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Summary. A detailed analytical model is presented for the propagation of
jets through various inhomogeneous media typical of extragalactic radio
source environments. Observing that all jets have small opening angles, the
determination of their path and shape becomes analytically tractable. The
structure of jets is calculated under the assumptions that there is a steady
irrotational flow which is both compressible and isentropic; that the jet is
confined, so that a pressure equilibrium is maintained; and that viscous forces
are negligible across the jet—intergalactic medium interface.

We find that significant jet-bending can only occur if the characteristic
Mach number is less than unity and the jet is initially directed at a large angle
to the direction of the external pressure gradient. The higher the Mach
number, the less the jet-bending. Ultra-relativistic jets will only bend through
~ 1/T radians, where T is the jet Lorentz factor. Our calculations of jet-paths
under various conditions can adequately account for much of the observed
morphology of bending of extragalactic radio source jets, and are consistent
with statistical studies of the correlation of radio with optical morphology.

1 Introduction

Detailed maps of radio sources with jets clearly show that jets bend (Miley 1980). The
bending occurs over a range from ~ 1 pc to ~1Mpc (Van Breugel & Miley 1977; Readhead
et al. 1978; Bridle et al. 1979). It seems plausible that the bending is caused by pressure
gradients in the jet’s environment influencing the jet’s trajectory.

An extreme example of such a phenomenon has already been discussed using a simple
model for the head—tail source NGC1265 (Begelman, Rees & Blandford 1979; Jones &
Owen 1979). We develop here a more sophisticated analytical model which can be used to
study the jet-bending phenomenon itself.

Our model is based on the one-dimensional jet model of Blandford & Rees (1974),
extended to three dimensions under our assumption that the jet is thin, and relaxing their

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1981MNRAS.194..771S&amp;db_key=AST

rTI81MNRAS, T947 77150

772 M. D. Smith and C. A. Norman

assumptions of a straight jet-path and a circular cross-sectional shape. Moreover, from the
observed path and shape of a jet, we infer properties of the interstellar medium around it.

Section 2 discusses the basic model and its assumptions in general terms. In Section 3,
the formulae and method for analysing non-relativistic jets are set out. We obtain the
trajectory of a jet in terms of its initial conditions and the nature of the surrounding
medium. Section 4 demonstrates how these results extend to ultra-relativistic jets. The
physical and observational implications of our model are discussed in Sections 5 and 6,
respectively.

2 The bent-jet model

We assume that a jet is a low-density, isentropic fluid with a weak magnetic field. The
model will be applied to both relativistic and non-relativistic jets; and in each case, the jet
will be assumed to be initially confined.

The density of the jet fluid is required to be much less than the density of the surrounding
medium in the galactic nucleus or wherever the jet is formed. Thus, buoyancy forces will
dominate gravitational forces and the jet fluid will be accelerated out of the source region.
Outside this core region, the confined jet model may become inappropriate, as seems to be
the case for both 3C449 and 3C 31, whose jets have particle densities estimated to be 1072
cm™ and probably expand freely (Perley, Willis & Scott 1979).

We argue that a thin region or boundary layer of turbulent (non-isentropic) flow
separates the irrotational jet flow from the external medium. The drag force at this
boundary layer will be assumed to have a negligible effect on the jet flow; and the boundary
layer will simply be represented by a velocity discontinuity. This boundary condition is
observationally supported by the absence of limb brightening in resolved jets (A. G. Willis
1980, private communication), suggesting that we are seeing radiation from the jet itself,
rather than a surrounding sheath. The jet fluid is taken to be inviscid; and the entrainment of
matter through the Kelvin—Helmholtz instability is ignored. In general, we propose that the
boundary layer dissipation is sufficiently low for the flow to be taken as isentropic.

The pressure external to the jet, p,, is taken to be a given function of position alone, and
axisymmetric around one axis of a Cartesian coordinate system (X, Y, Z) whose origin
coincides with the origin of the jet. Such a distribution can be described by

Pe=Do- {exp (k3 X*—kiY?—Kk*Z?)}, 1)

or

GGG 2
=—{{—] +(— ) +|—]) {,

Pe™3\W\ny) T\ T\ @
where k, k, h, h, are constant characteristic scales and p, is constant. If #;, > 2 and k, <k,
equations (1) and (2) can be written,

De=Doexp (1-k*Z?), (3)
Z n
Pe=po(z) s 4)

so that Z represents the distance from the ‘central plane’ of a highly flattened gas cloud.
Equation (3) thus describes an isothermal gas cloud within, and gravitationally supported by,
a uniform ellipsoidal mass distribution, while the variable index » in equation (4) allows an
approximation to either isothermal or adiabatic atmospheres. The one-dimensional pressure
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variations are not restrictive; for, through rotation of axes, we can obtained pressure
distributions of the form p,«<Z" + NY", where N is a constant.

The jet flow is fully determined on application of the following initial conditions. These
are assumed to be given on the boundaries Z = 1/k (equation 3) and Z = & (equation 4) by
the pressure p = pg, density p = po, cross-sectional area 4 = A, cross-sectional shape So, and
fluid velocity v, at an angle 2, to the major plane. The presumption is thus made that a
steady jet is established and maintained by processes within the core.

An important inference from the observations is that jets are thin in comparison with
their length. A measure of the slenderness of a beam is defined by Keller & Weitz (1952) as

typical beam half-width
typical beam length

€ = slenderness ratio =

Typical numerical values for the slenderness ratio of jets are € ~ 0.1 for 3C449, e ~ 0.05 for
NGC6251, and e~ 0.2 for NGC315. For jets in more powerful extended sources, a
maximum value of the ratio can be inferred from the sizes of the hot spots which form at
the interface of a jet with the intergalactic medium. The hot spots are typically 3 kpc wide at
distances of the order of 150 kpc, giving € < 0.01.

