So if we embed K§>O ={y ¢ K¥: N(y) >0} in I e (K*/Q:O) by
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mapping Yy to (Ay, YQ:O), then we get a bijection

(1@ (R¥/QE)) /KL o~ F.
The left hand side is a group, hence so is the right hand side, by
transport of structure. Multiplication and inversion in F can be
done by the formulae of sec., 2. We shall denote the unit element of
F by 1; it is (the T-orbit of) the form (1, bO) with bO € J)s
bO = A mod 2. It is obvious that the natural map F - C 1is a group

homomorphism.

9, The algebraic structure of F

Some easy diagram chasing gives rise to an exact sequence
* Y, wx/px
0 - I/Q>0 - F I» K /KN>0 - 0,
Here Qto is embedded in I by mapping x to Ax. To describe
Y, we first note that

0 if A<0
* /10K =
K /KN>O {{il} if A > ot @.D

So Y 1is trivial if A < 0, If A > 0, then V¥ corresponds to
the map sending (a, b) to sign(a).

We claim that the above exact sequence splits. This is clear
if A <0, and if A > 0 we can map the non—trivial element of
K*/K§>O to the element E of F corresponding to (A, /AQtO) €
1o (K*/Q:O); explicitly, E is the T-orbit of

(=A, b, (1=-24)/4) if A is odd,

(-A/4, 0, 1) if A is even.

(We could also have used the form (-1, bo) to split the sequence,
but E is more convenient in the sequel.) We have proved

Fa (Rx/rE ) @ (T/Q%). (9.2)

The group I/Qto can be analyzed by standard techniques from

IR

commutative algebra. Let Ap denote the semilocal ring {r/s:
reA, s ecZ, s# 0mod p}. Then we have I = @ : (K*/a%),
P prime P
and
* = . * *

I/(Q>O ®p prime X /<p>AP) (9.3)
where <p> denotes the subgroup of K* generated by p. The
groups K*/<p>A; can be calculated explicitly. The result, which
will not be used in the sequel, is as follows.

Write A = fZ.AO as in sec. 1, and let k be the number of
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factors p in £. The character x 1is as in sec. 6, and Xg is

the corresponding character for AO. If k =0 we have

K*/<p>A; 27 if x(p) =1,
20 if x(p) = -1,
= 7/27 if x(p) = 0.
Next let k > 0. In most cases we have
K*/<p>A; =7 e (Z/(p k—_ll)pk' 12) i x,() = 1,
= Z/(p + 1)p Z if xy(p) = -1,
= (z/27) ® (Z/p"Z) it xo(e) = 0.

The precise list of exceptions is as follows. The group K*/<p>A;

is isomorphic to
z e (zj2z) o (z/2*" *z) it

p=2, k>2 and x0(2)=1;
(Z/]272) & (Zz/3-2k—22z) if p=2, k>2 and Xo(z) = -1
Z/472 if p=2, k=1 and AOE-4 mod 163
z/zy e (225 'z) if p=2, k>2 and A, =-4 mod 32;
(Z/3z) ® (/237 'z)  if p=3, k>1 and By=-3 mod 9,

Combining this description of K¥/<p>A* with (9.2), (9.1) and (9.3)

T %

we obtain an algebraic description of F. In particular, we see
that F 1is the direct sum of a finite group and a free abelian
group of countably infinite rank. The natural action of o (see

sec. 1) on F is given by o(F) = F_I, for F e F.

10. The topological structure of F

From this point onward we assume that A is positive. The
case of negative A 1s similar, but will not be needed in the
sequel.

The group homomorphism F » C defined in sec. 8 maps the

* YRk i
coset (M, aQ>O)KN>O to the ideal class of M. We denote by G
the kernel of this homomorphism. The coset of (M, thO) belongs to
G if and only if M = AR for some 8 ¢ K§>0, so, dividing by RB:
= * YRk s K*}.
G = {(a, YQ>O)KN>0' vy e K¥}
* YK = * YK {

For Yis Yy o€ K* we have (A, Y]Q>0)KN>O (a, Y2Q>0)KN>O if and

; - * * 1 =
only if Y1Q>0 oy, 0¥, for some [ ¢ A* with N(g) = +1, From
this it follows that the map

d: G » R/RZ

* * = (1
d((A, Y@¥ DKL ) = (ilogly/o(y)l mod R)
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is a well defined group homomorphism; here R 1is the regulator of
A, defined in sec. 6. The map d 1is a small modification of the
"distance" defined by Shanks [24]. We have ker(d) = {1, E}, with
E as defined in sec. 9. It follows that the map

