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TWO-DIMENSIONAL SOAP FROTHS AND POLYCRYSTALLINE
NETWORKS: WHY ARE LARGE CELLS MANY-SIDED?

CWJ BEENAKKER
Philips Rescarch Laboratories 5600 JA Emdhoven The Netherlands

The cortelation between the arca of a cell and its number of sides found n coatrscning
two dimensional netwotks (soap froths and polyctystalline materials) is studied both analytically
and by numerical simulation This shape—-size correlation 1s explamed as a dynamical consequence
of the shape-dependent growth rate of the cells

1. Introduction

The question posed 1n the title refers to a curious shape-size correlation
found 1n certain two-dimensional (2D) networks') There 1s no apparent
geometrical reason why large cells should have many sides, and yet this
correlation 1s observed 1n such diverse systems as biological tlssuez), soap
froths’), and polycrystalline metals and ceramics®) Empirical rules have been
proposed to describe the corrclation 1n the different systems, known as Lewis’
law®) A(n) <« n + constant, and the perimeter law* ) VA(n)« n + constant
(We denote by A(n) the average area of n-sided cclls ) The ubiquity of the
shapc—size correlation led Rivier’) to arguc that the empirical rules hold
because they maximize the network entropy (for different sets of constraints)
His argument 1s certainly general, but leaves unanswered the obvious question
Why maximize the entropy n these non-equilibrium systems?

We have no intention of proving or disproving the maximum entiopy
postulate Our aim 18 simply to deduce the mechanism of the correlation n a
certamn class of systems from the equations of motion describing their approach
to equilibrium We shall have nothing to say about the biological systems, but
restrict ourselves to the soap froths and polycrystalline materials These have in
common that their dynamics 1s governed by surface tension trying to shorten
the cell boundaries The equations of motion for this coarsening process take
an especially simple form 1n 2D, see section 2 A remarkable property of thesc
equations 1s that many-sided cells grow, while few-sided cells shrink®’) We
propose that the observed correlation between A and n 1s a dynamical
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consequence of the dependence of dA/df on n. An analytic calculation in
section 3, based on a highly simplified version of the model of section 2, shows
that indeed this shape-dependent growth rate leads in the long-time “‘scaling”
regime to shape—size correlations of the type observed. The dependence of
A(n) on n turns out not to be fully described by either Lewis’ law or the
perimeter law, but is of a more complicated form. A numerical simulation®) of
the full model bears out these general conclusions, as shown in section 4. Our
results are compared with a recent experiment® on a quasi-2D soap froth by
Glazier et al.’), and with a lattice model simulation by Sahni et al.*) of 2D
grain growth in polycrystalline materials. (A direct comparison with experi-
ment for the latter case is not made, since only data for 3D grain growth is
available.) Section 4 also contains a comparison with mean-field calculations by
Marder'?). We conclude in section 5 with some final remarks.

2. Equations of motion

We consider a 2D network with three-fold coordination of the vertices, see
fig. 1. The equations which govern the motion of the boundaries are different
for a polycrystalline network (P) and a soap froth (S). In case P the motion of
the grain boundaries (which separate crystallites of different orientation) can

Fig 1 Two-dimensional soap film network, traced from an experimental photograph made by
CS Smuth (1cf 9) The froth lies between parallel glass plates, spaced about 4 mm apart.

9
‘Earlier cxperiments did not show a scaling regime” '), sce scction 5
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be described by the curvature rule™) V=mI (V is the normal velocity
component, I" the local curvature of the boundary, and m a mobility coeffici-
ent). In case S we have instead a linear relation between the flux of gas ¥
through the soap film and the pressure difference Ap between adjacent cells,
¥ = uAp (u is a permeability coefficient). Laplace’s law Ap = oI (with surface
tension coefficient o) then implies ¥ = uol. Moreover, the soap film must
have a uniform curvature (since there is a uniform pressure inside a cell), so
that soap-cell boundaries are circular arcs —in contrast to grain boundaries
which have more irregular shapes.