3 Non-relativistic jets

Previous studies of thin jets have dealt with incompressible fluids acting under a constant
gravitational force, and comparisons have been made with jets of water (Keller & Weitz
1957; Keller & Geer 1973; Tuck 1976). A detailed three-dimensional analysis of such
flows has been given by Geer (1977a, b) whose basic method is extended here to com-
pressible fluids and boundary conditions relevant to extragalactic jets. The calculation to
zeroth order in the slenderness ratio gives the jet’s trajectory. The variations in the magni-
tude of the parallel velocity component calls for motion across the flow in order to conserve
mass. These cross-flow velocities determine the shape of the jet, which is obtained with higher
order calculations.

The model jet consists of an isentropic fluid that is inviscid and compressible and is in
steady and irrotational motion. By using the same Bernouilli constant across the jet and

assuming irrotational flow the model is reduced to a simple set of equations. An adiabatic
equation of state with index v is used:

) ®

Energy and mass conservation lead to a Bernouilli equation satisfied throughout the jet, with
velocity potential &:

2

(V@)2 + —’Y e = U2, (6)
y—1p
where
2

U? =2 + L (’_’2)

Y—11pg
is a constant, and
V-(pV®)=0. 7
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Equation (7) can then be written as a Poisson equation:
(y=1D{U? —(V®)*) V2D = (VD -V) (VD)2 (8)

This is the general potential equation for (non-relativistic) steady compressible fluid flow. In
the incompressible case (y = ), this reduces to Laplace’s equation, V?® = 0.
A boundary condition is specified through the velocity normal to the surface being zero,

n-vd=0, 4 ©)

where n is the unit outward normal to the surface. Using equations (5) and (6), the pressure
equilibrium across the bounding surface can be written as
1
(VO =U?— 2 pi.
Y—1 po

The remaining problem is to find a solution to equation (8) satisfied throughout the jet,
with equations (9) and (10) satisfied on the jet surface. Since the external pressure is axi-
symmetric, there is some freedom in fixing the plane in which the initial jet velocity, vy, is
directed. Here it is taken to be on the Y—Z plane. Although it is not necessary to specify the
nature of the flow further, from the X-independence of the pressure distributions it is
obvious that the locus, C, of centroids of mass of the jet remains in the Y—Z plane. Allowing
for torsion only complicates the analysis and, of course, the torsion is eventually found to be
zero for the curve C'!

We can now proceed to derive the solution to the jet-path to zeroth order in the slender-
ness parameter. The mathematical details can be found in Smith (1979).

(10)

3.1 COORDINATE SYSTEM

We choose a coordinate system as indicated in Fig. 1. The origin of the system lies on the
centroids of mass and so the directions of the orthogonal axes are not fixed. K is the
curvature of C [where C'is given by Y (0), Z (0)] defined as

i (a2Y(a))2 . (aZZ(o)>2. an

902 902
24

—_———

<Y

X
Figure 1. A sketch of a thin jet indicating the type of flow discussed and the coordinate system.
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The boundary surface of the jet will be described by R = bog((), 0), where bg, given by
Ao = mb}, measures the typical initial jet half-width, and S determines the cross-sectional
shape.

Re-defining the coordinates by r =R/bo, s = g/h and (x, y,z) = (X, Y, Z)/h, equation (4) is
reduced to pe = poz”. Accordingly, we define,

(I)(R,0,0') 27 Po

€e=bo/h, S@,s;€ =§0,0, &(r,0,5;¢)= ———— and = , 12
o/, S6.5:9=50,0), @(r,0,50)= = = ()

where £ is related to the initial Mach number, My, of the flow by

2
M§=—:(1/¢-1), (13)
v-1

as demonstrated in Fig. 2. Here, n¢ is the ratio of the initial mean radius to the external
pressure scale-height, and £ is a measure of the relative importance of the initial pressure and
the initial momentum flux density.

0.5

0 Mo

Figure 2. The relation between the parameter £ used in the text and the initial Mach number. Curve (i)
holds for ultra-relativistic fluids. Non-relativistic fluids with (ii) v = % and (iii) v = 4 are also shown.

3.2ASYMPTOTIC EXPANSION

The assumption is now made that as e tends to zero, ¢ and s have power series expansions in
€ of the form,

co

o(r,0,s5€) ~ Y. ¢(r,0,s)e, (14)
j=0
S, s;€) ~ i S/, s) €, (15)
i=0

where the ¢’ and S/ are indgpendent of e.
The functions ¢’ and S’ are determined by substituting these expansions into our set of
equations and making Taylor expansions in € about € = 0.
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3.3 ZERO-ORDER SOLUTION

Using the identity »2 +2% =1, and the initial conditions (Section 2), the locus of centroids
of mass of the jet can be calculated

1+ (dz/dy)* 1-¢2*
1+tan® Q, 1—%

; (16)

where u = n(1—1/v), which can be written in the form

cos _( 1—-¢ )1/2 7
cos 2, \M—gz4 (17)
where Q = tan™* (dz/dy). The solution to this equation is,
T—E\2 /2 4 g\ VM paz
y—1 =“—1£1/u( £ ) ( 0 :) J a1 - w)-1/2 Wl =Wk dw, (18)
mg +§ m(2) +1 o

where

m3 +1
a=§— and m, = tan .

mg +§

The right-hand side of equation (18) is a multiple of the open beta function, 8o(1/u, 1/2)
(Abramowitz & Stegun 1965). (The solution in the case of a homogeneous external pressure
is given by n = 0. Since u = n(1 —1/y), a straight jet with dz/dy = m results, as expected.)

