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The asymmetry factor cos 6 for scattering of unpolarized radi-
ation by a particle is defined as the weighted mean over the
sphere of the cosine of the scattering angle, with the particle
phase function as weighting function. The asymmetry factor
determines the radiation pressure exerted on a particle and is
also important in the approximate theory of multiple scattering
by large particles (aerosols or cloud droplets). It is calculated for
spherical, dielectric particles in the following cases:

1. Introduction

If a spherical particle of radius r and index of
refraction » is illuminated by unpolarized parallel
radiation of wavelength A, the resultant values of the
total scattered intensity, when plotted versus scattering
angle 0, form the particle-scattering diagram. When
appropriately normalized, this scattering diagram is
called the phase function f () of the particle.

For general values of » and the particle-size para-
meter x = 2nr/A, the scattering diagram is very com-
plicated, containing a number of maxima and minima.
There are applications for which it would be useful to
characterize the phase function by a single parameter.
This paper is concerned with the calculation of such a
parameter, which may be called the asymmetry factor
of the phase function. Defined as the weighted mean
over the sphere of cos 6 with the phase function itself
as weighting function, the asymmetry factor will be

denoted by cos 8. Thus
1

cosf =1 | d(cosB)cosOf(0). 6))
-1

The previous explicit calculations of cos 6 are
contained in vAN DE HULST (1946 and 1953).** They are
confined to the limiting cases n - o0, n > 1, x = 0,
x — oo, with the exception of a few values obtained for

(1) refractive index n = 1.20, 1.33, 1.50, 1.60, 2.00 for various
values of the size parameter x in the range 0.4 < x < 12.5;
(2) n~ 1and 0.2 < x < 10 (Rayleigh-Gans scattering);
(3) x > oo and 1.0 < n < 5.0 (very large spheres).
An altitude chart in the n-x plane is constructed which

should make it possible to obtain cos @ by interpolation for other
values of n < 2.0 and x.

New calculations of the total Mie scattering coefficient for
n = 2.00 are also presented.

n = 2and 0 < x < 3.5. The accuracy of the results is
generally about + 0.02.

Many values of cos @ for a wide range of x and n are
contained implicitly in the tables of CHU, CLARK, and
CHURCHILL (1957) discussed in section 3b below.

In a thorough paper on Mie scattering by interplane-
tary particles GIESE (1961) has calculated @, (the
efficiency factor for radiation pressure) for several
complex values of n. Giese’s results would suffice to

determine cos 6, but unfortunately he seems to have
used an incorrect formula for Q,, (see the footnote to
our eq. (5)).
In the present paperm is calculated to an accuracy
of at least + 0.0001 for the following cases:
1. n = 1.20,1.33, 1.50 and x = 0.4 (0.2) 3(0.4) 5(1)
10;
n = 1.60 and x = 1.0 (1) 6 (2) 10;
n = 2.00 and 0.5 << x << 12.5 (various values);
2. Rayleigh-Gans scattering (n ~ 1, x = 0.2 (0.2)
10);
3. Very large spheres (x - o0, n = 1.05(0.05) 2 (0.1)
2.5,2.75, 3.0, 3.5, 4.0, 5.0).
We thus confine our attention to dielectrics.

* Now at Harvard College Observatory and Smithsonian
Astrophysical Observatory, Cambridge, Massachusetts, U.S.A.
** Hereafter referred to as VDH1 and VDH2, respectively.
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2. Applications
a. Radiation pressure
The radiation pressure exerted on a scattering particle

may be calculated if ‘cos 6, Oicar and Q.,, are known,
where Q,., and Q.,, are the particle efficiency factors
for scattering and extinction (VDH?2). The force exerted
in the direction of propagation of the radiation is given
for unit incident intensity by

2
F = E:_ (Qext - m Qsca) . (2)

b. Interstellar scattering

The properties of interstellar dust grains may be
studied from observations of the diffuse light in the
Galaxy. Since the observations suffice only for a rough
determination of the preponderance of forward over
backward scattering by the grains, a very approximate
theory is more adequate than an examination of detailed
scattering diagrams. The natural parameters of the

problem are the particle albedo and cos 8 (e.g. VAN
HouTEN, 1961).

