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A semuclassical kinetic theory 1s presented for the fluctuating photon flux emutted by a disordered
medium m thermal equilibitum  The kinetic equation 1s the optical analog of the Boltzmann-Langevin
equation for electrons Vacuum fluctuations of the electromagnetic field provide a new source of fluc-
tuations 1n the photon flux, over and above the fluctuations due to scattering The kinetic theory in
the diffusion approximation 1s applied to the supei-Poissonian noise due to photon bunching and to the
excess noise due to beating of incident radiation with the vacuum fluctuations

PACS numbers 42 50 Ar, 0540 —a, 42 68 Ay, 7845 +h

The theory of radiative transfer was developed by Chan-
drasekhar {1] and Sobolev [2] to describe the scatteiing
and absoiption of electromagnetic radiation by mterstel-
lar matter It has become widely used 1n the study of wave
propagation in random media, with applications in medical
imaging and seismic exploration [3] The basic equation of
radiative transfer theory s a kinetic equation of the Boltz-
mann type that 15 derived from the Maxwell equations by
neglecting iterference effects [4] It 1s a 1eliable approxi-
mation whenevei the scattering and absorption lengths aie
latge compaied to the wavelength, which applies to all but
the most stiongly disordeied media

Radiative transfer theory has so far been restricted to
classical waves, excluding purely quantum mechanical
effects of vacuum fluctuations This limutation 1s felt
strongly m connection with the recent activity on 1andom
lasers [5] These are amplifying systems in which the
feedback 1s provided by multiple scattering fiom disorder
rather than by murrois, so that radiative transfer theory
18 an appropuiate level of description However, while
stumulated emission has been incoiporated into this
approach a long time ago by Letokhov [6], spontaneous
emission has not It 1s the purpose of our woik to remove
this limitation, by presenting an extension of the 1adiative
tiansfer equation that includes vacuum fluctuations and
the associated spontaneous emission of radiation

Our inspiration came from the field of electronic
conduction in disordered metals, where the notion of a
fluctuating Boltzmann equation (or Boltzmann-Langevin
equation) has been developed extensively [7—9], following
the otiginal proposal by Kadomtsev [10] In that context
the fluctuations origimnate from 1andom scattering and
they conseive the paiticle number This same class of
fluctuations exists also in the optical context considered
heie, but with a different corielator because of the diffei-
ence between boson and fermion statistics In addition,
the photons have a new class of fluctuations, without
particle conservation, originating from 1andom absoiption
and emission events  Vacuum fluctuations are of the
second class We will extend the radiative tiansfer theory
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to include both classes of fluctuations To demonstrate
the validity of our “Boltzmann-Langevin equation for
photons,” we solve the problem of the excess noise from
vacuum fluctuations 1n a waveguide geometry, for which
an independent solution 1s known [11] We then apply 1t
to the unsolved problem of the thermal radiation from a
sphetical 1andom medium

The basic quantity of the kinetic theory 1s the fluctuating
distribution function f(r, #) of the number of photons per
unit cell (277) " 3dkdr 1n phase space (For simplicity, we
1gnote the polarization dependence ) Conventional radia-
tive transfer theory deals with the mean £y (r), which we
assume to be time independent It satisfies the Boltzmann
equation

) X B NG BN

k!

— I (f) (1)
[For ease of notation, we write > j 1nstead of (27) 3 f dk,
and Oxq instead of (27)*8(k — q) ] The left-hand side
1s the convection term (with ¢ the velocity of light 1n
the medium and kK a unit vector in the direction of the
wave number k) The nght-hand side contains gain and
loss terms due to scattering, Jxk'(f) = wir' fior(1 + fi).
due to amphfication, Iy (f) = wy (1 + fy), and due to
absorption I (f) = wg f, The scattering 1ate wyy' =
wik 18 elastic and symmetric The absorption and am-
plification rates Wi are 1sotropic (dependent only on k =
|k|) and 1elated to each other by the requirement that the
Bose-Einstein function

feq(@,T) = [exphiw/kgT) — 1] (2)

15 the equilibitum solutton of Eq (1) (at frequency w =
ck and temperatme T) This requirement fixes the 1atio
wi /wi = exp(iw/kgT) The temperature T 1s positive
for an absotbing medium and negative for an amplifying
medium such as a laser [12]

