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Diffusion coefficient of propagating fronts with multiplicative noise
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Recent studies have shown that in the presence of noise, both fronts propagating into a metastable state and
so-called pushed fronts propagating into an unstable state, exhibit diffusive wandering about the average
position. In this paper, we derive an expression for the effective diffusion coefficient of such fronts, which was
motivated before on the basis of a multiple scale ansatz. Our systematic derivation is based on the decompo-
sition of the fluctuating front into a suitably positioned average profile plus fluctuating eigenmodes of the
stability operator. While the fluctuations of the front position in this particular decomposition are a Wiener
process on all time scales, the fluctuations about the time-averaged front profile relax exponentially.
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I. INTRODUCTION

One of the aspects of front propagation that have b
studied in the literature in recent years is the effect of fl
tuations on propagating fronts@1–4#. In particular, it has
been found that in the presence of noise, both o
dimensional fronts between a stable and a metastable
~‘‘bistable fronts’’! and so-calledpushedfronts, which propa-
gate into an unstable state,@5#, exhibit a diffusive wandering
about their average position@4#. This contrasts with the fluc
tuation behavior of so-calledpulled fronts propagating into
an unstable state which is subdiffusive@6#. In this paper, we
shall consider only the case of pushed and bistable fro
however.

Recently, Armeroet al. @4# derived an expression for th
effective diffusion coefficient of a pushed front in the st
chastic field equation

]f

]t
5

]2f

]x2
1 f ~f!1«1/2g~f!h~x,t ! ~1!

with a noise term whose correlations are

h~x,t !50, ~2!

h~x,t !h~x8,t8!52C~ ux2x8u/L!d~ t2t8!. ~3!

In Eq. ~1!, f is a nonlinear function of the fieldf with a
stable state atf51 and either a~meta!stable or unstable
state atf50 andg(f) is some other general nonlinear fun
tion. In Eqs.~2! and~3!, the overbar denotes an average ov
the realizations of the noise. In order that our noise of S
tonovich type is well defined, we have introduced a spa
cutoff in the noise correlation function~3! ~see@4# for further
details!.

The derivation in@4# of the effective front diffusion coef-
ficient D f relied on a small-noise stochastic multiple-sca
analysis that was based on the idea that the mean-sq
displacement of the front about its average position was s
1063-651X/2001/65~1!/012102~4!/$20.00 65 0121
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relative to the deterministic relaxation of the front. The ba
idea was that only the low-frequency components of
noise are responsible for the front wandering, so that
high-frequency components, which renormalize the fro
shape and its velocity, could be implicitly integrated o
This led to an ansatz for the relative scaling of fast and s
time variables where the small parameter governing the s
ration of time scales was the diffusion coefficientD f of the
front itself. The method then self consistently provided
explicit prediction for D f , which was in good agreemen
with their numerical results. The main weakness of the
proach was that the above coarse-graining procedure c
not be carried out explicitly, since while there is a separat
of time scales for theaveragequantities, a scale separatio
scheme is not natural for thefluctuatingquantities. Hence,
the derivation had to rely on an uncontrolled ansatz. In t
brief report, we therefore reconsider this problem. We jus
the previously derived result forD f with a systematic small-
noise expansion based on decomposing the motion of
front into a diffusive motion of the properly defined fron
position, plus fluctuations about the average front profi
Technically, the fluctuating front position is defined by r
quiring that the fluctuations about the mean front profile
orthogonal to the~left! translation mode. This derivation
shows that the previous multiple-scale ansatz is not q
adequate, and it will clarify the connection between the se
ration of time scales invoked in Ref.@4#, the small-noise
expansion, and the existence of a finite gap in the lineari
evolution operator. The key point of our fully systemat
derivation is the fact that there is a unique choice for
collective coordinateX(t) of the front profile to be a
memory-less Markovian process, and that the fluctuati
about the average profile then relax exponentially. This
laxation may be deduced from the spectrum of the linear
tion operator about the average front profile. In addition, o
method provides a general strategy to address the proble
fluctuations of fronts and other coherent structures, and m
be extended to higher-order perturbation theory.
©2001 The American Physical Society02-1
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II. DERIVATION OF THE EFFECTIVE DIFFUSION
COEFFICIENT

We may rewrite Eq.~1! in terms of a noise termR whose
averageR̄ is zero and a deterministic renormalized part,

]f

]t
5

]2f

]x2
1h~f!1«1/2R~f,x,t !, ~4!

using Novikov’s Theorem, as discussed in@4#. In Eq. ~4!,

h~f!5 f ~f!1«C~0!g8~f!g~f!, ~5!

