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Introduction. Consider a star oscillating with in-
finitesimal amplitude; suppose the damping constant
corresponding to this state of vibration to be negative.
The amplitude will increase with the time and the
forced oscillations induced in the remaining degrees
of freedom will complicate the motion. However,
only intensified by resonance, these forced oscillations
seem to be of importance in actual Cepheids?). Hence,
the consideration is restricted to that one with period
approximately commensurable in the ratio 1 :2 with
the original period. This forced oscillation dissipates
energy nearly in the same way as the corresponding
free oscillation in this degree of freedom would do;
suppose its damping constant to be positive. If the
commensurability is not too close, the resulting con-
tribution to the dissipation of energy of the pulsation
of the star is proportional to the fourth power of the
amplitude; as the oscillation originally present dis-
sipates proportionally to the square of the amplitude
and the partial dissipations considered have opposite
signs, a balance appears possible at a critical value of
the amplitude; then, the total dissipation of energy of
the pulsation is zero 2). If the commensurability is too
close, a more detailed investigation is necessary.

However, things may become more complicated;
if the interaction between the motions in the two
degrees of freedom is considered, a reaction of the
original oscillation on a hypothetical free oscillation
in the degree of freedom that till now was only in
forced oscillation appears possible in such a way as to
make this free oscillation overstable. If the corres-
ponding critical value of the amplitude is larger than
the critical value considered above, the free oscillation
will not be excited; however, if this value is smaller,
then the star, while increasing its amplitude to reach
a dissipation of energy of the motion equal to zero,
is likely to excite this free oscillation. A balance seems

1) Cf. Miss H. A. Kruvver’s ‘investigation of the second
order terms, B.A.N. Nos. 268 and 276.
2)  Nature, 140, p. 195.

possible; however, the result is not a star pulsating
with one period, but with two nearly commensurable
periods, qualitatively resembling RR Lyrae; quanti-
tatively however, the required amplitude of the
secondary oscillation is far too large.

1. The equations of motion. The solutions s; of the
differential equation that determines the first order
terms in the radius vector in adiabatic star pulsations
constitute a system of functions that satisfy the relation
of orthogonality:

f Tbon $:8; dmn=10 17];
r denotes the radius vector, p the density; the index #
denotes the “normal” state of the star. The relative
displacement, a function of 7, and the time ¢, quite
generally may be developed in the series
r—r <
"= Cis;

Tn

the coefficients C'are functions of ¢ only; the functions s;
are adjusted so as to satisfy the relation:

fr,:‘p,. $:2dr, = 1.

The equations of motion of the variables ¢ may be
reduced to the canonical form if only adiabatic
changes of state are considered ?); if this restriction is
not made, it is necessary to consider the possibility
of this reduction more closely.

The internal energy of the star is equal to

f U dM;;

U is the internal energy (thermal and radiation
energy) per unit mass, M; is the mass contained
within the sphere of radius . U is a function of the
density p and the entropy #. The density p is a
function of r. and the variables C, as is evident from
the equation of continuity; the entropy = will be

1) Miss H. A. KrLuyver, B.A.N. No. 276.
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considered to be a function of 7, and the time ¢ explic-
itly. Hence, the integral is a function of the variables
C and the time £. As

=" 4 1 Tin,
o

(P denoting the total pressure, 7" the temperature), the
derivative with respect to one of the variables C of
the function U, which depends on the variables C;, 7,
4, is equal to:

U P ¥

aci T p2CH

The gravitational energy is equal to

T o,

= 4” ac dP——47Tfrz7‘nS;dP——4Trfpn——
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Hence:
I

) d
o Jvar =— [P au.
As pridr = pata®drn, |
Py

p_ 111 o
0C; 3 pu1a?0C;0n

Then, the last integral may be transformed as follows:

P 1
P dra b).

S denotes the constant of gravitation. Hence:

aC ff dM ff Tn Si er = 47[ fgrn3 Pn S drn;

g is the acceleration of gravity. The derivative of the sum of internal and gravitational energy is equal to

EXY TIPS A

The rignt-hand member may be reduced by means
of the hydrodynamical equation to the form:

d2 r—~" dZCi
r" P"S’dt2< a >dr"=_4ﬁ e

If the sum of kinetic, thermal and gravitational
energy be denoted by 4 © H, then

n 1)

27=1

I I Mr
EfUer—Eff /

and the differential equations of motion of the
variables C; are:

M,

dC: _ H dC: 0H
dt 30{ dt —— 3_0,"

equations of the same form as derived by Miss H. A.
Kruyver, now however proved to be valid also if the
restriction to adiabatic changes of state is removed.
In the case considered by Miss Kruvyver, H is a
function of the variables C;, C; only; here, H is a
function of the variables C;, C: and the time ¢ ex-
plicitly. Hence it is evident that these equations do
not determine the non-adiabatic motion: the func-
tional relation between the entropy » and the variables
7, ¢, here supposed a given relation, must be derived
from another equation.