In two dimensions a reduced description of the dynamics is possible, which
allows us to treat both cases P and S on the same basis. The reduction is
obtained by calculating the time derivative of the area A of a cell in the
network

dd—il = —constant X fﬁ dir, (2.1)

where the constant equals m in case P, and o in case S (an incompressible gas
is assumed). The line integral of the curvature is taken along the perimeter of
the cell and can be evaluated by inserting the definition I"'=d¢/dl (¢ is the
polar angle of the tangent to the curve). The result may be written as

ffdzrzzw—i(ﬂ—a,), (2.2)

where «, ..., «, are the internal angles at the n vertices of the cell. Local
equilibrium requires that in the infinitesimal region of intersection the three
boundaries meet at equal angles of 120°. Putting «, =2=/3 in eq. (2.2) and
combining with eq. (2.1), one then obtains the evolution equation

% = k(n—6), (2.3)

with k = (mw/3)m in case P, and (w/3)uo in case S. This remarkable equation is
known as von Neumann’s theorem®) in the case of a soap froth, or as the area
theorem’) in the metallurgical context. Supplemented by a simple model for
changes in n (see below), it allows a reduced description of the coarsening
process in terms of only two variables A and »n per cell. In this description the
different form of the boundaries in cases P and S does not enter.

Before proceeding with a discussion of the mechanisms by which a cell can
change its number of sides, we note one important consequence of eq. (2.3).
Since the total area of the N cells is conserved (for an infinite system), we have
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N()

2 AM=0, (2.4)

y=1

d
dr

which implies*

N()

Z (n,—6)=0. (2.5)

That the cells have 6 sides on average may also be derived from Euler’s
theorem, cf. ref. 1.

Marder'?) has proposed a very simple way to model the dynamics of n,
which goes as follows. In principle, a cell can change its number of sides by
either') a neighbour-switching “T1-process”, or by a “T2-process” involving
the disappearance of a cell. This is illustrated in fig. 2. In the T1-process two
cells lose and two cells gain a side. In the T2-process the number of sides
gained or lost depends on whether the disappearing cell has 3, 4, or 5 sides™*:
If a 3-sided cell disappears, each of its neighbours loses a side; if the
disappearing cell has either 4 or 5 sides, two neighbours lose a side — and in
addition in the latter case one other neighbour gains a side. Note that as a
result of each of these elementary processes the average number of sides of the
cells remains 6, as it should. In the experiments of Glazier et al.’) it is observed
that in a coarsening soap froth only a small fraction of the topological changes

b
c d

Fig 2 Sketch of grain boundaries undergomg topological changes Fig 2a shows the T1- or
neighbour-switching process, figs 2b-d show T2-processes related to a disappearing 3-, 4-, ot
S-sided grain (Notice how m Fig 2d one gramn ends up gaming a side )

*The time derivative and the summation n eq (2 4) may be interchanged, since cells which
disappear necessarily have a vamshing area and therefore do not contribute to the sum

**When a 2-sided cell disappears, each of 1its neighbouts loses two sides These lense-shaped
cells are very rare
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occurs via neighbour switching without a disappearing cell We shall assume
that these T1-processes play an ummportant role m grain growth as well, and
may be neglected The description of the dynamics of n 1s now complete, but
for one final point When a 4- or 5-sided cell disappears one must specify which
two (mutually non-adjacent) neighbours losc a side 1n the T2-process, cf fig
2¢,d We shall assume that each such pair is equivalent and choose 1t at
random” This seems reasonable 1n view of the equi axed form of the cells
Marder'?), on the contrary, imposes the bias that the two smallest neighbours
always lose a side We shall return to this poimnt 1n section 4

In ref 8 we have described how the coarsening of a 2D network can be
simulated on a computer by means of the above model A ‘“‘mean-field”
version, 1n which correlations between different cells are neglected, has been
studied by Marder'’) We defer a discussion of these numerical results to
section 4 First, a qualitative analytic treatment 1s given, which explicitly brings
out the dynamical onigin of the shape-size correlation

3. Qualitative theory

The main features of the correlation between area and number of sides may
be obtained analytically from a sumplified version of the model of section 2 In
this simplification the determunistic dynamics of the number of sides »n 1s
replaced by a diffusion process for a continuous variable v, so that the
distribution function P(A, v, t) evolves i time according to

J J 0
Py P(A,v,t)=—k A (v —6)P(A, v, 1) — P D,(HP(A, v, 1)

2
i1 0P, v (1)

2 dv
The first term on the r h s corresponds to von Neumann’s theorem, cq (2 3)
The remaming two terms describe the diffusion process, with dnift and diffu-
ston coefficients 2, and (2, These terms are consistent with Marder’s'?)
mean field equation mn the continuum approximation, if we identify 2, =
0,-0_,and O,= 0, + Q_, where 2, and 2 are the probabilities per umit
time that a cell gamns, respectively loses a side Note that, since 2, >0, this
identification mmplhies £, > |(2,| For simplicity we 1gnore here any dependence
of the 2’s on A and v (see ref 12 for a more realistic choice of 2) Eq (3 1) 1s