The analysis of the previous two subsections can easily be generalized to any atmosphere
of the form p,=pof(z); f(z) is an analytical function, suitably scaled so that p,=p, at
z=1. Then in the case of k #0, on application of the initial conditions, two non-linear
differential equations for the locus of centroids of mass of the jet are obtained:

Evif () df _
1-£f"(2) dz
yr+it=1, (20)
where v =1 —1/v. These may be integrated to give the jet-path in the form,

1 +(dz/dy)®> 1-£f"(2)
1+m? 1-¢

2002 +29)+ 0, (19)

(21)

4 Relativistic jets

In this section, the three-dimensional relativistic equations of motion for a flow within a
thin jet are discussed. For simplicity, the case of an isotropic ultra-relativistic fluid is taken
and the flow characteristics as determined in Section 2 are applied. The enthalpy per unit
proper volume can thus be written as

w=4p xp, (22)

where p is the pressure measured in the comoving frame and p is the proper mass density.
This can be written as an adiabatic gas law:

)"
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The relativistic Bernoulli equation is given by wI'/p being a constant along any stream-
line (Landau & Lifshitz 1959). Here, I is the Lorentz factor (1—v?/c?)™'2, where v is the
fluid velocity. Here, v denotes the adiabatic index; hence I' is used for the Lorentz factor.
Using equations (22) and (23), this becomes,

F 4
2
0
where
2\ -1/2
Vo
Iy = (1——) .
0 2

The relativistic equation for potential flow is

w
Vx(—u) =0
n

where u gives the spatial components of the velocity four-vector, i.e. u=T'v. The potential
function, ®, is written here as

p\ 14
(——) u=Vo, (25)
Do

upon using equations (22) and (23). Steady potential flow requires equation (24) to be
satisfied everywhere in the fluid. The conservation of the number of fluid particles is given
by V- (pu)=0. Using equation (23), we obtain

V- (p**u)=0. (26)

Four equations for the four unknowns, p, p, v and ®, have been found. Combining
equations (24), (25) and (26) yields I'qv = V® and

(13— (VE)} V20 = (V0 -V ) (VO)?, @7

satisfied everywhere in the fluid. Identifying I'yc = U, we then have the equivalent of the
non-relativistic fluid equation (8) with an adiabatic index, v, of 2.

As with the non-relativistic jet, the boundary condition n - V& =0 is incorporated using
the requirement that the velocity normal to the surface is zero. Consequently, the pressure
exerted transverse to the boundary surface is identical to the pressure in the comoving
frame. From equation (24), the pressure balance across the boundary gives

1R

(VO)2=U? - c? (%) . (28)

By rescaling physical quantities as in equation (12), except for & which is now given by
£=1/T'3, the equations are reduced to the form given in Section 3, with y = 2. Hence the
previous results for ¢ and the jet-path hold. By defining an initial Mach number as

Fovg
b

Mo =~/(2/3)

Cs

where ¢ = c/+/3 is the sound-speed in an ultra-relativistic plasma, the relationship

M3=2(1/§-1) (29)
is obtained, as shown in Fig. 2.
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We now discuss some physical and observational implications of the bent-jet model
calculated in the preceding sections.

5 Physical implications
5.1 FLOW VELOCITY

The Mach number M, defined as v/c in the non-relativistic case and as +/(2/3)I'v/c; in the
relativistic case, is given in terms of non-dimensional parameters by
u
- 2 1-%&z

y—-1 gz*

for power law external atmospheres with u = n(1 — 1/y). The external pressure is taken to be a
monotonically decreasing function of z, (n < 0), and the adiabatic index, v, is taken to be
greater than unity, so that u < 0. For example, a jet propagating through a radio lobe may be
confined by a surrounding ‘cavity’ of plasma that results from the earlier ejection of energy
from the core (Scheuer 1974) and, in this case, n ~ 0. Therefore, the Mach number increases
monotonically with distance from the core. For z> 1 or My> 1 (i.e., £ < 1), the increase,
M o< z7M2 is slow.

As shown by Blandford & Rees (1974), an initially subsonic flow at the centre of a
galactic nucleus will become supersonic within a short distance, when the pressure has
decreased by a factor [2/(y + 1)Y=V ~1 from its value where the fluid velocity is zero
(stagnation point). For the non-relativistic model to be applicable, it must be verified that
the jet velocity remains non-relativistic all along the flow. If the stagnation sound-speed is
relativistic, however, the fluid velocity then also becomes relativistic within a pressure scale-
height. So a non-relativistic stagnation sound-speed, c;, is required. Then, as z > o, v* - U?
=2/(y—1)ck It is here proposed that a cloud of non-relativistic gas accumulates at the
centre of the nuclear core of a galaxy. The cloud must be a great deal larger than the
Schwartzschild radius of any mass concentration within it; since, near this radius, the sound-
speed of a pressure-supported gas is relativistic. When the central pressure is raised, a high
pressure gradient is attained and the light gas flows out of the core.