R~f,x,t !5g~f!h~x,t !2«1/2C~0!g8~f!g~f!, ~6!

whereC(0) is of orderL21, so that Eq.~3! yields a delta
correlation in space in the limitL→0 @7#. The main idea of
the derivation is to introduce a collective coordinateX(t) for
the position of the front. Of course, there are various choi
for the positionX(t), but as we shall show a particula
choice makes the equations quite transparent. We decom
the fluctuating fieldf as

f5f0@j2X~ t !#1f1@j2X~ t !,t#. ~7!

Here,f0 is the solution of the ordinary differential equatio
for the shape of a deterministic front with velocityvR , the
velocity of the deterministic front associated with Eq.~4!
with R50 ~the subscriptR on vR reminds us that the fron
speed is determined byh(f) rather thanf (f), and hence, is
renormalized due to the presence of the noise!. In other
words,f0 satisfies

05
d2f0~j!

dj2
1vR

]f0~j!

]j
1h~f0!. ~8!

While f0 is a nonfluctuating quantity,f1 is a stochastic field
that contains the fluctuations aboutf0. In the above,j5x
2vRt is the proper variable for a deterministic front movin
with the asymptotic velocityvR , but note that in Eq.~7!, the
fields are written in terms of the shifted variable

jX5j2X~ t !5x2vRt2X~ t !, ~9!

where X(t) is the rapidly fluctuating front position whos
explicit definition in terms of a spatially averaged front pr
file is given below.

As is well known, the derivation of a moving bounda
approximation for deterministic equations~see, e.g.,@8,9#
and references therein! normally proceeds by projecting ont
the zero mode. Indeed, associated with the front solutionf0
of Eq. ~8! is a zero mode of the stability operator

L5
]2

]j2
1vR

]

]j
1h8~f0!, ~10!

which is obtained by linearizing aboutf0. This zero mode
expresses translational invariance, and indeed implies th
01210
s

ose

t

LFR
(0)50⇔FR

(0)5
df0

dj
. ~11!

In our case the operatorL is not self adjoint, sincevRÞ0; as
a result, the left eigenmodeFL

(0) is different fromFR
(0) , but it

is known to be~see, e.g.@4,9#!

L 1FL
(0)50⇔FL

(0)5evRj
df0

dj
. ~12!

As we mentioned above, a particular definition of the po
tion X(t) is especially convenient: we takeX(t) defined im-
plicitly by the requirement that the fluctuating fieldf1 is
orthogonal to the left zero mode. Indeed, defining

^A~j!B~j!&5E
2`

`

djA~j!B~j!, ~13!

we require

^FL
(0)f1~j,t !&5E djevRj

df0

dj
@f2f0„j2X~ t !…#50.

~14!

Note that at any moment, thefluctuatingfront positionX(t)
is defined in terms ofweighted spatial averageof the fluc-
tuating fieldf.

Upon substitution of Eq.~7! into Eq.~4! and linearization
in f1 ~which is justified for small noise!, we obtain

]f1

]t
5Lf12Ẋ~ t !

]f0

]jX
1R~f0 ,j,t !. ~15!

Note that we have also approximatedR(f,jX ,t) by
R(f0 ,j,t), which again is correct to lowest order in th
noise.

In addition to the zero mode, the operatorL will in gen-
eral have right eigenmodesFR

( l ) with eigenvalues2s l :

LFR
( l )52s lFR

( l ) , lÞ0, ~16!

and with associated left eigenfunctionsFL
( l )5evRjFR

( l ) . Our
convention to have the eigenvalues2s l anticipates that the
dynamically relevant front solution is stable, so that all
genvaluess l are positive. Moreover, both for fronts betwee
a stable and a metastable state and for pushed fronts pr
gating into an unstable state, the spectrum is known to
gapped@10,11#, i.e., the smallest eigenvalue is strictly grea
than zero@10,11#.