*There 15 onc rare exception If as a result of our rtandom choice a sputious boundary would
appear (1 e a boundary which does not separate two distinct cells) then another pair 1s chosen In
particular a 2 sided cell 1s not allowed to lose a side
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supplemented by the boundary condition
PO, v,t)=0 forv>6, (3.2)

which expresses the fact that grains can vanish (if » <6) but not reappear. In
addition one might include a reflective boundary at v =2, to ensure that cells
do not have less than 2 sides. This is not essential to the problem, and is
omitted here, since anyway cells with v <2 shrink rapidly and disappear.
Numerical simulations) has shown that, after transients have died away, the
system enters a scaling regime in which the normalized distribution function
depends on time only through the average area A(r) — which itself increases
linearly with ¢. Let us look for a solution of this form, thereby restricting
ourselves to the long-time regime. We thus substitute into eq. (3.1) the Ansatz

P(A, v, 1) = N(t)A(t) 'p(AIA(1), v), (3.3a)
_ 1
A(t) = p” kt, (3.3b)

with y an undetermined numerical coefficient. The prefactor N/A in eq. (3.3a)
ensures that p is normalized to unity,

fwfdvﬂmﬂ=L with a= A/A .
0 — 00

The resulting equation is

~2p(a, v) + [Y(v = 6) = alo- pla, »)

= 1,015 pla, 1)+ 5 1002 pla, v) (3.4)

where we have used that the total area NA is constant in time. The r.h.s. of eq.
(3.4) is time independent provided (2, and (2, scale as 1/¢ in the long-time
limit, so that #02, ,(f) = w, , = constant.

We are now in the position to analyze the correlation between area and
number of sides which has developed in the scaling regime. To this end we take
the first two moments of p(a, v) with respect to a,

p(v)EJda pa, v) and a_(v)Ep(V)_lfda ap(a, v),



262 C.W.J. BEENAKKER

which according to eq. (3.4) satisty

2

, dd— p(v) — w, di p(@) +p(¥)=—y(v = 6)p(a =0, v), (3-5)

w, —3
2 73
dv

N =

[p(Ma(»)] - o, dd [p(v)a(v)j=—v(v —6)p(») . (3.6)

NS N

To close these two equations we need a guess for p(0, v). This function is zero
for v>6 (eq. (3.2)) and rapidly decreases to zero for v <2, with a peak in
between. The simplest way to model this behavior is by a delta function, say at
v = 3. Substituting p(0, v) = constant X 8(v — 3) into eq. (3.5), and eliminating
the constant by requiring that p(v) is normalized to unity, we obtain

0, = p() — 0 oo p(9) + p(3) = (v —3). (.7

dv
At this point we note that the value of w, is completely determined by eqs.
(3.6) and (3.7). Indeed, multiplying both sides of eq. (3.7) by v and integrating
we find that

w, =3- f dvvp(v)= -3, (3.8)

where we have used that the average of » equals 6 (this follows from eq. (3.6)
upon integration over v).

The differential equations (3.6) and (3.7) can be solved by elementary
methods (cf. ref. 14). The results are

p() = = €T e )0 -3, (3.9)
1 —AA(y—3) _efz\+(1/*3)
t a(V)—V— z w, AA+ w, AA 1= o B , for v>3,
—€C
(3.10)

where we have defined

3 1/2
AiE—[li<1—§w2> ] and AA=A, —

The function 6(» —3) in eq. (3.9) is 1 for »>3 and 0 for »<3. The
requirement of real eigenvalues A, , necessary for a non-negative p, limits the
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Fig 3 Scaled average area versus number of sides, according to eq (3 10) (Vertical axis 1n units
of the dimensionless coarseming rate coefficient y) This 1s the result of the qualitative theory, in
which the number of sides 1s treated as a continuous variable » Shown 1s the curve for w, =4,
other values of w, 1n the range (3 11) give similar results

allowed values of the parameter w, to w,< 3. Together with the previous
restriction w, > |w,| this gives

3<w, <5 . (3.11)

Both p(v) and a(v) are not very sensitive to variations of w, in this range, so
that eq. (3.10) essentially determines the scaled average area a(v) = A(v)/A
up to the multiplicative coefficient 1.

As shown in fig. 3, a positive correlation between area and number of sides
is found. The average area as a function of the number of sides increases rather
slowly for few-sided cells, and then crosses over to a more rapid linear increase
for many-sided cells. These qualitative features are indeed observed both
experimentally and in numerical simulations, as we shall now discuss.