(30)

5.2 JET-PATH

The jet-path is independent of the cross-sectional shape. In Fig. 3(a) and (b), the path of a
jet (the locus of centroids of mass) is shown. By using equation (21), the equation of motion
for the jet-path can be derived

pv2K = (—dP/dZ) cos 2, 31

indicating that the centrifugal force is balanced with the force due to the pressure gradient
across the jet. The curvature is a monotonically decreasing function of z, i.e., the bending
is predominantly occurring close to the origin of the jet. If the external pressure decreases
slowly with increasing z, then the bending is more gradual (Fig. 3a). With the exponential
atmosphere given by equation (3), 80 per cent of the jet-bending occurs within one scale-
height.

The dependence of the jet-path on the initial injection angle 2, and Mach number M,
is demonstrated in Fig. 3(b). The total bending of a jet, Q2F—,, is a function of £, and
M, (independent of n)

cos Qg

(1-5'2, (32)

cos 2
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Figure 3. (a) Jet paths for the initial conditions £, =0 and £ = 4; (corresponding to M2 =1.5 in the
relativistic case). The curves are for power law atmospheres p « z" where (i) n = — %, (ii) n = — 1, (iii)
n=—4, and the dashed curve is the exponential atmospheres (equation 3). (b) Jet paths for the power
law atmospheres with u = — %, with the initial conditions , (i) @, = 0°, £ = 1; (ii) @, = 0°, £ = %; (iii)
Q,=45%,8="s5,(iv) Q,=45°, £ = 1.

as shown in Fig. 4. Large bendings (> 40°) will only occur in a jet satisfying both:

(i) an initially low Mach number flow (M, < 2); and

(i) initially directed close to the major axis of the flattened confining gas cloud
(20 <10°).

5.3 JET AREA AND CONFINEMENT

From the zero-order solution, the cross-sectional area, A(z), is obtained. Equations (7) and
(10) yield

A B 1_2 172
A—0=Z " (I—Ez“) ' ©3)
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Q-Q
45°

30°

15°

30 60 Q 90

Figure 4. Total bending of jets as a function of the initial angle between the jet and the major axis of the
gaseous disc.

Using equation (17), this can be expressed as 4p cos §2 = A pq cos 2y, simply implying that
the component of velocity perpendicular to the external pressure gradient remains constant.

The pressure balance requirement will break down when the transverse velocity of a fluid
element in the jet approaches the internal sound-speed. Then, the flow pressure cannot fully
respond to the external pressure changes. A ‘free expansion’ will result when the pressure
difference between the jet and the external medium becomes large. The confinement
condition is €(dS/ds)< cs/Tv. On the assumption that the jet keeps an approximately
circular cross-section, this can be written as e d(A4/4,)"?/ds < 1/M. The true shape of the jet
will be calculated in Paper II (Smith & Norman 1981). The above assumption implies that
we are calculating a necessary condition for confinement, since the minimum expansion rate
is being employed.

Using the above formulae, this condition can be written as

2 2007 (g, ()] [ E) g
z > >e(£2 1—cos Qo(l——gz“ 1 5 [1—&zM]72. (34)

By taking n ~ —1.5, vy ~ 1.5, and presuming that £z* < 1, this becomes

1__2 1/2
Z”+2>62(—‘£—2—) [1—(1—§)cos? Q]. (35)

If n> -2, ie. slowly decreasing external pressures, then a jet that is confined at the
initial stage will remain confined all along its length. If n < — 2, the jet only remains confined
for a finite length. As an example, we shall require the transverse fluid velocity to be less
than 0.1c, and take an initially low Mach number flow with £, =90° and e = 0.03. Then
equation (35) yields z < 1074"*2)_If < —3, then z < 10 and the jet remains confined for
only a few scale-heights.
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6 Observational implications

In general, jets exhibit curvature from a few degrees to ~ 60°. Three mechanisms for jet-
bending will be considered:

(i) The central engine is time-variable, ejecting material in somewhat different directions.

(ii) The jet that we see is, in fact, an illumination of an inhomogeneous medium by a
straight jet, but giving the illusion of a bent jet.

(iii) The interaction of the interstellar medium with the jet determines the path of a jet
through the pressure balance requirement.

6.1 VARIABLE INJECTION

In the category of S-shaped sources, the trail of radio emission from the extended
components does not align with the central core component. Such trails have a constant
orientation on both sides of the core, but with a displacement of a few kiloparsecs, giving an
overall 180° rotational symmetry about the core. Examples are 3C47, 4C13.21, 4C37.43
(Miley & Hartsuijker 1978), 3C382 and 3C452 (Riley & Branson 1973). An explanation
in terms of a gradual change in the initial jet direction (Miley 1976) cannot be ruled out,
although in general this is expected to lead to much greater misalignments, such as that
observed in NGC 326 (Ekers et al. 1978). There is definitely at least one class of jets which
does not fall into this category because their curvature occurs predominantly in the inner
regions.

6.2 VARIABLE ILLUMINATION

The interstellar medium in the central parts of the surrounding galaxy is likely to be very
inhomogeneous. It has been suggested that interaction of the jet with such dense
inhomogeneities may cause it to glow at random points, giving the illusion of jet-bending
(Miley 1980).

Bending is an important phenomenon in quasars since VLBI observations have found
curvature to be a common feature in radio components coincident with quasi-stellar sources
(Readhead, Cohen & Blandford 1978). Note that the position angles of the elongated radio
structures change systematically with distance from the nucleus (on the order of parsecs),
through angles in the range 20—40°. In, for example, 3C273 and 345, the curvature
decreases with increasing distance; and the core orientations finally straighten in the
direction of extended features. Such smooth behaviour is inconsistent with the hypothesis of
illusory bending due to random cloud interaction with a straight jet.