G~ (R/RZ) @ {1}
obtained by combining d with the map % £from sec. 9 is an
injective group homomorphism. For cardinality reasoms it is not
surjective, However, its image is demse in (R/RZ) ® {*x1}; this
follows from the fact that G is infinite (sec. 9), and it can also
be seen directly,

We conclude that G may be considered as a dense subgroup of
the product of a circle group of 'circumference' R and a group of
order two. The h cosets of G in F may be considered as the
cosets of such a subgroup. A coset of G in F will be called a
cycle of F, and G itself is the principal cycle. The agreement
with the terminology introduced in sec. 5 is intentional, and will
be justified in sec. 11. Every cycle consists of two circles, a
positive and a negative circle, containing forms with positive and \
negative leading coefficients, respectively; cf. figure 1.

If F, F,e F belong to the same cycle, the distance from
F1 to F2 is defined to be d(FzFII), which is a real number
modulo R. The distance is zero if and only if F, =F, or F1 =
F,-E. If F, F, ¢ F do not belong to the same cycle, the distance
from F, to F, 1is not defined.

1 2
Replacing G by the full group (R/RZ) @ {+1}, and

similarly with the cosets, we obtain an embedding of F as a dense \

Figure 1. F. |
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subset in a compact topological space F. It is not difficult to
see that the group multiplication of F can be extended to F,
making it into a topological group. This can be done using fibred
sums, or by defining Fs=(Lo ((K ?Q Rf*/mio))/K§>o. It is of
interest to notice that the group F can also be described as a
certain group of idele classes of K, as follows. For background,
see [ 2],

Let A = lim A/nA be the profinite completion of A, with n
ranging over the positive integers. We may consider 2 as a subring
of the restricted product ﬂ; Kv, with v ranging over the finite
places of K and KV denoting the completion of K at v. Hence
Ax may be considered as a subgroup of ﬂ; Kt; for example, if A =
AO (see sec. 1) then Ax = ﬂv Uv’ where UV consists of the
local units at v. Adding 1's at the infinite places, we may
consider A* as a subgroup of the group J; of ideles of K
satisfying the product formula. Now we have

Foe /(s oA, 1 (10.1)
This group is very similar to the group JK/(K*-HV Uv), the
compactness of which is equivalent to the conjunction of the
Dirichlet unit theorem and the finiteness of the class number. The
isomorphism (10.1), which will not be used in the sequel, indicates

what is the right generalization of F for algebraic number fields

of higher degrees.

11. Reduced forms in F

Since no two forms in R are in the same orbit under T, we
may consider R as a subset of F. By the fundamental theorem
quoted in sec. 5, the cycles of R are precisely the intersections

of the cycles of F with R; in

Figure 2. parcticular, we have P =G n R. In

fact, the cyclical structure of each
cycle of R is reflected by the way
it is sitting in the corresponding
cycle of F, as suggested by fig. 2.
More precisely, if F ¢ R, then p(F)

is the first element of R that is



encountered if the two circles are simultaneously traversed in the
positive direction, starting from F; this fixes o(F) uniquely in
the sense that for no G € R one also has G+*E ¢ R; and, finally,
it is automatic that F and o(F) are on different circles. The
last statement reflects the fact that the sign of the leading
coefficient is changed if p 1is applied.

The proof of these statements can most conveniently be given
by interpreting R and p in terms of lattice points on the
boundary of the convex hull of the totally positive part of a
lattice in R?. We do not go into the details. The fundamental
theorem quoted in sec. 5 is a consequence of the above results.

We calculate the distance from F = (a, b) ¢ R to p(F). Let
F correspond to the coset (M, uQiO)K§>O. Choosing o primitive
in M we then have

M = Zo + ZB, (Bo(e) = ao(B))/Va>0,

aX2 + bXY + CY2 = N(Xa + YB)/NM).

Applying p means first applying the element (? -l

O] of SLZ(Z)
and next an element of TI'. The latter element does not change the
0 _1T

I'-orbit, so we only have to investigate the effect of 10 This

changes the form into N(XB - Ya)/N(M), corresponding to the coset
. -1

o1, BQ¥ KLY - Since (M, BQY ) (1, aQ¥y) = (A, (B/a)Q¥,) and

B/a = (b + VA)/(2a), we find that the distance from F to o (F)

is given by

-1y _ B/o a b + VA
$GO) = sl - hog P 7).

taken modulo R.