4. Numerical results

We have studied the model of section 2 by a method of numerical simulation
described previously”). The system initially consists of over 10° cells, with a
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broad distribution of cell areas and number of sides’. In fig. 4 we have plotted
the ratio A(n)/A versus n. This quantity is time independent in the scaling
regime. Our numerical results (solid curve) confirm the main features of the
shape-size correlation found in the qualitative theory of the previous section:
As in fig. 3, a positive correlation is seen between A and #, characterized by an
initial slow increase of A(n) with n and a more rapid increase for n > 6. The
data also seems to confirm the linear dependence for large n (although with a
smaller slope than predicted**). We do not, however, consider our numerical
data conclusive evidence for the asymptotic linear law, in view of the statistical
uncertainties at the two largest values of n. Note that Marder’s mean-field
calculation'?) gives a quite different large-n behaviour (dashed curve). It would
be interesting to know if the difference is due to Marder’s neglect of correla-
tions or to the bias in his dynamical rules (which, as mentioned in section 2,
causes small cells to have a greater probability to lose a side than large cells).

5

4_
kN —
—~~
£
<t R

1_

0 T

2 3 4 5 6 7 8 9 10 11 12 13

Fig 4 Scaled average arca of n-sided cells, compating two theorics and one expeniment Solid
curve 1s drawn through points obtained by numerical simulation of the model of section 2 (Eiror
bars have a length of one standard deviation from the average over 10 1uns, for 7 <9 this statistical
crror 15 msignificantly small ) Dashed cuive 1s Marder’s'?) mean-ficld thecoty Plusses and crosses
are measurements by Glazier et al ) on a quasi-2D soap froth, after coasening during 12 hours
and 64 hours, respectively

*The 1mtal statc 15 obtained by peiformung neighbour-switching T1-processes at random on
graimns 1n a hexagonal network with periodic boundary condittons — until 40% hexagonal cells have
remained, imtially the areas arc uncorrelated with the number of sides, and are distributed with a
standard deviation of 60% of the average Thesc nitial conditions correspond to case D i ret 8§

“*Eq (3 10) predicts an asymptotic slope equal to the rate coefficient vy, defined m eq (3 3b)
We find y =1 7 1n the simulation, while the slope 1 fig 4 1s only about 0 7
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The large-n behavior found here agrees with that observed experimentally
by Glazier et al.’) in a quasi-2D soap froth. In fig. 4 measurements at two
different times in the experiment are shown. These two sets of data are roughly
equivalent, consistent with the existence of a scaling regime. Although for
n>6 our simulation agrees quite well with this experiment, the calculated
average area of 3- and 4-sided cells is considerably larger than observed. A
possible cause of this discrepancy 1s our neglect of the neighbour-switching
T1-process (see section 2), which would provide an additional mechanism by
which small cells can lose sides before disappearing. Finally, we present a
comparison with results of Sahni et al.") from a simulation of the Potts lattice
model for grain growth in a 2D polycrystalline network®. Since these authors
average the grain “radius” R=7V A/mw, rather than its area, we have plotted
their data in a separate figure (fig. 5), together with our results for R(n)/R.
The differences are comparable to those with the soap froth data. Note also
that, of the two empirical rules, the perimeter law R(n) = ¢, + c,n describes
the shape-size correlation somewhat better than Lewis’ law A(n) = ¢, + c,n.

25
2_
2 15
™~
—~
d
N’
o 1-
05
C
0 — T T T T T T T

|
2 3 4 5 6 7 8 9 10 11 & 13
n

Fig 5 Scaled average radius of n-sided cells, comparison of data from the 2D grain growth
simulation by Sahnt et al *) (ciicles) with our results (solid curve, error bars as n fig 4)

“An application of this lattice model to 2D soap froths , and also a continuum version, have
becn studied by Weante and coworkers'>) Their results for the shape—size correlation are simtlar
to those of Sahni et al
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5. Concluding remarks

An analytical and a numerical study of the shape—size correlation in 2D soap
froths (S) and polycrystalline networks (P) have been presented. The results
are in general agreement with experimental data®) for case S and with a lattice
model simulation*) for case P — although a discrepancy for few-sided cells
remains. We conclude with the following remarks.