6.3 PRESSURE GRADIENTS

We have argued that large bendings in jets produced by external pressure gradients should
not be common. However, in a few quasars with superluminal expansions such large angles
of bending are, in fact, observed. This conflict may be resolved if the jet is relativistic and
the angle between the jet and the observer’s line-of-sight is small. Jets bent through a
few degrees will then appear to be strongly curved for most lines-of-sight almost parallel to
the jet. Consequently, the bent-jet model implies that relativistic beaming towards the
observer should be a common property of superluminally expanding sources with large
bending angles. It has been proposed that the apparent superluminal separation speeds of
radio components, and the ratio of radio-loud and radio-quiet quasars, can also be explained
on this basis (Scheuer & Readhead 1979).
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The theoretical jet-paths shown in Fig. 3(a) and (b) are consistent with the structure of
S-shaped sources. Predicted misalignments between the initial and final paths of a jet are of
the order of a few scale-heights; and rapid decrease in jet curvature thereafter can produce
extended radio structures with a constant orientation.

Although jets can be bent up to ~ 50°, as has been observed for 3C 66B (Northover
1973), very particular initial conditions are required: a steady, low Mach number flow must
be initially directed into the major plane of a highly flattened gas distribution. Since little
bending is expected once the confining pressure has decreased by an order of magnitude
from its initial value, substantial jet-bendings are restricted to the vicinity of the jet’s
source. High resolution studies of compact central components associated with extended
sources will reveal further examples of jets that are being bent by as much as 50°, if
flattened confining gas distributions are prevelant.

Assuming an isotropic distribution of initial directions, from Fig. 4 it can be deduced that
the ‘average’ jet-bending is very small — a few degrees only. The figure also predicts that
there will be a scarcity of jets subtending small angles to the major axes of the confining
clouds. This is consistent with studies of powerful radio sources associated with elliptical
galaxies, carried out to determine whether a correlation exists between the orientation of the
major axis of the radio structure and the major axis of the optical galaxy (angle Q).
Guthrie’s sample of 23 sources has orientations over all possible angles, but with a mean
value of Q'=59°, and only three sources with Q' < 30° (Guthrie 1979). This deficiency is
consistent with the bent-jet model on the assumption that there is a flattened confining gas
cloud associated with the flattened optical image of the galaxy. A recent study of 78 sources
by Palimaka et al. (1979) has revealed a similar preference for radio source alignment with
the optical minor axis of the cores (the inner 10—20kpc). The mean value of ' in this
sample is 55°. In addition, there is a marked trend for greater alignment as larger sources are
taken: the mean values of §' for radio sources smaller and larger than 250 kpc are 49° and
68°, respectively. (This fact and poor data explain the lack of definite correlation found by
previous authors who considered few sources with linear sizes larger than 250 kpc).

It therefore seems that, besides the possibility of a jet-bending effect caused by pressure
gradients external to the jet, other factors must be involved. Possible explanations for the
trend are as follows:

(a) The alignment of axes (£2' = 90°) favours the development of large sources through
greater jet stability or less dissipation of power on the walls of the jet.

(b) The jet orientation changes such that closer alignment is obtained as a source gets
older (i.e. becomes larger).

(c) The precession of a jet around the core’s minor axis spreads the ejected energy over a
large solid angle, hindering the formation of distant radio lobes.

6.4 SPECIFIC RADIO SOURCES

We shall now consider more recent observations of jets and interpret their structure in terms
of our model.

6.4.1 NGC6251

From Cohen & Readhead (1979), we determine the initial (at 1 pc) jet direction to be given
by Q¢ = 78° and the final direction (at 2 3 kpc) by Qy = 83°. Thus, the initial Mach number
is My =1.05/(y —1). For a relativistic jet, y = 2 and M, ~ 1. Jet-bending occurs in NGC 6251
between 1pc and 3kpc. Using a pressure distribution as calculated by Readhead et al.
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1978), with n = —1.7, we find the increase in Mach number with distance along the jet, s, is
given by M~ /3 5%4%, For M~ 1 at 1pc, we find M ~ 50 at 3 kpc, which is consistent with
the estimate of M 2 40 given by Readhead et al. (1978).

The jet must have a low Mach number in the region where it is being bent. Thus, it
probably has a rather large opening angle at ~ 1 pc and is only just proceeding to be focused
through the nozzle point at this distance. However, the jet must be confined to be bent in
our model, implying large pressures in the central region (Readhead et al 1978). X-ray
observation may give further indication of the pressure in the jet surroundings in the inner
1 pc of the galaxy (Blandford & Rees 1978).

6.4.2 3C449

From the estimate of the Mach number ~ 8 at 2 3 kpc (Perley et al. 1979), we do not expect
to see any bending of the jet.

6.4.3 3C66B

The observed bending is 40°. The jet must, therefore, be injected at a very large angle to
the minor axis of the confining gas cloud. The initial direction of the jet is roughly parallel
to the minor axis of the optical galaxy (Butcher, Van Breugel & Miley 1980) at ~ 2 kpc.
Note that there is evidence that only one jet is bent on this scale; and therefore we expect
the environment of the nucleus to be rather asymmetric.

6.4.4 NGC1265

Our model has application to head—tail sources provided significant amounts of interstellar
material are retained within the inner ~ 10 kpc of the galaxy. The ram pressure force on the
interstellar medium will give rise to a pressure gradient across this region that deflects the
jet (Jones & Owen 1979). From equation (39) it is obvious that the conditions for large
degrees of bending are still applicable. Consequently, for the jets of NGC 1265, we require
an initial Mach number M, ~ 1. The ejection angle (measured from the direction of VP)
must be Q4 < 80°, as observed. The slow widening and continued curvature of the jet can
also be simulated.

