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1. Introduction

At the interface between a normal metal and a superconductot, dissipative elec-
tuical current 1s converted into dissipationless supercurrent The mechanism for
this conversion was discovered thirty years ago by A F Andreev [1] An elec-
tron excitation slightly above the Fermu level in the normal metal 1s reflected at
the interface as a hole excitation slightly below the Fermi level (see fig 1) The
missing charge of 2e 1s removed as a supercurrent The reflected hole has (ap-
proximately) the same momentum as the wmcident electron (The two momenta
ate precisely equal at the Fermi level ) The velocity of the hole 1s minus the ve-
locity of the electron (cf the notion of a hole as a “time-1eversed” electron) This
curlous scattering process 1s known as retro-reflection or Andreev reflection

The early theoretical work on the conductance of a normal-metal — supercon-
ductor (NS) junction treats the dynamiucs of the quasiparticle excitations semi-
classically, as 18 appropriate for macroscopic junctions Phase coherence of the
electrons and the Andreev-reflected holes 1s 1gnored Interest in “mesoscopic”
NS junctions, where phase coherence plays an important role, 1s a recent devel-
opment Significant advances have been made during the last few years in ow
understanding of quantum nterference effects due to phase-coherent Andreev re-
flection Much of the motivation has come from the technological advances in the
fabrication of a highly transparent contact between a superconducting film and the
two-dimensional electron gas 1n a semiconductor heterostructure These systems
are deal for the study of the interplay of Andreev reflection and the mesoscopic
etfects known to occur 1n semiconductor nanostructures [2], because of the large
Fermi wavelength, large mean free path, and because of the possibility to confine
the carriers electrostatically by means of gate electrodes In this series of lectures
we review the present status of this rapidly developing field of research

To appreciate the importance of phase coherence i NS junctions, consider the
resistance of a normal-metal wire (length L, mean free path [) This resistance
increases monotonically with L Now attach the wire to a superconductor via a
tunnel bairier (transmission probability I') Then the resistance has a mumnimum
when L ~ [/T" The mmumum disappears 1f the phase coherence between the
electrons and holes 1s destroyed, by increasing the voltage or by applying a mag-
netic field The resistance munimum 1s associated with the crossover from a I'!

283
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Fig | Nommal 1eflection by an insulator (I) versus Andreev teflection by a superconductor (S) of
an election excitation in a normal metal (N) neat the Fermi level Normal 1eflection (left) conseives
chaige but does not conserve momentum Andieev reflection (11ght) conserves momentum but does
not conserve charge The election (¢) 1s reflected as a hole (h) with the same momentum and opposite
velocity The missing charge of 2e 1s absorbed as a Cooper pair by the superconducting condensate

to a I'"? dependence on the barrier transparency The I'~2 dependence 15 as ex-
pected for tunneling into a superconductor, being a two-particle process The I'~*
dependence 1s surprising It 1s as 1f the Andreev-reflected hole can tunnel through
the bartier without reflections This so called “reflectioniess tunneling” requires
relatively transparent NS interfaces, with I' 2 [ /L Semiconductor — supercon-
ductor junctions are convenient, since the Schottky barrier at the mterface 1s much
more transparent than a typical dielectric tunnel barrier The technological effort
1s directed towards making the interface as transpatent as possible A neatly 1deal
NS intetface (I' ~ 1) 1s 1equired 1f one wishes to study how Andieev reflection
modifies the quantum interference effects in the normal state (For I < 1 these
are obscured by the much larger reflectionless-tunneling effect ) The modifica-
tions can be quite remarkable We discuss two examples

The first 1s weak localization In the normal state, weak localization can not be
detected 1n the current—voltage (/-V') charactetistic, but requires application of a
magnetic field The reason 1s that application of a voltage (1n contrast to a mag-
netic field) does not break time-reversal symmetry In an NS junction, however,
weak localization can be detected 1n the -V characteristic, because application
of a voltage destroys the phase coherence between electrons and holes The result
1s a small dip in 87 /3V versus V around V = 0 for ' =~ 1 On reducing T, the
dip crosses over to a peak due to reflectionless tunneling The peak 1s much laiger
than the dip, but the widths are approximately the same

The second example 1s universal conductance fluctuations In the noimal state,
the conductance fluctuates from sample to sample with a variance which is inde-
pendent of sample size or degree of disorder This 1s one aspect of the universality
The other aspect 1s that breaking of time-reversal symmetry (by a magnetic field)
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reduces the variance by precisely a factor of two In an NS junction, the conduct-
ance fluctuations are also s1ze and disorder independent Howevel, application of
a time-reversal-symmetry breaking magnetic field has no effect on the magnitude

These three phenomena, weak localization, reflectionless tunneling, and uni-
versal conductance fluctuations, are discussed in sections 4, 5, and 6, respectively
Sections 2 and 3 are devoted to a description of the theoretical method and to a
tew 1llustrative apphcations The method 1s a scattering theory, which relates the
conductance Gyg of the NS junction to the N x N transmission matrix £ in the
notmal state (N 1s the number of transverse modes at the Fermi level) In the
limit of zero temperature, zero voltage, and zero magnetic field, the relationship
18

4e? T2
Gng = — —n 11
NS 5 F (2 — Tn)Q ) ( )

where the transmission eigenvalue 7T}, 1s an eigenvalue of the matrix product £
The same numbers 7,, (n = 1,2, , N) determine the conductance Gx 1n the
normal state, according to the Landauer formula