¢. Radiative transfer

Application of the theory of radiative transfer to
scattering media in which the particles have dimensions
comparable with or greater than A has been severely
limited. To apply the theory, the phase function is
usually expanded as a series of Legendre polynomials.
For strongly asymmetric phase functions a large number
of terms must be included in this series. Although the
theoretical principles of the method are known, the
solution to the equation of transfer in closed form

when cos 8 # 0, including tabulated functional values, is
available only for phase functions of the type

7(0) =a + bP,(cosb), 3

where a and b are constants, and even for this relatively
simple case only for semi-infinite atmospheres (HARRIS,
1961). The function (3) has a maximum asymmetry on
a scale from 0 to 1 of only

cosf =4%.

This corresponds to a maximum size parameter of
x =~ 1.3 (see section 4).

177

Cuu, LEacock, CHEN and CHURCHILL (1962) have
obtained numerical results for a phase function con-
sisting of a five-term expansion in Legendre poly-
nomials, but even here the value of the size parameter
was only x = 2.2.

VAN DE HuLrsT and IRVINE (1962) have suggested
that the scattering diagram of large particles could
usefully be approximated by means of the Henyey—
Greenstein phase function

3 (1-¢%
T (1 + g% —2gcosb)F’ @

f6)

where g is for the function (4) just equal to cos . This
approximation is thought to be particularly useful in
connection with the “method of successive scattering”,
in which the intensity is found by adding the contri-
butions of successive orders of scattering (VAN DE
Hutrst and Davis, 1961).

In order to approximate the actual scattering diagram
of a spherical particle by means of eq. (4), one must
determine an optimum value of the parameter g. It is
natural to assume that this value will be given by, or

closely related to, the value of cos 8 found from the
true scattering diagram.

3. Procedure

a. New calculations from Mie theory

The scattering diagram of a spherical particle must in
general be written as an infinite series involving the Mie

coefficients a,, and b,,. Cos 0 is given in terms of a,, and
b,, (VDH2, p. 128%*) by

4 - m(m + 2) '
cosf = 0 Z { il l:R(am)R(a,,,H)

m=

+ 1(an)l(@n+1) + R(Om)R(bys 1) + 1(b) (b 1)]

2m +1

+ ——[R(a,,,)R(bm) + I(am)I(bm):l}, ©)

m(m + 1)

* Complex conjugate bars have been omitted in VDH2.
That equation (5) is correct may be seen from VDH1 (ch. 2) and
DEBYE (1909, § 7).
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where R(a) and I(a) signify the real and imaginary parts
of a. a,, and b,, are defined by
_ 5,(n%) 8,(x) — nS,(nx) S,(x)
I = S nX)Zo(x) — nSy(nx)Zp(x)’
_ 18, (nx) Sp(x) — Sp(nx) S,(x)
1S (nX)Z(x) = Su(nx)Z;(x)’

with S, and Z,,, the Riccatti-Bessel functions, defined
in terms of the Bessel functions of half-integral order by

(©)

by,

1

59 =(5 ) Jmes

Z(3) = (7> ENCEAvel

‘The primes in eq. (6) denote differentiation.

The values of a,, b,,, and Q.. were taken for n =
1.20 from PANGONIS, HELLER and JACOBSON (1957), for
n = 1.33 and 1.50 from PENNDORF and GOLDBERG
(1956) and PENNDORF (1956), for n = 1.60 from
GUMPRECHT and SLIEPCEVICH (1951), and for n = 2.00
from LowaN (1949), KeErkER and PERLEE (1953), and
KERkKER and Cox (1955). The notation of each of these
authors differs somewhat from that defined above.
They all include an additional factor of (— 1)™i in the
definition of a,, and of (— 1)"*'i in that of b,. In
addition all except PENNDORF and GOLDBERG include
a factor of

(M

@em+1)
m(m + 1)

in these definitions. Since we consider here the case of
real n,

Qsca = Qext = Q H

which is called X in the tables cited.
For n = 1.20, 1.33, 1.50, and 1.60, the values of

cos @ were found by using a desk computer. All oper-
ations were carried out twice, once in reverse order, to
eliminate errors. All computations were carried out to
five significant figures. Table 1 gives the results to four
significant figures. Apart from possible computational
errors, all given digits should be correct for n = 1.33
and 1.50. For n = 1.60 the last digit may be slightly in
error because of the stated inaccuracy of + 1 in the
fourth significant figure of Q. For n = 1.20 all figures