These equations generally now do not possess the
integral ' = constant; only the relation

dH oH
dt ot

1) The independent variable r must be distinguished from
the variable r that is a function of 7, and ¢.

may be derived. As %]— T, this relation may be
expressed so:
dH 1 dn
- Ta
in this form it is related to the equation used by
EppingToN in determining the dissipation of energy?).

aM.;

2. The particular solution. Consideration of adia-
batic motion in case of commensurability 1:2 is
effected 3) by transformation to the canonical va-
riables Ji, w; by means of the equations:

2 . . . .
C: = ]/% cosw;y; C;=— V2 Jimsinw;,i=1,...co
i

and restriction of H to the form:

H=mn Ji+n Jo + k]2 ‘/72 cos (2w; — wy);

the quantities n; (¢ = 1, . . . &) and £ are constants,
n; is always positive.
The resulting equations of motion,

dfi  3H dw: oH
dt T w) dt d
(also valid, if no restriction is imposed on the func-
tion H), now may be treated according to the methods
of celestial mechanics.
Though this restricted problem may be solved
generally, it is more convenient to start from the

solution:
2)  A. S. EpDINGTON, The internal constitution of the stars, p. 198.

3) Cf. M.N. 953 p. 260 and Miss KLUYVER’s treatment
in B.A.N. No. 276.
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J1, J» constants; w,, w, linear functions of the time.
The values of w; and w, are connected by the
relation

2wy — wy = O,

8, being equal either to o or to m. The constant
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values of J,, [, must satisfy the relation:

OH S

J}“ |
The value of J, is arbitrary; the correspondmg
value of [, is determined by the relation:

Ji

]/L+<2”1—”2>2+2”1_”2
4 4k cos b 4 k cos 6

If the commensurability is not very close, the
right-hand member may be developed in a power
series with argument J;. Then the proportionality of
J to the square of J; and the influence of the small
divisor 2 n, — n, are apparent. However, as this
restriction must be avoided here, the relation must

be used as it stands.

The general solution may be approximated to by
considering the variations with regard to this parti-
cular solution, the terms of the first degree only
being taken into account. These variations satisfy the
relations:

doj, 02H ddj, dow, H dow, 92 0zf

i = 2w g = g bj2J1+aJaj 32— “ajlajzajl+WaJ2’
2 Wy — Wy = = 9 + 59.
Hence: '

d oo 92H 02 H 92 H 2H d?9 0H 0:H 02H\ 02H
a < VA ajlaj) it <26J19J2 VA >5j2’ ar _< SEVARIREYAY A aJ22>W66'
The solution of this equation is: 08 = = sin 7, = = vt + const., v bemg determined from the equation:

02 0 H 02H\ 02H J
2 T T 1
’ —<4BJ12 4BJIBJ2 BJ2>862 2J1< J>

» is a constant of integration. The sign of v is fixed

. v
by the convention: Foos b, > o0
02H » cost
=z
5 < 92H 02H >32H;¢ sint
wy = (2575~ T ;
ofit 9y ),/ 62 vE

The resulting values of C,, 0C; are:

3C, =

The values of the variables may now be derived by
quadrature:

02H » cost
= =
2H J2HN\ 92H » sint
5w2 = <23 — 2>—2 2
jlajz 8]2 a6 v

f) cos (o 1) +<I +l/1 +8%>C"S (("_’>}

S AL IR AR

oG, ZEI/ZJZ cossejz §< 1—4J + I/I -+ 8J2>cos (2&)—[—7)—{—( 1+4%2 —i—l/I—I—S“;z)cos (2m—r)§

w is the linear functlon of the time that is equal to
w, in the solution with » =o.

The quantities /,, J, are constants of integration
connected by the quadratic equation already men-
tioned; hence, only J, is an arbitrary constant.