6.4.5 3C236

Using = 66°, QF = 72°, we find My ~ 2 at ~ 2kpc. Note that there is evidence that only
one jet is bent on this scale (Schillizi et al. 1979); and therefore we expect the gas distribu-
tion in the inner parts of the galaxy to be rather asymmetric.

In summary, it seems that the detailed calculation of jet trajectories in relation to
observed properties of bent jets can provide quite significant constraints, both on the nature
of jets themselves and on the gas distribution of the inner regions of active galaxies.
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Summary. A general formulation is given for determining the internal structure
and stability of extragalactic jets confined by external pressure. Solutions are
found for the jet cross-sectional shape and internal pressure distribution for
high Mach number flows. With rapidly decreasing external pressures, a
circular jet is found to be stable. A circular jet is found to become unstable
and its cross-section to flatten with increasing jet-path length when the rate
of decrease of external pressure is sufficiently slow. This global instability will
lead to jet splitting and breakup.

1 Introduction

Detailed, high resolution maps of jets now allow us to infer not only jet trajectories, but also
some aspects of internal jet structure and stability. We have therefore, undertaken a detailed
extension of the trajectory calculations given in Paper I in order to model internal flow
properties of jets. Once again, comparison of our model with the recent observations should
provide further understanding of both jets and their environments.

First, we determine the cross-sectional shape to zeroth order in the slenderness parameter
e and the velocity potential and pressure up to order €* for large distances from the jet’s
origin (Sections 2 and 3). Secondly, the equations for higher order terms are found; and, by
generalizing the work of Geer (1977), we discuss the global instability of the jet cross-
section to deformation (Section 4). Using these results, we then discuss the interpretation
of observed properties of jets (Section 5).

The mathematical details are rather complex; and can be found in Smith (1979).

2 Cross-sectional shape of jets

2.1 DETAILED ANALYSIS

In Paper I, differential equations were obtained and solved for ¢° and ¢'. In so doing, the
jet curvature and cross-sectional area to zeroth order was obtained. Now higher-order
coefficients are considered and solutions for ¢? and S° are found.
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The solution for K = 0 with S° independent of 6 (a straight circular jet) is
09> _gr
P
39> £ g
Y =Z{r2—(S°)?}—@ (597 (1)
and

(89)? =5 (") {1- ()"0,
where ¢, is a normalization constant so that (S°)> = A4/4,,
2 e e
&= @°)?6°[1- (@)1 —¢° )]

and the dot represents differentiation with respect to s.
For K # 0, we look for separatle solutions. The equations are greatly simplified for high
Mach number flows and the cross-section is an ellipse with semi-axes 2 and b given by

a=[ _B ]1/2
g4 +a+%(@g2+2a)?%]
. 3)

b= [g/4 —a+ ;(i/z—zaf]m'

The semi-axis in the y—z plane (6 = 0°) is @, and the semi-axis in the x-direction (§ = 90°)
is b.
The separable solution leads to a particular solution for ¢* and S° that results in a jet with
an elliptical cross-section.
The general solution for high Mach number flows yields
1—n? 7% 3 +1q?

—ng+%— : 4
Lap TTMEA TS “)

1= (¢ +%e%)

where 1 = a/b is the aspect ratio. By the change of variables s = exp (£), this can be written
as

Y

Here, the dashes denote differentiation with respect to . If n(z) is a solution to equation (5),

then so is 1/n(). The problem is independent of whether we take the aspect ratio as /b or

b/a. The aspect ratio can be studied by consideration of trajectories in the n, n’ phase plane.
A further solution is a jet with a circular cross-section given by a = 0.

on' 1—n? "3 +q?
n n (n+2>2 n +%1 n (5)

=145+ :
on yo2y n'1+n? n 1+n?

2.2 ILLUSTRATIONS OF JET SHAPES

We graph the solution of equation (5) in Figs 1 to 4. The jet shape in the limit as s - o is
strongly dependent on n/vy, as we discuss below. In all graphs, the arrows denote the
direction of increasing jet arc length. An important point to note is thatif o’ is replaced by
—n" and (1—n/y) by (1+n/y), then the value of 3n'/on keeps the same magnitude but
changes its sign. Hence the diagram for (1 —n/v) is simply the mirror-image of the diagram
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for (1+n/y), with the reflection about the n' =0 axis and the directions of increasing s
reversed.

Fig. 1, specifically for n/y = —3, is representative of the change in jet shape with arc
length for n/y < —2. Given any initial conditions n and n' where the high Mach number
approximation is valid, the final shape of the jet can be immediately determined from the
figure. In this case, all the trajectories spiral in towards the stable point n =1,7n' =0, that is,
the circular jet. In the limit as s - o0 and  — 1, the ellipticity oscillates between negative and
positive values with a rapidly decreasing amplitude of oscillation. The decrease of the
amplitude of the spiral is a factor exp(2m) ~ 500 per revolution around n=1 as n— 1 and
with —n/y> 2, and a factor exp(2m/2) ~ 7000 per revolution for Fig. 1. Therefore, very
few oscillations can be seen in the figure.

Fig. 2 is a special case n/y = —2, in which the ellipticity remains bounded and n' - 0 in
the limit as s > . Consequently, if n/y < — 2 and initial conditions of the form n~1,n"<1
are given, then the aspect ratio does not vary significantly from unity. Furthermore, the
ellipticity remains bounded for all initial conditions.