W. M. IRVINE

TABLE 1

cos 0 for n = 1.20, 1.33, 1.50, 1.60 (sec. 3 a, b)

X n 1.20 1.33 1.50 1.60

0.4 0.0278 0.02915 0.03140

0.6 0.0624 0.06539 0.07015

0.8 0.1116 0.1165 0.1249

1.0 0.1761** | 0.1845*** 0.1989 0.2097

1.2 0.2581 0.2729 0.2992

1.4 0.3578 0.3838 0.4296

1.6 0.4701 0.5083 0.5625

1.8 0.5789 0.6148 0.6286

2.0 0.6613 0.6697 0.6259 0.5838

2.2 0.7045 0.6826 0.6272

24 0.7240 0.6914 0.6643

2.6 0.7372 0.7176 0.7145

2.8 0.7581 0.7549 0.7370

3.0 0.7860 0.7832 0.7343 0.6754

34 0.8299 0.8013 0.7388

3.8 0.8483 0.8184 0.7601

4.0 0.8561* 0.8272* 0.7502* 0.6449

4.2 0.8642 0.8346 0.7394

4.6 0.8799 0.8457 0.7403

5.0 0.8934 0.8454 0.7073 0.5725

6.0 0.9110 0.8479 0.6442 0.3892

7.0 0.9199 0.8791 0.5186

8.0 0.9253 0.8040 0.4529 0.6378

9.0 0.9282 0.7601 0.6484
10.0 0.9273 0.7125 0.7429 0.7482
15.0 0.8744* 0.7948* 0.7357* 0.7315*
20.0 0.8159* 0.7691 * 0.7109* 0.7348*
25.0 0.8661* 0.8542* 0.7959* 0.7540*
30.0 0.8888* 0.8269* 0.8046* 0.7731*

* Taken from CHU et al. (1957).
** CHU et al. (1957) have 0.1757.
*** Checked by IBM 7090. CHU et al. (1957) have 0.1843.

should be significant for x > 1.6, while only three
figures may be significant for smaller x.

For n = 2.00 the calculations were done on the
Smithsonian Astrophysical Observatory’s IBM 7090.
Newly computed values of Q are listed with the corre-

sponding values of cos 6 in table 2. The results are
given, after rounding off, to the same number of
significant figures as the tabulated values of a,, and b,,.
The values of Q agree with those obtained by PENNDORF
and GOLDBERG (1956, part 6) to + 0.0001 with one
exception (x = 2.5, difference of 0.0002).

b. Previous calculations from Mie theory

A large number of values of cos @ are contained
implicitly in a report by CHU, CLARK and CHURCHILL
(1957). These authors expand the phase function f(6)
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TABLE 2

cos 6 and total scattering coefficient Q for n = 2.00 (sec. 3a, b)

X cos 0 [0}
0.5 0.06264 0.04565
0.6 0.09031 0.09774
1.0 0.2762 0.7968
1.2 0.4507 1.609
1.3 0.5329 2.349
14 0.5493 3.466
1.5 0.4958 4.231
1.65 0.4299 3.986
1.8 0.4332 3.718
2.0 0.5056 4.768
2.05 0.5324 5.387
2.1 0.5542 5.744
2.2 0.5615 5.319
2.25 0.5687 4952
2.3 0.5261 4.622
24 0.4712 4.108
2.5 0.4122 3.797
2.6 0.3576 3.925
2.7 0.3950 4.827
2.75 0.3784 4.539
2.8 0.4587 4.052
3.0 0.3907 3.035
33 0.15167 3.2406
3.6 0.1494 2.020
3.8 0.14965 1.6029
4.0 0.3237 1.747
4.2 0.25484 1.9299
4.4 0.29934 3.0289
4.6 0.66045 2.4403
4.8 0.5845 2.576
5.0 0.60618 *

5.5 0.49822 3.8010

6.0 0.66912*

6.5 0.71367 2.7086

7.0 0.49635 2.1723

8.0 0.58511 2.3413
10.0 0.61796 2.0437
12.5 0.65891 2.5461

* Taken from CHU et al. (1957).

of a spherical particle as a series in the Legendre
polynomials,

1 - .
f(6) = ™ Z an(x, n)P,(cos ), )

m=0

where the coefficients a,, may be expressed in terms of
the Mie coefficients a,, and b,,. Because of the orthogo-
nality properties of Legendre polynomials, we see from
the definition (1) and eq. (8) that

179

cosf =1a. )

The general formula for a,, given by CHU ef al. does in
fact reduce when m = 1 to our eq. (5) multiplied by
three.