If the solution of the differential equations with
the restricted function A had been effected generally,
the variables might have been expanded in the series:

© Astronomical Institutes of The Netherlands e

~ O . .
B = > 0 sinit
) . < ;0 .
Jo= 2, J» cosit =>" ], cosir;
(o] o

» and 7 being two linear functions of the time and
the coefficients depending on two constants of in-
tegration. Then, a canonical Delaunay-transforma-

< D .
W, =+ >, w; sinit
I
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tion might have been constructed!) from the set
Jl wl Iw ® .. .
<J2—w—2 to the set <ﬂ , the quantities 7, I being
functions of the arbitrary constants involved in the
coefficients of the goniometric series, defined by the
relations:

I, = -.]1(0) + 2.]2(0)3
o

IZ . 3 plE

I‘: =—; ZJ2()6().

In the solution developed in this section only first-
order terms in z have been considered. To the cor-
responding degree of approximation, the result may
be stated that the variables canonically conjugate
to the arguments w and t are:

I, = Jl + 2 j2>
122 (O
E=2% (5) =——=2—
2 v <362 o —j
]/I 4 82
1
It is to be remembered that in the right-hand
members J;, J, denote the constants of integration
connected by the quadratic equation.

22/,

3. The non-adiabatic perturbation. The function H
considered in section 1 depends explicitly on the time ¢
onlyin as far asthe entropy = is a function of ¢. Hence,
if the adiabatic problem has been solved, the com-
plete solution may be approximated to by adding to
the value 7, that is only a function of 7,, used in this
solution, the variation o», function of 7 and ¢,
first-order terms in this quantity only being taken
account of. The resulting addition to the function
H is equal to

0
L[, an.
47 J
oU ce .
As > = T, the addition is equal to:

‘%ﬂ_ ]Ta‘n aM,.

If only the terms to the second degree in C; in-
clusive are taken into account in the adiabatic motion,
each of the principal modes of vibration oscillates in-
dependently and the solution has the simple form:

J: is constant, w; is a linear function of the time

. . n

with period 2T

;

Then, the addition of the non-adiabatic terms in-

duces a variation of the quantity J; determined by
the equation:

1) Cf. M.N. 81° p. 603.

B.A.N. 303.

dfi 1 [T

YA | on dM,.

The secular part of the right-hand member only
results from the combination of a term in 7" with the
corresponding terms in dz of the same period. Hence,
thisright-hand member consists ofa sum of terms, each
referring to one mode of vibration and proportional
to the square of the amplitude a; of the vibration. As

. _ 2/

a;” =

, the equation, as far as regards the secular

z
terms, breaks up into an infinity of equations of the
form:

dJ:

o is equal to J; multiplied by a constant.

These separate equations determine the secular
variations of J; the multiplying constants may be
denoted by — 22;, o; being the damping constant of
the mode of vibration with index i.

If the adiabatic equations are solved by restriction
of the function H as in section 2, the problem of
actual Cepheid-variation seems closely to be approxi-
mated to and the secular variations of the amplitudes
may be determined. The solution considered consists
in three terms in the variable C;, all of nearly the
period belonging to the first mode of vibration, and
three terms in the variable C,, all of nearly the period
belonging to the second mode of vibration. By trans-
formation to the canonical variables 7, o, I, I» the
problem is reduced to the equations:

dl., 1 [T,
dI:

— — L [T an.

dt 47 ) o

The secular terms in the right-hand members con-
sist of sums of terms, each referring to one mode of
vibration and one periodic term only, proportional to
the squares of the amplitudes of these periodic terms.
The factors of proportionality are closely related to the
damping constants; however, the fact that 7 is dif-
ferentiated not with regard to the argument of each
periodic term, but with regard to a constituent part of
this argument, introduces some complications. As
demonstrated above, if the differentiation had to be
performed with regard to the argument of the peri-
odic term, then the factor would be equal to — «; ;.
Now however, if the argument has the form m; o +
my © (my, m, integers) and, expressed in ¢, it has the
coeflicient of ¢ approximately equal to 7, then in the
derivative ajz)—ﬂthe extra factor m, is introduced, inaa—?
the factor m,. As the amplitudes have been derived
in the preceding section, the equations that determine
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the secular variations of ., I. may be written down at once:

d[w_ o o . %2 J2 ( J2
a — 2oy J; — 425 [ <_8-]2>(81J1
Ju
dl- z2 J,

W=<
I

As I, Ir are functions of [, #, the right-hand mem-
bers are functions of /o, I-.

4. The stationary values of the amplitudes. First, con-
sider the case x = o. Then the second equation is
satisfied and the first equation may be written:

‘1_[9= 2“1.]1‘!‘4“2.]21
dt J1+ 2/: ”

Hence the damping constant is the (variable)
mean of «y, «, with weight factors approximately
proportional to the energies of the components of the
motion ). A stationary state requires the value of J;
to satisfy the equation

Je 1oy ..
yA > 7, (w-limit).