We now extend the 1adiative transfer equation (1) to in-
clude the fluctuations §f = f — f Following the Iine of
argument that leads to the Boltzmann-Langevin equation
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for electrons [7-10], we propose the kinetic equation

~

ck - L = S ()~ Sen( )
r Kk’

L) - () + L. (3

The argument is that the fluctuating f is propagated,
scattered, absorbed, and amplified in the same way as
the mean ]_’, hence the same convection term and the
same kernels Jyk/, If appear in Eqgs. (1) and (3). In
addition, Eq. (3) contains a stochastic source of photons,

Li = > (8Jxw — 8wx) + 8L} — 8L, @
k!

|

Ly(r,0) Lg(x!, 1)) = A':5qu[Jkk’(7) + S (F)]
k/

consisting of separate contributions from scattering,
amplification, and absorption. This Langevin term has
zero mean, L, = 0, and a correlator that follows from
the assumption that the elementary stochastic processes
6 Jkx's 61,? have independent Poisson distributions:

8Jki/(x, 1)8Jqq(r', 1) = ASkq kgl (f),
SI (r, 1) IE(x, 1) = Adwgly (F),

(5a)

(5b)

81 (x, )81 (x/, 1)) = 0,
(5¢)

8w (x, 1)8 1 (x', 1) = 0,

where we have abbreviated A = 8(r — r)8(t — ¢').
Substitution into Eq. (4) gives the correlator

() = () + Sl (F) + zk-(m]. ©

Equations (3) and (6) constitute the Boltzmann-Langevin |
equation for photons.

To gain more insight into this kinetic equation we make
the diffusion approximation valid if the mean free path
is the shortest length scale in the system (but still large
compared to the wavelength). The diffusion approxima-
tion consists in an expansion with respect to k in spheri-
cal harmonics, keeping only the first two terms: fix =
fo+k-f, Lx = Lo+ k- L, where fo, f1, Lo, and
L | do not depend on the direction k of the wave vec-
tor, but on its magnitude k = w/c only. The two terms
Sfo and £; determine, respectively, the photon number den-
sity n = p fo and flux density j = %cpfl, where p(w) =
4mw?(2mc)™? is the density of states. Integration of
Eq. (3) gives two relations between » and j,

on 1
j=-D— + —
J p 3ZP£1, (7N
a . -2
5;'J=D§a (pfeq_n)+P£O, (8)

e 1
where the diffusion constant D = 3c¢?7 and mean free

path [ = c7 are determined by the transport scattering rate
771 =Y wiw(l — k - k’). The absorption length &, is
defined by D£;2 = w™ — w'. (An amplifying medium
has an imaginary £, and a negative feq.) In Eq. (7) we
have neglected terms of order (1/£,)?, which are assumed
to be 1.

Both Eqgs. (7) and (8) contain a fluctuating source term.
These two terms Ly and L | have zero mean and correla-
tors that follow from Eq. (6),

D — —
£0(0),r, I)LO((I)/,I'/, t/) = AI;?(zfeqfo + feq + fO)a
’ (9a)

T @ DL (a1 = HA’%J_‘O(I 7Y,
(9b)
5476

Tola, v, 0 Lr(@ o) = A’ ;’2—2 @f o1 + T,
‘ (9c)

where we have abbreviated A’ = §{(w — w0")5(t —
tY6(r — r'). The correlator (9b) differs from the elec-
tronic case [13—15] by the factor 1 + f, instead of
1 — fo. This is the expected difference between boson
and fermion statistics. The correlators (9a) and (9¢) have
no electronic counterpart. They describe the statistics of
the vacuum fluctuations.

To demonstrate how the kinetic theory presented above
works in a specific situation we consider the propaga-
tion through an absorbing or amplifying disordered wave-
guide (length L). The incident radiation is isotropic. All
transmitted radiation is absorbed by a photodetector (see
Fig. 1). Because of the one dimensionality of the ge-
ometry we need to consider only the x dependence of j
and »n (we assume a unit cross-sectional area). The trans-
mitted photon flux 7 = f; dw j(w, L, t) fluctuates around
its time-averaged value, I(r) = I + 8I(t). The (zero-fre-
quency) noise power P = [~ dr 51(t)61(0) is the corre-
lator of the fluctuating flux. We will compute P by solving
the differential equations (7) and (8) with boundary con-
ditions n(w,0,t) = ny(w, 1), n(w, L, 1) = 0, dictated by
the incident radiation at one end of the waveguide and by
the absorbing photodetector at the other end.