Since f1 is orthogonal toFL
(0) , we can expandf1 in

terms of the eigenmodesFR
( l ) ( l>1) of L as

f1~jX ,t !5(
lÞ0

al~ t !FR
( l )~jX!. ~17!

Substitution of this expansion into Eq.~15! then yields upon
projection onto the zero modeFL

(0):

Ẋ~ t !5«1/2
^FL

(0)R~f0 ,j,t !&

^FL
(0)FR

(0)&
. ~18!
2-2
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Taking the square of this result, integrating and averag
over the noise,

X2~ t !52D ft5E
0

t

dt8E
0

t

dt9Ẋ~ t8!Ẋ~ t9!, ~19!

then yields with Eqs.~3!, ~11!, and~12!

D f5«
E dj e2vRj~df0 /dj!2g2~f0!

F E dj evRj~df0 /dj!2G2 . ~20!

This is precisely the result derived earlier in@4#, but now in
a fully systematic way. To lowest order in the present sm
noise expansion, the average front profile is simplyf0.
However, notice thatf0 contains a dependence onL
throughC(0) in h(f). The parameterC(0) must be consid-
ered as an independent one, so that the result~20! has to be
interpreted as to first order in« but to all orders in«/L.

The above derivation allows us to also obtain the rel
ation of a fluctuation about the average. Indeed, upon su
tuting Eq.~17! into Eq.~15! and projecting onto the left zer
modes, usinĝFL

(n)FR
(m)&5dnm for normalized eigenmodes

we obtain to lowest order

dal

dt
52s lal1«1/2^FL

( l )R&, ~21!

as termsẊ(t)df1 /dj are of higher order in«. Note that
each mode is damped and has its noise strength weighte
FL

( l ) . One may derive from here in a straightforward way t
mean square fluctuations about the average profile.

We finally note that our discussion clarifies the difficul
of using a separation of time scales argument for the der
tion of the effective diffusion coefficient: the collective co
ordinateX(t) is a memory-less Markov process, and hen
the changes in the position have zero correlation time w
the average ofX2(t) changes slowly. The coefficientsal(t),
on the other hand, have a finite correlation time, and hen
are correlated on timescales in between the one of insta
neous positionX(t) and the mean-square wanderingX2(t).

III. CONCLUDING REMARKS

We have reported an improved derivation of the diffusi
coefficient of propagating pushed fronts with multiplicati
, L

-

01210
g

l-

-
ti-
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a-

,
le

e,
ta-

noise, previously found in Ref.@4#. The present derivation is
fully explicit and based on standard projection techniqu
The key point is the identification of a definition of the fro
position, which naturally implies the diffusive wandering
the front, and avoids invoking an uncontrolled hypothesis
addition to the basic assumption of small-noise strength. T
has also clarified that the time scale separation used in
@4# may be traced back to the small-noise approximat
together with the existence of a finite gap in the spectrum
the linearized evolution operator. All these consideratio
may be generalized to the effect of fluctuations on ot
types of coherent structures.

Our derivation of the solvability expression~20! for D f of
a propagating front shows that the collective coordinateX(t)
responds instantaneously to the noiseR: There is no memory
term in ~18!, so thatX(t) is Markovian and, more precisely
it coincides with the Wiener process~to lowest order in the
noise strength!. We stress that this is only true for our pa
ticular definition ofX(t) in terms of the orthogonality off1
to the left zero mode. For any other definition, such as
usual one to define the front position asX(t)5*dj f(j),
X(t) will not be a Markov process, and would show on
diffusive behavior at sufficiently long time scales.

As a byproduct of our derivation, we have also obtain
an explicit expression for the relaxation behavior of the flu
tuations about the mean front profile. Not surprisingly, t
larger the gap in the spectrum, the faster the relaxation. A
well known, in models in which there is a transition from th
pushed regime to the pulled regime, the gap closes u
approaching the transition from the pushed side@10#. Hence,
the relaxation becomes slower and slower. As is discusse
@10#, in the pulled regime, the spectrum is gapless and
leads to anomalous power-law relaxation of determinis
fronts towards their asymptotic speed and shape. As a re
pulled fronts cannot be described by a moving boundary
proximation@9# and in the presence of fluctuations, they e
hibit subdiffusive wandering@6# in one dimension and
anomalous scaling in higher dimensions@12,13#.
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