As each damping constant consists of terms cor-
responding to positive dissipation of energy and
negative dissipation derived from the energy sources,
itis easily conceivable that e, isnegative and «, positive
in actual Cepheids. Then, if » remains zero the star
must adjust the amplitude of its pulsation so as to
satisfy this relation.

Secondly, consider the case z 7 o. Then I_ is con-
stant if

Jz Je
8oy £2 J1 2a2< T> o,
VLN SR SRt
71 o 4oy + oy (+-limit).

If this limit is larger than the w-limit, then, if

the star is working up to the w-limit,— dr- will have

Yt
a positive value («, being again positive); hence
1 dl- .
I dt
excited. However, if the z-limit is smaller, the
r-oscillation becomes overstable if this limit is reached

and the t-oscillation generally must be excited.

is negative and the t-oscillation will not be

. . dl.
Then a stationary state requires the value of —d—?

to be zero if %= S is equal to the -limit. This condition

Ji

requires »2? to have a determinate value, that may be

1) Cf. Nature l.c.

(rag)rmfCrsg) (o) T

VE

5 ) 8ay T F 2x (1445 E
+8£>;§ o J1>)

Je

expressed in terms of the t-limit J by the equation
1

rgle_g (s
2= (r+87) f@g) el (7
1 Je

If the right-hand member is to be positive, %2

J1

— r-lirnit>.

must satisfy the inequality

1+1/§‘

7-limit <

This condition is equivalent to the condition
-limit < o-limit.
. . a e
Expressed in terms of the ratio a—l the condition is
2
o V3
2 _1+V3
oy T 2
. ay 1 4+V3
Hence, if A 1+V3
oty 2

the t-oscillation is likely to be excited and the star
has a secondary period (RR Lyrae).

If _ﬁ-<ﬂ
2 2

the r-oscillation cannot be maintained and the star
is strictly periodic.

The requirement of a definite value of <= Js generally

J1

determines J; by the quadratic equation connecting
the two constants of integration:

21, — ny + k cos Oogzl/ﬁ—-{}—j.;= o.
2 2

For, if the ratio I/J 2 = 1 is to be realised,

this equation affords the value of J;:

21, —n,  2A
kcosb, 1— 42%

V], =

The fact that 2 n; — n, is small compared with
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n, generally leads to a small value of the amplitude.
From the relation it is evident that A = } is the
maximum value attainable if only that solution is
considered in which J, becomes zero together with [;.
The other solution seems of no astronomical impor-
tance, at least at present.

5. Concluding remarks. The preceding developments
are independent from the construction of the normal
state of the star. However, if they are applied to actual
stars, it is necessary to know the values of the dissipa-
tion constants «,, «, and something about the pro-
perties of the functions s,, s,. Nothing definite can be
said about these data. Hence it is necessary to
proceed in the reverse direction.

J

The ratio %2 is related to observational data in a

J1
simple way: 2 <i—j>o ]/2\]72 is approximately equal
1

to the ratio of the amplitude of the second and the
first harmonic in the radial-velocity curve, the index
zero referring to values at the outer boundary of the
star. If an empirical value of this ratio equal to unity

is assumed, then
-2
Ji 2 \se/y
The behaviour of the functions s is determined by

the construction of the normal state of the star;
nothing definite can be said about the value of the

B. A.N. 303.
ratio s, : s, at the outer boundary. As a numerical
illustration suppose vE to be equal to . If this is the

8

1

w-limit, then the 7-limit exceeds the w-limit and the
star will oscillate with one period only. However, if
I
8
be excited; then, the value of » required to maintain
the pulsation is about 7; apart from the consideration
that the development of the solution in powers of =z
does not admit so large a value, the fact that = is about
equal to the ratio of the amplitude of the free os-
cillation to that of the second harmonic is prohibitive.
A small value of » might have been found by a value

of%

above, this value belongs to that solution of the
quadraticrelation between )/ J, andy/J,, that does not

become zero together with J,.

the value < refers to the z-limit, the t-oscillation will

. . 1+V'3
in the vicinity of % ; however, as stated

.The developments of this paper only refer to the
case of approximate commensurability in the ratio
1 : 2, which seems to correspond to actual Cepheids;
then, a stationary oscillation, either strictly periodic,
or with a secondary relatively long period, may be
arrived at by self-adjustment of the intensity of the
oscillation; only a moderate amplitude of the prin-
cipal oscillation appears to be required; however, if
the secondary oscillation is present, the derived value
of its amplitude seems inadmissibly large.
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