It is of interest to determine upper and lower bounds for this

quantity. Since 0 < b < /A for a reduced form (a, b), we have

2
b + VA (b + V1)
jlog m] = %10g————4~a~c——~— < ilog A. (11.1)
1
Using that b 2 1 omne can prove the lower bound A 2, but this is

useless. A more satisfactory lower bound is obtained by considering
the distance traversed if p is applied twice, i.e. from F to
pz(F). Let, with the notation as before, p map the coset of

M, aQ:O to the coset of (M, BQ:O)’ and similarly (M, BQ:O) to
(M, yQ:O). Using the geometrical interpretation with convex hulls

that we suppressed it is quite easy to see that |y] > 2la| and
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> log 2. This gives the

lo(n ] < flo(a) |, so flog ?(Yy/?‘ua)

following lower bound for the distance traversed if p is applied

twice:

% b+1/A+,l b'+/A>1 )
08Tk ER ) N N °g 2, (11.2)

where p((a, b)) = (c, b'). A heuristic argument suggests that the

average of 4{logl(b+vA)/(b-V/A)| over all reduced forms should be
2

somewhere near L8vy's constant 7 /(12-log 2) = 1.18656911,..

Since the circumference of the whole cycle is R, we have

R =3 élog'———y—g b ), (11.3)

the sum ranging over the reduced forms (a, b) belonging to a fixed
cycle. If there are £ reduced forms in the cycle, the above
inequalities yield

i8+log 2 < R < {4-log A. (11.4)
Therefore, if two cycles of R contain %, and 2, forms,

respectively, we have
log A
21/22 < log 2°
This is an explicit version of a theorem of Skubenko, asserting that
21/22 = 0(logd), see [27; 15, pp. 558, 586]. I am indebted to

A, Schinzel for mentioning this theorem to me,

12, Reduction in F
The reduction algorithm of sec. 4 can be formulated as

follows. Extend the map p: R R to amap p: F~F by

p((a, b, ¢)) = (c, b'), b' = -b mod 2c, b' ¢ I
where we assumed that b ¢ Ja. As in the previous section, one
shows that applying p comes down to moving along the cycle over a
distance of Llog| (b + VA /(b= VA)| = logl|(b+ /a)/V/]Gac]|; also, if
(b < vA, ome changes to the companion circle. The reduction map
pg: F = R is defined by o (F) =kpk(F), where k is the least
non-negative integer for which o (F) 1is reduced. Clearly, 0 is
the identity on R.

The map Py assigns to every form in F Figure 3.
a form in R that is "not too far away" from
it. More precisely, let Py, Fy» F, be three

consecutive forms on a cycle of R (possibly

Fo = FZ)’ and let F & F be in the interval



between FO and F2 that is opposite to F Then it can be shown

1

that pO(F) is one of FO’ Fl’ F By (11.1) it follows from this,

that the distance from F to pO%F) is at most log A in absolute
value. A more detailed analysis shows, in fact, that

ld(pg(MF )] < Jlog(l + 6Va) for all F e F, (12.1)
where 8 = (1 + V5)/2 and |[x]| = min{lyl: v € x} for x e R/RZ.
This is usually very small with respect to R, the circumference of
the cycle, which may have order of magnitude A%.

The multiplication * on R defined in sec. 5 is just
Pge This
remark, and the inequalities (11.,2) and (12.1), easily imply the

multiplication in F followed by the reduction map
approximate associative law (5.1), with [n| < 1 +4log(l +6vA)/log2.
We leave the pleasure of investigating the properties of m(k,2)

in (5.2) to the reader.

13. The algorithm for positive discriminants

We shall mainly be concerned with the calculation of the
regulator R, which is the circumference of each circle., It can be
determined by applying the powers of p to a fixed form F ¢ R,
until we find pz(F) = F, and then using (11.3). This is
essentially the classical algorithm, which is often phrased in terms
of continued fractions. It has running time O(A%'FE) for every
e > 0.