Fig. 3, specifically for n/y = —3%, is representative of the jet shape for —2 <n/y< —1.
An initially circular jet with n'=0 is now highly unstable. Initial conditions in the
neighbourhood of this point result in a jet in which n - 0 or n - o, Hence, in all cases,n =0
or n —> <o_in the limit as § = oo,

Fig. 4 is the special case n/y = —1 in which there is reflection symmetry about the n’ =0
axis. The form of the trajectories in the range —1< n/y <0 can be obtained by reflecting
Fig. 3 about the ' = 0 axis. Therefore, in the range — 2 < n/y < 0,1~ 0 or o in the limit as

§ —> oo,

Figure 1. Phase plane trajectories for n/y = —3 (see text). The arrows denote the direction of increasing
jet arc length.
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Figure 2. Phase plane trajectories for nfy = —2 (see text). The crosses denote the stable point on each
trajectory.
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Figure 3. Phase plane trajectories for n/y = — 3 (see text).
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Figure 4. Phase plane trajectories for n/y = —1 (see text).

In the determination of S° it has been assumed that the slendemess approximations are
still valid at large distance from the origin of the jet, despite the possible degeneration of the
jet into a sheet. In equation (20) of Paper I, the term (¢°)2¢°, which is of the order of €?,
was ignored when deriving ¢° and ¢'. Since, in the limit as s> oo, z &, it follows that
(¢°)2¢°=0(s*"1); and so, with u< 0, the approximation made in equation (20) is valid.
Similarly, in Paper I, the terms of order €* and € in equations (21) and (22), respectively,
were ignored in deriving ¢° and ¢!. We now calculate that these are §°$° = O(1) and
(#%? -1+ £z =0(1), in the limit as s - o°; and hence, our results are consistent with the
original approximations.

We have determined the boundary surface of a jet with an elliptical cross-sectional shape
in the case of a high Mach number flow. Examples of boundary surfaces are shown in Fig. 5,
where an initial jet angle of injection of £ = 90° has been chosen. The width is displayed in
the y-direction, and the breadth in the x-direction.

If 0> n/y> —2, the jet degenerates into a sheet of fluid whose width increases in propor-
tion to the arc length. Consequently, the jet will appear to be conical (Fig. 5a,b,c).
Furthermore, if n/y > —1, the thickness of the sheet decreases to zero in the limit as s - oo
(Fig. 5a). If n/y < —1, then both the width and thickness approaches infinity in the limit as
s = o (Fig. 5¢). If n/y < —2, the jet cross-section will approach a stable circular shape via
oscillations (in the ellipticity) of decreasing amplitude in the limit as s - oo, The axes become
of the order of s™%, and so the boundary streamlines diverge away from the locus of
centroids (Fig. 5d).

The confinement condition derived in Paper I will not hold in the case of n/y > — 2, since
it has been shown that the circular cross-section assumption is invalid. Therefore, we now
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Figure 5. (a) Boundary surface of a jet with £ =0, n/y = —% and initial conditions n = 1, n=0.1. (b)
Boundary surfaces with £ = 0, n/y = —1 and initial conditions n =1.75, = —0.5. (¢) Boundary surfaces
with § =0, n/y = —3, and initial conditions n = 0.8, 7 = 0.8. (d) Boundary surfaces with ¢ = 0, n/y = —3
and initial conditionsn=0.8,7=0.8.

write the confinement condition as e(da/ds)<1/M and e(db/ds)<1/M. Applying the
asymptotic formulae for the jet shape as given here by equation (16) and by equation (50)
of Paper I, this confinement condition becomes

€ < gzM. (6)

Stipulating the transverse velocity to be less than one-tenth of the sound-speed of the jet,
the confinement condition can be written as

g\ e 2=
z "< 107 ")(—) (—) ) @)
0.1 0.01

Thus, confinement can be maintained up to z2 10 foralln> —2 and v < 2, for € ~ 0.01 and
£2 ~0.01.

The introduction of expansions ¢/ and §7 in powers of £ also gives a relationship between
¢ and e. In obtaining the zero- and first-order results, ¢° =1 and ¢' = 0, the terms ignored
were of the order e* and £z". Since ¢? is of the order €2, for correct ordering we require
€?> £z*, in contradiction to the confinement condition (19). Obviously, in ¢° the expansion
in £ is not valid. Nevertheless, it is still possible to expand ¢? and S° in powers of £, i.e. ¢° =
1—£z%, 0% = ¢f + ¢3E + ¢3£2 +... ;and it follows that ¢Z has been correctly calculated here.
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We have demonstrated that the width of the jet expands uniformly for n/y> —2, large s
and under external pressure confinement. Observations have shown that resolved jets often
do have such a constant opening angle, with estimates of n> — 2 (and hence, n/y> — 2 if
v>1). Since an unconfined expansion can result in a conical jet, a free-jet model has been
proposed (Readhead, Cohen & Blandford 1978; Perley, Willis & Scott 1979). We point out
that, in the direction that gives greatest resolvability of the width, a confined beam will also
be conical in shape.

3 Internal jet pressure distribution

The pressure distribution within the jet is found via the Bernouilli equation. For a circular
jet, we obtain

p 1-1/vy €2 .
(B)  =ers L@ 28010 - ®
Po 4

The z* term signifies the pressure equilibrium with the surrounding medium at »=S°. In
the limit as s > oo, we find that g% + 2¢°¢ > %n/y (n/y + 2). Thus, if n/y > — 2, the pressure
decreases as r decreases, i.e. the radial pressure force is inhibiting the jet from expanding and
the opening angle of the jet decreases with increasing arc length. If n/y < — 2, then the radial
pressure force is acting outwards, and the bounding streamlines curve away from the centre
of the jet.