i) The similarity for the data in cases S and P strongly suggests that the
shape—size correlation in these two systems has the same origin. Our analysis
identifies this common origin as von Neumann’s theorem (eq. 2.3), which
correlates the growth rate of a cell’s area with its number of sides, and holds
for both cases S and P. An analytic calculation (section 3) shows explicitly that
a dynamics based on von Neumann’s theorem (plus a diffusion equation for
changes in the number of sides) leads to correlations of the type observed.

ii) The shape-size correlation is not fully described by either Lewis’ law or
the perimeter law. In fact, even the highly simplified treatment of section 3
predicts a rather complicated dependence of A(n) on 1 (eq. (3.10)), starting off
quadratically for small » and then reaching a linear dependence for large n. In
contrast, Rivier’s’) maximum entropy argument for the grain growth problem
leads to the perimeter law for all n. As an empirical rule, the perimeter law is
quite good (cf. fig. 5). However, the fundamental significance attached to this
rule by Rivier is not supported by our analysis of the equations of motion.

iii) In the long-time limit, the scaled average A(n)/A is found to be time
independent. This is consistent with a consequence of the scaling hypothesis
that the (normalized) distribution of areas and number of sides is time
invariant when expressed as a function of A/A(¢) (eq. (3.3a)). In the literature
on the soap froth problem this has been a controversial issue: Early experi-
ments showed no sign of a scaling regime™'"). In ref. 11 we have proposed a
theory for this anomalous non-scaling behavior, in which the many-sided shape
of large soap cells is attributed to the relatively low surface energy of such
nearly circular cells. The new experiments by Glazier et al.’), however,
disagree with ref. 11 — and we now believe that the surface energy mechanism
plays only a minor role in the development of the shape—size correlation. The
point is, as argued by Marder'?), that the soap-film network is highly con-
strained in its movements and cannot easily reach an energetically more
favourable structure. Marder’s calculations show convincingly that these new
experiments can be explained without considering the surface energy mechan-
ism (and also suggest that the anomalous broadening of the scaled distribution
function seen in the previous experiments was a transient effect). In this
connection we note that the validity of a second consequence of the scaling
hypothesis, viz. the linear growth law (3.3b), remains to be established
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experimentally, although theoretically there is considerable evidence in favour,
see refs. 8 and 12 for further discussion.

iv) Our analysis is based on von Neumann’s theorem (eq. (2.3)), and thus
limited to two dimensions. Measurements on 2D sections of 3D polycrystalline
materials show a shape-size correlation which is remarkably similar to that
found in the simulation of 2D grain growth in ref. 4. This remains to be
explaincd. The mechanism of the correlation will be the same in 3D as in
2D - provided that grains with many faces have a concave surface, while those
with few faces are convex. (This seems indeed to be the case'®).) Many-faced
grains, then, would grow at the expense of few-faced ones, leading to a
dynamical shape—size correlation in three just as in two dimensions.

Acknowledgement

It is an honour to dedicate this paper to my teacher, Professor P. Mazur.

References

1) Sce the 1eview atticle by D Weane and N Rivier, Contemp  Phys 25 (1984) 59

2) F T Lews, Anatomical Record 38 (1928) 341

3) J A Glazier, S P Gross, and J Stavans, Phys Rev A 36 (1987) 306

4) PS Sahm, G S Grest, M P Anderson and D I Siolovitz, Phys Rev Lett 50 (1983) 263,
Acta Mctall 32 (1984) 783, 793
PS Sahnm, DJ Srolovitz, GS Giest, M P Andeison and S A Satran, Phys Rev B 28
(1983) 2705

5) N Ruvier, Philos Mag B 52 (1985) 795

6) J von Neumann, i Metal Intetfaces, C Herring, ed (Ametican Society for Metals,
Cleveland, 1952), p 108

7) WW Mullins, I Appl Phys 27 (1956) 900

8) CW1J Beenakker, to be published

9) D A Aboav, Mctallography 13 (1980) 43

10) D Weaue and T P Kermode, Philos Mag B 47 (1983) 129

11) CWIJ Beenakker, Phys Rev Lett 57 (1986) 2454

12) M Maider, Phys Rev A 36 (1987) 438

13) SM Allen and JW Cahn, Acta Mctall 27 (1979) 1085

14) PM Morse and H Feshbach, Mcthods of Theotctical Physics (McGraw-Hill, New Yok,
1953), vol 1, p 530

15) D Weane and J P Keimode, Philos Mag B 48 (1983) 245, 50 (1984) 379
J Wejchett, D Wearre and J P Kermode, Philos Mag B 53 (1986) 15

16) FN Rhines and K R Craig, Metall Trans 5 (1974) 413