\ R . . ' .. —”

/ SR A Ry
x=0  x=L
FIG. 1. Isotropic radiation (solid arrows) is incident on a wave-

guide containing an absorbing or amplifying random medium.
The transmitted radiation (dashed arrows) is absorbed by a
photodetector.
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Combining Eqgs. (7) and (8) we find equations for the
mean and the fluctuations of the photon number,

2— —
d_”__”_=___, (10)

d*én  on p dLy pLy
£ _ T2 P (11)
dx? &2 ¢ dx D

The homogeneous differential equation has Green functton

sinh(x</&,) smh(s — x>/&,)

Glx,a') =~ sinhs

., (12

where we have defined s = L/£, and x< (x>) 1s the small-
est (largest) of x and x’. (In the amplifying system &, 1s
1maginary so the hyperbolic functions become trigonomet-
ric functions.) The inhomogeneous equations (10) and (11)
have the solution

7w, x) = ;jrjlfle](l [sinhs — sinh(x/¢&,) — sinh(s — x/&4)]
+ ﬁm(a))M’ (13)
sinhs
_ nf(1dLy Lo
dn(w,x, 1) pfo dx' G(x, x)(c ™ ) )
+ 8nm(a),t)s—l-n£(—§s—l;h—:/§a). (14)

The flux density at the photodetector follows from Eq. (7)

at x = L,
- _ Dpfeq Dn,
J(w,L) = 3 tanh(s/2) + _fa o (15)
_ Dény, Dp fL
8)(@,L.1) = &, sinhs * sinhs dx
(smh(x/fa) Lo | cosh(x/£,) ffl )
16)

[Notice that the extra term =« L; m Eq. (7) 1s canceled by
the delta function m 9°G/dxdx’.]

The time-averaged flux 7 = 1,, + Iy, 1 the sum of
two contributions, the transmutted incident flux Im =
[o do D7, /(€. smhs), and the thermal flux Ty =
fodw (Dp feq/&a)tanh(s/2). The transmutted in-
cident flux per frequency interval 1s a fraction
T = 4D /(c&, sinhs) of the ncident flux density jo =
%cﬁm. A fraction R = 1 — 4D /(c &, tanhs) of the
mcident flux 1s reflected The thermal flux per frequency
mterval 1s a fraction 1 — 7 — R = (4D /c&,) tanh(s/2)
of the blackbody flux density jo = %cp feq- This 1s
Kirchhoff’s law of thermal radiation.

The noise power P follows from the autocorrelators
of Ly and Ly [given by Eq. (9), with f, = 7p/p from
Eq. (13)]. The autocorrelator of én,, and the cross corte-
lator of Lo and L contribute only to order (I/£,)> and
can therefore be neglected. The noise power P = P,; +
P + Pex 1s found to consist of three terms, given by

D72, 2scosh(2s) + sinh(2s) — 4s

+ j dw
- ® Dpfeq smhz(s/Z)

Py =1In + dw
th th fO 4§a smh4
Dfeqﬁm Sll’lh (5/2)

=/0 de 2&, sinh*s

The two terms Py, and Py, describe separately the fluctu-
ations 1n the trtansmutted incident flux and 1n the thermal
flux. Both terms are greater than the Poisson noise (the
mean photon flux Iy, Tn) as a consequence of photon
bunching. The third term Py 1s the excess noise which
1 a quantum optical formulation originates from the beat-
ing of the ncident radiation with vacuum fluctuations 1n
the medium [16]. Here we find this excess noise fiom the
semuclassical radiative transfer theory. The expressions for
Py, and P 1n Eq. (17) are the same as those that follow
from the fully quantum optical treatment [11,17]. This 1s a
crucial test of the validity of the semuclassical theory. The
expression for Py, agrees with the quantum optical theory
for the case that the incident radiation otiginates fiom a
thermal source [18]. The case of coherent incident radia-
tion 1s beyond the reach of radiative transfer theory.