CHU et al. have computed the ), for n = 0.9, 0.93,
1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.33, 1.40, 1.44, 1.50,
1.55, 1.60, 2.00, oo and some or all of the values
x = 1(1)6(2) 10(5) 30. Their results for a;/3 agree with
the corresponding manually computed values presented
here to + 0.0001, with the two exceptions mentioned
in table 1. In the case n = 2.0 (machine computation)
the results agree to five significant figures.

c. Rayleigh-Gans scattering

As the index of refraction n — 1 for a given particle
size parameter x, the scattering diagram simplifies
considerably and may be written in closed form. More
precisely, the conditions for the validity of Rayleigh—
Gans scattering are [n — 1] < land 2x |n — 1] € 1.

Cos 0 in this case is given (VDH2, § 2.3, 7.21) by

——  fcos0 (1 +cos®0) G* (2xsin}6) dw

cosf =~— , (10
[ (1 + cos?0) G* (2xsin$0) do (10)
where the integrals are over the sphere and
3.
G(u) = — (sinu — ucosu). 11
u

The integral in the denominator of eq. (10) has been
evaluated by RAYLEIGH (VDH2, § 7.22). The numera-
tor also reduces to an elementary integration after the
substitution

v =4x~/3(1 = cos6).

We obtain
cosf = @ (122)
(x)
with
4T/ 9  5x*
Y(x) = ?[(ﬁ - —6%> (cos4x + 4x sin 4x)
¢ 11x* 31x* 9
o 2 2 (12b)
8 64 128

+x*(x* = 3)(—y + Ci(4x) — In 4x)]
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and We may in turn divide y into contributions from the
25 1 0x2 sin 4x 7 1 4 two mutually perpendicular directions of polarization
p(x) =2.5 +2x" — ax 16x2( — cos 4x) in the scattered light. If the index 1 refers to light
(12c)  whose electric vector is perpendicular to the scattering
+ R 2) (y +In4x — Ci(4x)) plane and the index 2 to light with electric vector in this
2x* ' plane,
where y = Euler’s constant = 0.5772157. .. and 7 =301 +72), 5
where *
@© 1
s =
Ci(x) = —JCO L du (12d) v =]do(4; +By)/Cy, (16)
u
* A, = 4r{(n* — 0)(20 — 1)jn*, an

is the cosine integral (values of Ci(x) were taken from
LowaN (1940) for x < 10.0 and from Mathematical
Tables (1931) for x > 10.0).

Cos 0 was computed for x > 0.6 from egs. (12) with
the IBM 7090. The results agree well with the rough
estimates given in VDH2 (p. 90) when x < 1.4. For
larger x there are significant differences. The present
values fit smoothly into the altitude chart (figure 3),
whereas the previous estimates do not.

For x < 0.5, y €1, and the most convenient
procedure is to expand ¥ and ¢ in powers of x. The
leading terms are

¥ (x) = 0.189630x° — 0.065016x® + ...

(13)
o(x) = 1.18519x* — 0.47407 x° + .. ..

The tabulated values for x = 0.2, 0.4 were calculated
from eq. (13).

d. Very large spheres

When x> 1 and 2x|n — 1| > 1, the scattering
diagram may be separated into a component resulting
from reflection and refraction and a component arising
from diffraction around the sphere. This separation

greatly simplifies the calculation of cos 8. We find
(VDH2, § 12.5; the parameter w = 1 for dielectrics)

cosf =1(1 +7y), (14)

where y is the weighted mean of cos § when only
reflected and refracted light are included in the scattered
radiation (i.e., when the diffracted light, which is
concentrated in a very narrow forward cone, is treated
as unscattered). For some applications y may be a

more appropriate parameter than cos 8 (vaN DE HULST
and IRVINE, 1962, § III).