We describe two more efficient methods, which make use of the
function d defined in sec. 10, The calculations are all done 1n
the principal cycle G, and mostly in P =G n R, A form F c G
is not only specified by its coefficients a, b, but also by a real
parameter ¢ which is such that d(F) = (8§ med R). [t is not easy
to read & directly from the coefficients, but one can keep track
of & wunder all operations built up from p and multiplication
and inversion in F, by the following rules:

t = (1, bo) has & = 0;

b + VA

Ml to o
when multiplying in F, add up both §'s;

when applying p to (a, b), add }log

when inverting in F, change the sign of 8.

In particular, we can keep track of & under rhe composition
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*: P x P> P from sec. 5.
The inequality R < vA:log A (see (6.2)) and the baby step -
(1/4) + ¢

giant step technique now lead to an 0(A )-determination of
R, as follows,., Starting from the unit form (I, bO) we build up a
stock of forms by successive applications of p ("baby steps"),
until one of two things happens. It may happen, that (i) a form
(a, b) (= (1, bo)) is encountered that is its own inverse, i.e. for
which a divides bj; in that case, R is twice the current 6,
and we stop. But for most large A it happens sooner, that (ii) one
finds a form with 6§ 2 §, = (V/A+log A)%. By (11.2), this happens
after at most 1 + (260/10g 2) = O(A(IM) Ty applications of p.
At this moment, we have a stock of forms that, together with their
inverses, cover an interval of length =2 260 along the principal
cycle. Now we start taking "giant steps', with step length a little
bit less than 260. More precisE}y, by *-squaring the current form,
and applying a small power of o °, one determines a form F ¢ P
whose & satisfies

26, = llog(l + 6¥A) - ilog & < & < 259]- %1og(1*; 8vh).
The giant steps are taken by calculating F =TF, F ~ =TF % F,
F*(ii'l) =F % (F*i), «v+ « Our inequalities guarantee that

] o .
the "step length", i.e. the distance from F Y to F*(l.kl)

ces
, 1s

1

for all i between 60 and 260. Hence after O(R/do) = O(A“-FE)

giant steps we have traversed the entire cycle, and we will discover
*1 .
F among our "baby' forms and their inverses. Then we have two

values of 8 for the same form, and the difference of these values

is the regulator.

The above algorithm calculates the regulator to any prescribed

(}/4)'*6) steps. Tne fundamental unit n = eR =

(1/4) + €

precision in 0O(A
(u + v/A)/2 cannot be calculated in 0(A

since R (&~ number of decimal digits of u and v) is often of

steps; in fact,

1 . . .
order of magnitude A%, one caanot even write down n in time less
than that, let alone calculate it. It is, however, possible to
calculate u and v modulo any fixed positive integer m in time

0(A(I/éx) + €

similar to the above one, cf. [9]. The same remarks apply to the

), the implied constant depending on m, by a procedure

algorithm described below.
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If the generalized Riemann hypothesis is assumed, we can give
an O(A(]/5>-+E)—algorithm for the calculation of R. The procedure
is analogous to the determination of the order of F in the case
A < 0, see sec. 7, so we only sketch the main points. Using the

class number formula, we find a number

Re /ol e ooy 00 -L(pﬂ)-)“‘, x~ /3, (13.1)
that is close to an integer multiple hR of R, the difference
being O(A(2/5)4.€). The baby forms are now made as above, but with
60 R A(I/S)-FE. Next, by repeated squarings and multiplications in
P, we jump to a form F whose § 1is close to R, Taking giant
steps from this F, 1in both directions, we encounter a form that is
already in the "baby'" stock. That gives two §&'s for the same form,
and the difference R¥ is an unknown integer multiple hR of the
regulator; here h is supposedly not far from h. If h o is large
(z Al/lo), this is discovered by finding another match after taking

1/10

some more giant steps. The remaining cases h < A are checked

by looking if the unit form (1, by) is found at distance %R#
from itself, for 1 <m < Al/lo. We notice that the latter
technique can also be applied in the case A < 0, to avoid
factoring.

This finishes our sketchy description of the algorithm to
determine R. We notice that the Riemann hypothesis is only needed
to guarantee the efficiency of the algorithm; once the answer is
found, its correctness does not depend on any unproved assumptions.

The determination of the class number I now runs exactly as
in the case A < 0, with P and R playing the role of the
subgroup generated by F, in sec. 7, and its order. If R is
sufficiently large, h is determined by the class number formula.
Otherwise, select a form G € R, and determine its order in F/G.
In this fashion one proceeds until a large enough subgroup of F/C
has been determined to fix h wuniquely.