Taking &=2(y +1), corresponding to My=1, and putting z =1, then ¢°*=(y —1)/
(v +1), $°=—n/v[(y —D)/(y + D]'?, giving g =0 and g¢° = (n/y)*(y —1). When the flow
is transonic, the radial pressure force is found to be always positive, tending to expand the
jet. The outward-pressure force may inhibit the Kelvin—Helmholtz instability in the
neighbourhood of the nozzle. The radial pressure gradient is reversed at large distances from
the nozzle for the circular jet if n/y> —2; and the entrainment of surrounding material
could be significant.

The transverse expansion of a jet by pressure forces implies a lower velocity and a greater
mass flux per unit area along the centroid of the jet than at the jet surface. This contrasts
with models invoking higher central velocities resulting from frictional forces decelerating
the fluid at the boundary surface.

In the more general non-axisymmetric case, the internal pressure distribution is given by:

p 1-1/y (pl)l—l/'y e . [ 72 ]
- = (= ——2¢%¢ |1 , 9
(Po) Po 3 vee (S0)2 ©)

where p, is the pressure in the external medium. If <0, the pressure within the jet is
greater than the external pressure p,; and conversely, if 3> 0, then p < p,. The parameter
B can be calculated for large s in the case £ = 0. For n/y < —2, the circular cross-sectional
jet solution is approached in the limit as s >oo; and, < 0. If —1> n/y> —2, then B is
positive; if 0> n/y> —1, then § is negative (Smith 1979). The direction of the pressure
gradient at the boundary surface may have considerable influence on the stability of the jet.

4 Jet stability

The internal structure of the jet has been determined by solving the non-linear boundary
value problem for Poisson’s equation. The application of initial conditions leads to a unique
solution that was specified for jets with an elliptical or circular cross-sectional shape.
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However, the solutions for ¢* and $¥7? with k> 2 are dependent on the particular solution
found for ¢ and S°; but, even after the initial conditions are given, solutions for ¢* and
$%2 are not unique.

For the case of an incompressible fluid under gravity, Geer (1977) demonstrated that
there exist non-trivial eigensolutions which have a physical interpretation in terms of the
stability of the flow. For this reason, the problem will be limited to obtaining eigensolutions
and determining the jet stability (Smith 1979).

For the circular jet in which the jet path is aligned with the external pressure gradient, we
find that the cross-sectional shape is stable for n/y < —2. As suggested in Figs 1—4, the
circular jet is unstable in the rate 0> n/y> —2. This can be interpreted physically by
consideration of the centrifugal forces on the jet boundary. For n/y < —2, the boundaries
are convex (Fig. 5d) and the centrifugal forces are directed inwards, and act to stabilize the
jet. For 0> n/y> —2, the boundaries are concave, and a flattening of the beam will lead to
greater outward centrifugal forces in the direction of flattening.

For an elliptical jet, the stable circular cross-section is approached as s > o for n/y < —2.
For 0> n/y> —2, the jet is stable to disturbances that are symmetric about the plane into
which the jet eventually flattens. However, the jet is spatially unstable to disturbances that
are asymmetric about the plane into which the jet eventually flattens.

5 Observational implications and conclusions
The final jet cross-sectional shapes produced by this model can now be summarized.

() If n/y < —2, a stable circular jet is attained, after possible oscillations in ellipticity
about the circular state.

(ii) If n/y < —2, a flattened jet results with an axial ratio proportional to s
s is the distance along the jet. The two axes are proportional to s and 5™ /7,

(iii) If n/y < —2, the jets are unstable.

nY+2 where

For example, the existence of the eigensolutions discussed above shows that flattening
jets will tend to warp about their major axes, leading to a distortion and possibly a splitting
of the jets as they continue to flatten. Although the final structure of an unstable jet is still
somewhat uncertain owing to our ignorance of the non-linear regime of instability we can
conclude in general that, if the confining external pressure distribution falls off sufficiently -
slowly (# < 0) along the jet, the jet will be deformed and eventually break up.

From statistical studies of radio sources, Pacholczyk (1977) and Valtonen (1979)
estimate » to be in the range of —2>n> —3.5, for either a free or a confined jet model. If
the jet is confined by the pressure of material in the radio lobe, consisting of previously
ejected fluid, then n ~ 0 (Scheuer 1974).

The jet length over which the confinement condition (equation 7) holds is proportional
to 101/"[7/(7_1)]; and the maximum growth-rate of an unstable mode is proportional to
s2*"Y_ Thus, if n is close to zero, the spatial instabilities discussed here should be significant
enough to create observable jet distortion and fragmentation.

Finally, we emphasize that the flattening instability presented here for any confined jet
with n/y > —2, is quite different from other jet instabilities, such as the Kelvin—Helmholtz
instability, (Turland & Scheuer 1976; Blandford & Pringle 1976; Hardee 1979), or the
firehose instability, which are temporally growing modes. Here the flow remains time
independent, but the amplitude of a disturbance grows with distance from the origin. All
these instabilities evolve from centrifugal forces: the Kelvin—Helmholtz modes are local
surface disturbances, the firehose mode arises from disturbances on scales larger than the jet
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width, and these spatial instabilities arise from the intermediate scale of disturbance — the
jet cross-section. However, the spatial instability will only result if there is some permanent
slight distortion to the beam shape at some point along the beam path. While numerical
techniques will be required for the more general investigation of jet shape and stability,
particularly for low Mach number flows, the analytic bent-jet model given here seems to
deal neatly with slender high Mach number jets.
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