B, = (1 — 13 [(20 — 1)(2ofn* = 1)
+ 461 —a/n? = o/n’],
C, =1-2r}Q20/n* — 1) + 1}, (19)

\/1—0—\/n2—;

RN PN

The same expression (16) gives y, with r; replaced by

_n\/l—a—\/l—a/n2
_n\/l—a+\/1—o/n2’

The integrals (16) for y, and y, were evaluated on the
IBM 7090 using Simpson’s rule and an interval of
0.001. Values of the integrand were printed out at
intervals of 0.025. The integrand is well behaved except
at ¢ = 1, where its first derivative becomes infinite.
From a comparison with check integrations using
intervals of 0.002 and 0.004, we conclude that the results

for cos 0 and y are accurate to + 0.00005, while those
for v, and y, have an uncertainty of + 0.0001. The
values obtained agree well (£ 0.02) with those quoted
by VDH2 (p. 226).

(18)

and

(20)

ry

@D

r;

4. Results

The results obtained in the present paper, as well as
selected values from CHU et al. (1957) and VDH2, are
listed in tables 1-4. Their accuracy is discussed in the
preceding section.

A convenient graphical presentation of the data

* An exponent 2 is omitted from the factor (1 — r12) in the
term corresponding to our B; by VDH2 (p. 225) and DEBYE
(1909, eq. (156)). That eq. (18) is correct may be seen from VDH1
(p. 30) and DEBYE’s eq. (154).
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0.6

0.4

0.2

(o}

Figure 1. Asymmetry factor cos 6 versus normalized particle size parameter p = 2x (n — 1). Dashed portions omit minor oscil-
lations (for n = 2.00, this portion of the curve is somewhat speculative).

proved to be a plot of cos O versus p, where
p = 2x(n — 1) gives the phase shift experienced by a
light-ray passing through the centre of the particle. VAN
DE HULST (1946) and PENNDORF (1956) have shown that

p, which may be called the normalized size parameter,
possesses a basic significance for particles with n near 1.

In figure 1 we have plotted cos 8 versus p for n = 1.20,
1.33, 1.50, 2.00.

1.0 T T T 7 T T T I LI T T 7 T T T T
Coso | nwsl |
0.8L —
0.6 —
n=m

04— //+
0.2 /

L ) J
/
o} } / t —t—rt } t t t F——t—
1 */ 2 3 4 5 6 7 8 9
L / i
+
/
!
-0.2 f -
"
7
L I i
4*/
-0.4 W

Figure 2. cos 6 versus particle size parameter x for Raleigh-Gans scattering and for totally reflecting spheres. Crosses: VAN DE
Hurst (1957, sections 10.61, 10.62); open circles: CHU et al. (1957); closed circles: table 3.
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Observe that cos 0 is not a monotonic function of p
for a given n. “Long-period” oscillations occur, the
period of which is approximately the same for the
various values of n considered. For n = 1.33 a similar
oscillatory behavior has been found by DEIRMENDJIAN,
CraAseN and VIEZEE (1961) for the absolute intensity at
6 = 0°,and by PENNDORF (1961) for the ratio i, (0)/7; (n).

The value of cos 0 at the first maximum of the long-
period oscillations decreases with increasing »n. In
addition, as » increases there is an increasing amount
of “fine structure” in the curves. These features are
what would be expected from the behavior of Q, ., with
x and n (PENNDORF, 1956).

The solid portions of the curves in figure 1 should be
accurate to better than + 0.01 for » < 1.50. For
n = 2.00 the appearance of small spikes (such as those

TABLE 3

cos 6 for Rayleigh—Gans scattering (sec. 3¢)

computed points are too far apart to permit accurate
interpolation. Since cos 6 is an average quantity, how-
ever, there is no reason to expect violent fluctuations,
at least for n < 1.60. We may thus expect that the
main features of the behavior of cos 6 with x, sufficient
for applications like those of parts b and ¢ of section 2,
are shown even by the dashed portions of the curve.

The values of cos 6 for Rayleigh-Gans scattering are
shown in figure 2, using x as the abscissa. For com-
pleteness, we have also included the results for totally
reflecting spheres (n = c0) from VDH2 (§ 10.6). The
jatter case is qualitatively different from that for finite n.