In this procedure one needs an algorithm that tests if a given
reduced form belongs to the principal cycle. By the baby step -
giant step technique this can be done in O(R%Ae) steps. In
particular, equivalence of two reduced forms can be tested in

O(A(1/4)4~€) steps.
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The conclusion is exactly as in the case A < 0, Modulo the

(1/5) + e)
(1/4) + ¢

Riemann hypotheses, h can be determined in 0(A steps,

but the structure of the class group may take O(A ) steps.

We have only considered the regulator, class number and class
group in the strict sense. To obtain the regulator R', class
number h' and class group C' in the ordinary sense, one has to
look halfway the principal cycle, i.e. at distance 4R from the
unit form (I, bo). If at this point the form (-1, bo) is found,
then

R' = iR, h' = h, c' = C.
Otherwise, one finds halfway P a form F = (a, b) with tal > 1
and b = 0 mod a. Then J|a| 1is a non-trivial factor of A, and
one has

R' = R, h' = in, ¢! = c/cO

where C., « C is the subgroup of order two generated by the class

of the Egrm (-1, bo).

The distance of two reduced froms (a, b) and (a', b') is
an integer multiple of R' if and only if Ja| = |]a'} and b = b'.
This implies that the role of R in the above algorithm can also be
played by R'. In particular, we can replace R by %ﬁ, which is
close to the integer multiple h'R' of R'. 1 am indebted to

R. Tijdeman for this observation.

14, A numerical example

The algorithms described in sections 7 and I3 have been

programmed in Amsterdam by R.J. Schoof on the CDC Cyber
750 computer system, for discriminancs of up to 28 digits [21]7.
Using only a hand held calculator like the HP67 one can deal with
discriminants of up to 10 digits. For much smaller discriminants
- up to 6 digits, roughly - it is often faster to apply the
classical algorithm (see sec. 13).

We give an example which was calculated using an HP67. Let
A = 40919537, 1In table 1 one finds forms lying on the principal
cycle P belonging to this discriminant. The first column gives an
identification number to each form. In the text below, form #$n is

indicated by Fn' The second column shows how the form is obtained



from previous forms in the table. Here »p

are as in sec. 5, and

and the multiplication *

t is multiplication with the inverse. The

next two columns contain the coefficients a

final column gives

to five decimals from the value given by the calculator.

S,y

the distance from F

’

1

b of the form,

The

to the form, rounded
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Table 1. & = 40919537,
#  def. a b § # def. a b 8
1=unit 1 6395 0 27 = 26%26 2654 2391  1234.67199
2=p(1) ~5878 5361  4.42393 28 = 27%27 -364 6159  2469.19812
3=p(2) 518 6035  5.63858 29 = 28%28 -137 6371 4936.94461
b=p(3) =2171 2649  7.40699
5=p(4) 3904 5159  7.84756 30 =29%29 =512 5671 9873,63784
6=p(5) =916 5833  8.96447 31 =30:22 -3584 4647 9822,13330
=p(6) 1882 5459  10.50290 32=31:22 1586 3695 9770.79649
8=p(7) ~1477 6357 11.77140 33=32:22 =614 6129 9719,95084
9=0p(8) 86 6371 14,65578 34 =33:22 2294 3371 9668.63890
10=p(9) =959 5137 17.75720 35 =34:22 2857 3553 9616.67814
11=p(10) 3788 2439 18.86435 36 =35:22 562 5345 9566.02209
12=p(11) -2308 2177 19.26591 37 =36:22 3934 1973  9514,51755
13=p(12) 3919 5661 19.62037
T4=p(13) =566 5659 21.01860 38 = 30%22 -3584 5671 9925.14238
15=p(14) 3929 2199 22.41539 39 = 38422 -3581 1479 9976.97826
16=0p(15) -2296 2393 22.77375 40 = 39%22 86 6371 10027.06848
17=p(16) 3832 5271 23.16692
18=p(17) =857 5013  24.33607 41 =29%22 =959 6371 4988.44915
19=p(18) 4606 4199 25.39088 42 =28%21 =842 5735 2496.66310
20=p(19) -1264 5913  26.17737 43 =042x3 794 5003 2502.05241
21=p(20) 1178 5867 27.79557 44 = p(43) -5003 5003 2503,10318
22 =19%19 7 6385 51.50454 45 =36:27 -1477 5459 8331.90585
23 = 22422 49 6385 103.00908
o4 = 23%23 2401 2465 206.01816 46 =37:22 -56 6343 9461.41380
25=23%24 =157 6151 308.07526 47 = 46222 -8 6391 9409.90926
26 =25%25 =172 6113 617.15922
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Taking X = 100 in (I13.1) we find R = 9839.22. Baby steps N
are taken from F, to F,. Then we jump to F3g> which has
§ ~ R, Taking giant steps backward (F30 to F37) we find no baby
form, but going forward (F38 to F4O) we find one after three
steps: F,, = Fg. Therefore R divides R¥ = §(40) - §(9) =