We envisage a variety of applications for the Boltz-
mann-Langevin equation for photons obtained in this pa-
per. Although we have concentrated here on the waveguide

, 17
8p&a sinh*s (172)
[85 + 4scoshs — 7sinhs — 4smh(2s) + sinh(3s)], (17b)
[—6s — 4scoshs + 4smhs + 3smnh(2s)]. (17¢)

geometry, 1n order to be able to compare with results in the
literature, the calculation of the noise power n the diffu-
sion approximation can be readily generalized to arbitrary
geometry. As an example, we give the noise power of
the thermal radiation enutted by a sphere (per unit surface

area),
- “  2Dpfist (s sinhz \?
Pth=1t11+f dow ——— §asmh4 f dz(coshz— 7 )
h2
sm2 ’ (18)
Z

where s = R/£, 1s the ratio of the radius R of the sphere
and the absorption length £,. The mean thermal flux 1s
given by Ty, = f;o dw Dp feqéy (coths — 1/s). The 1e-
sult for Ty, could have been obtained from the conventional
radiative transfer theory using Kirchhoff’s law, but the re-
sult for Py, could not.
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A dimensionless measure of the magnitude of the
photon flux fluctuations 18 the Mandel paiameter [19],
O=P-01)/T Ina photocount experiment, counting
n photons 1n a time ¢ with unit quantum efficiency, the
Mandel paiameter 1s obtamned fiom the mean photo-
count 7 and the variance varn in the long-time limt
Q = limyw(varn — @)/m We assume a frequency-te-
solved measurement, so that the integrals over frequency
m Egs (17) and (18) can be omitted The Mandel
parameter for thermal radiation from a waveguide and a
sphere 1s plotted m Fig 2, as a function of s (s = L/&,
for the waveguide and s = R/ £, for the sphere) Both the
small- and laige-s behavior of Q 1s geometry independent
Q = f52feq for s < 1 and Q = 5feq for s > 1 The
Bose-Emstein function foq(w,T) 1s to be evaluated at the
detection frequency w and temperature 7 of the medium
The plot 1n Fig 2 1s for feq = 1073, typical for optical
frequencies at 3000 K

Much larger Mandel parameters can be obtained in am-
plifying systems, such as a random laser Since com-
plete population inversion corresponds to 7 — 07, one has
feq = —linthat case [12] Equations (17) and (18) apply
to amplified spontaneous ermussion below the laser thresh-
old if one uses an imaginary £, The absolute value | £, 18
the amplification length, and we denote s = L/|£,| for the
waveguide geometry and s = R/|&,| for the sphere The
laser threshold occurs at s = 77 1n both geometries We
have ncluded 1t Fig 2 the Mandel parameter for these
two amplifying systems for the case of complete popu-
lation mmversion Agamn the result 1s geometry mdepen-
dent for small 5, Q0 = 12—552[ feql for s << 1 At the laser
threshold (s = ) the Mandel paiameter diverges n the
theory considered here An important extension for future
work 1s to mclude the nonlinearities that become of crucial

10
8_

0 2, 4 6

6
4
oL
O_

FIG 2 Mandel parameter Q = (P — I)/I for the thermal
radiation from an absorbing medium and for the amplified spon-
taneous enussion from a medium with a complete population
mversion  The solid curves are for the sphere geometry
[Eq (18)], the dashed curves are for the waveguide geometry
[Eq (17b)] The parameter s 1s the ratio of the 1adius of the
sphere or of the length of the waveguide to the absorption or
amplification length  The laser threshold in the amplifying
case 1s at s = 7 To show both cases 1n one figure, the Q for
the absorbing medium has been rescaled by a factor of 10*
(corresponding to feq = 107%)
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impottance above the laser threshold The simplicity of the
radiative tiansfer theory developed here makes 1t a promus-
ing tool for the exploiation of the nonlinear regime m a
random laset

Since radiative transfer theory was originally developed
for applications 1n astiophysics, we imagine that the exten-
sion to fluctuations piesented here could be useful 1n that
context as well

We acknowledge discussions with M Patia  This
wolk was suppotted by the Dutch Science Foundation
NWO/FOM
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