5. Altitude chart of cos 0

To facilitate the determination of cos 6 for values of
n and x for which explicit calculations have not been

TABLE 4

cos 6 for very large spheres (sec. 3d)

x cos 0 x cos 6 n cos 6 y 1 2
0.2 0.00631 5.2 0.91468 1.00 1.0 1.0 1.0 1.0
0.4 0.0258 5.4 0.92100 1.05 0.99030 0.98060 0.97799 0.98320
0.6 0.05869 5.6 0.92665 1.10 0.97308 0.94617 0.93701 0.95532
0.8 0.10560 5.8 0.93116 1.15 0.95376 0.90752 0.89000 0.92503
1.0 0.16693 6.0 0.93453 1.20 0.93407 0.86814 0.84193 0.89435
1.2 0.24231 6.2 0.93718 1.25 0.91475 0.82950 0.79512 0.86389
14 0.32976 6.4 0.93967 1.30 0.89612 0.79224 0.75067 0.83381
1.6 0.42487 6.6 0.94240 1.333 0.88427 0.76853 0.72287 0.81419
1.8 0.52044 6.8 0.94543 1.35 0.87830 0.75661 0.70905 0.80417
2.0 0.60754 7.0 0.94854 1.40 0.86134 0.72268 0.67039 0.77497
22 0.67821 7.2 0.95138 1.45 0.84521 0.69043 0.63463 0.74623
24 0.72874 7.4 0.95371 1.50 0.82990 0.65980 0.60165 0.71795
2.6 0.76103 7.6 0.95553 1.55 0.81535 0.63070 0.57125 0.69016
2.8 0.78107 7.8 0.95701 1.60 0.80153 0.60305 0.54325 0.66286
3.0 0.79573 8.0 0.95843 1.65 0.78838 0.57676 0.51743 0.63609
3.2 0.81005 8.2 0.95998 1.70 0.77587 0.55173 0.49361 0.60986
34 0.82613 8.4 0.96171 1.75 0.76395 0.52790 0.47160 0.58420
3.6 0.84346 8.6 0.96349 1.80 0.75259 0.50519 0.45125 0.55912
3.8 0.86015 8.8 0.96512 1.85 0.74176 0.48352 0.43240 0.53465
4.0 0.87422 9.0 0.96649 1.90 0.73142 0.46285 0.41490 0.51079
4.2 0.88475 9.2 0.96758 1.95 0.72155 0.44310 0.39864 0.48756
4.4 0.89212 94 0.96849 2.00 0.71212 0.42424 0.38351 0.46496
4.6 0.89764 9.6 0.96939 2.10 0.69448 0.38896 0.35623 0.42169
4.8 0.90278 9.8 0.97038 2.20 0.67833 0.35666 0.33236 0.38096
5.0 0.90842 10.0 0.97147 2.30 0.66353 0.32705 0.31135 0.34275
2.40 0.64994 0.29987 0.29275 0.30699
2.50 0.63745 0.27489 0.27619 0.27359
A . . 2.75 0.61040 0.22080 0.24187 0.19973
at p = 4.5 and 5.4) may increase this uncertainty to 3.00 0.58832 0.17664 0.21511 0.13817
perhaps + 0.02. 3.50 0.55525 0.11049 0.17625 0.04474
“ » 4.00 0.53254 0.06509 0.14948 |—0.01931
Because of the aPpearance of the ﬁne structure”’, 500 0.50543 0.01087 011503 |—0.09330
the curves are written as dashed lines when the
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Figure 3. Altitude chart in the n-x domain. Figures along the curves denote 10 cos . Dashed portions indicate approximate
behavior.

made, it is convenient to construct the altitude chart
(figure 3). Following VDH1 (p. 67), we plot the #—x plane
with abscissa arctan x and ordinate arctan (n — 1). We
limit ourselves to values 1 < n < 2.*

Along the left border of figure 3, x < 1 and cos 6 = 0
because Rayleigh scattering is symmetric. On the right
border (x > 1) the values for very large spheres (table
4) apply. The upper edge of the altitude chart is the
region of Rayleigh-Gans scattering (table 3). In
compiling the remainder of figure 3, use has been made
of tables 1-2 and figures 1-2, as well as all the other

values of cos @ available from CnHu, CLARK and
CHURCHILL (1957).

Forn 2 1.3 the oscillations in cos 6 become apparent
as “hills and valleys” for 2 < x < . An infinite
number of such hills should be crowded into the
region 15 < x < oo in figure 3.

Over most of figure 3 we estimate that cos 8 may be
read to an accuracy of better than + 0.03. Within the
dashed portions the accuracy may be reduced to about
+ 0.15, except when x > 15, in which case the long-
period oscillations make the result still more uncertain.
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