9
10012.41270 = hR, say. Since no other baby form, or inverse baby

form, is found in the interval from F3; to F,,, we must have
R > 10012.41270 - §(37) + 6(21) > 525, so h < 20.
Looking halfway R# we find another match: F, | = F;é, since

~

6371 = ~5137 mod 2-959. Notice that &(41) + §(70) = IR#., Hence h
is even. Looking again halfway we find F,o with & close to {R#
and a = ~842, Since 842 is not in the baby list, this means
that 4 does not divide ﬁ, and that exactly at [R#¥ a non-
trivial factorization of A will be found. Looking there, out of
curiosity, we find the ambiguous form FAA’ yielding A =5003+8179.
To test if 3 divides h, we look near (5/6)R#¥ and find
the match F45 = Fgl. Therefore 6 divides ﬁ, and h =6 or 18.
We exclude the latter possibility by taking one more giant step
to improve the above upper bound to R > 578, B < 18. We

R = (1/6)R¥ = 1668.73545.

(F, )

have now proved that
The most likely value for the strict class number h is h =

H=6. we show that in any case 6 divides h. By sec. 13, end,

h is even., To see that 3 divides h we search for a form that is

obviously a cube: e.g., F,, = F, ¢F,, has a = -8, and it is, in

F, the cube of F = (-2, 6395) (we could also have used F26:F9)’
We have 6(47) = 9409.90926 = -602.50344 mod R, so if F were on

the principal cycle it would have & = (~602.50344)/3 mod R/3, so

§ = -200.83448, 355.41067 or 911.65582 mod R. Multiplying F by

F24 or by Fa,» OF raising it to the 11-th power, we derive in
each of the three cases a contradiction. We conclude that F has
order 3 in the class group, and that 6 divides h.

If one checks that 5003 and 8179 are primes, it is not

h=2mod 4. So if h # 6 then h > 18,

difficult to prove that

and

x5 45
r[p prime, p > 100 (I P ) et

which is very unlikely.



We leave to the reader the pleasure to find out how
multiplicative relations between the a's can be exploited to

shorten the above calculations.

15. Concluding remarks

(i) The algorithms described in this lecture can be used for
an experimental approach to Gauss's class number problems [4, secs
302-3073. Thus, they have been employed in the search for fields
with irregular class groups, see [20] for references. It would also
be interesting to investigate the decreasing density of fields with
class number one among the real quadratic fields with prime
discriminants, cf. [25, sec. 5; 12; 16, sec. 1].

{(ii) The connection between the factorizations of the
discriminant and the elements of order two in the class group gives
rise to interesting factorization algorithms. Using negative
discriminants, as Shanks does in [23], one obtains an algorithm
factoring any positive integer n in O(n(l/s)'ke) steps, if we
assume the Riemann hypotheses. Positive discriminants can be used
in several ways. We can look halfway the principal cycle (cf. the
end of sec. 13), for discriminants that are small multiples of n.
Modulo the Riemann hypotheses it can be shown that this also leads
to an O(n(l/S)-'-E)—algorithmv A second factoring method employing
positive discriminants will be described by Shanks [26], cf. [28;
17]. This method has expected running time O(n(I/A)d'E), for
composite n. It is so simple that it can be programmed for a
pocket calculator like the HP67 for numbers of up to tweniy digits.

(i1i) As Shanks suggested in [25, sec. 1; 29, sec. 4.4], it
should be possible to adapt his techniques for number fields of
higher degrees, like complex cubic fields. From sec. 10 we know
that the "right" group to consider is a group whose "size" is
essentially the product of the class number and the regulator. The
main complication is that the circles are replaced by higher

dimensional tori.
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