Gn=~"> Ty (12)

The fact that the same transmission eigenvalues determine both Gy and Gys
means that one can use the same (numerical and analytical) techniques developed
for quantum transport 1n the normal state This 1s a substantial technical and
conceptual simplification

The scattering theory can also be used for other transport properties, other than
the conductance, both 1n the normal and the superconducting state An example,
discussed 1n section 7, 1s the shot noise due to the discreteness of the carriers A
doubling of the ratio of shot-noise power to current can occur 1n an NS junction,
consistent with the notion of Cooper pair transport 1n the superconductor

We conclude 1n section 8

We restrict ourselves 1n this review (with one exception) to two-terminal geo-
meties, with a single NS interface Equation (1 1), as well as the Landauer for-
mula (1 2), only describe the two-terminal conductance More complex multi-
terminal geometries, involving several NS interfaces, have been studied theoret-
ically by Lambert and coworkers [3,4], and experimentally by Petrashov et al
[5] Since we focus on phase-coherent effects, most of our discussion concerns
the linear-response regime of infinitesimal applied voltage A recent review by
Klapwnk contains a more extensive coverage of the non-linear response at higher
voltages [6] The scattering approach has also been apphied to the Josephson effect
in SNS junctions [7], resulting 1n a formula for the supercurrent—phase relation-
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ship 1n terms of the transmission eigenvalues 75, 1n the normal state We do not
discuss the Josephson effect here, but refer to ref [8] for a review of mesoscopic
SNS junctions Taken together, ref [8] and the present work describe a unified
approach to mesoscopic superconductivity

2. Scattering theory

The model considered 1s illustrated in fig 2 It consists of a disordered normal re-
gion (hatched) adjacent to a superconductor (S) The disordered region may also
contain a geometrical constriction or a tunnel barrier To obtain a well-defined
scattering problem we msert 1deal (impurity-free) normal leads Ny and Ny to the
left and right of the disordered region The NS mterface 1s located at z = 0 We
assume that the only scattering 1n the superconductor consists of Andreev reflec-
tion at the NS interface, 1e we consider the case that the disorder 1s contained
entirely within the normal region The spatial separation of Andreev and normal
scattering 1s the key simplification which allows us to relate the conductance dir-
ectly to the normal-state scattering matrix The model 1s directly applicable to
a superconductor in the clean limit (mean free path in S large compared to the
superconducting coherence length &), or to a point-contact junction (formed by
a constriction which 1s narrow compared to £) In both cases the contribution of
scattering within the superconductor to the junction resistance can be neglected
(9]

The scattering states at energy € are eigenfunctions of the Bogoliubov—de
Gennes (BdG) equation This equation has the form of two Schrodinger equa-
tions for electron and hole wavefunctions u(r) and v(r), coupled by the pan
potential A(r) [10]

Ho A uy u
(3 5)(3)=(v) &

4 (i _
CE - “ Ce
c, = « cf

h h

N, N, S

co « - cf

e

+ —
Ch < g Ch

—0—-> x

Fig 2 Normal metal-superconductor junction contamning a disordeted normal 1egion (hatched)
Scattering states in the two normal leads Ny and N are mdicated schematically
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Here Hy = (p + eA)?/2m + V — Er 1s the single-electron Hamiltonian, con-
taining an electrostatic potential V() and vector potential A(r) The excitation
ene1gy € 1s measured relative to the Fermt energy Er To simplify construction
of the scattering basis we assume that the magnetic field B (in the z-direction)
vanishes outside the disordered region One can then choose a gauge such that
A =01nlead Ny and mn S, while A,, A, =0, A, = A; = constant m lead N;

The pair potential 1n the bulk of the superconductor (x >> &) has amplitude A,
and phase ¢ The spatial dependence of A(r) near the NS interface 1s determined
by the self-consistency relation [10]

(r) v (ru(r)[t = 2f(e)], (22)
e>0
where the sum 1s over all states with positive eigenvalue, and f(e}) = [1 +

exp(e/kgT)] ™! 1s the Fermi function The coefficient g 1s the nteraction con-
stant of the BCS theory of superconductivity At an NS mterface, g diops abruptly
(over atomic distances) to zero, 1n the assumed absence of any pairing mnteraction
in the normal region Therefore, A(r) = 0 for x < 0 At the superconducting
side of the NS 1nterface, A(r) recovers its bulk value Age'® only at some distance
trom the interface We will neglect the suppression of A(7) on approaching the
NS intertace, and use the step-function model

A1) = Aye?0(2) (23)

This model 1s also refeired to in the Iiterature as a “rigid boundary-condition”
Likhatev [11] discusses n detail the conditions for its validity If the width W
of the NS junction 1s small compared to &, the non-uniformities in A(7) extend
only over a distance of order W fiom the junction (because of “geomettical dilu-
tion” of the influence of the nartow junction in the wide superconductor) Since
non-uniformities on length scales <« & do not affect the dynamics of the qua-
siparticles, these can be neglected and the step-function model holds A pomt
contact ot microbridge belongs 1n general to this class of junctions Alternat-
vely, the step-function model holds also for a wide junction if the 1esistivity of
the junction region 1s much bigger than the resistivity of the bulk superconductor
This condition 1s formulated more precisely in ref [11] A semiconductor — su-
perconductor junction 1s typically 1n this second category Note that both the two
cases are consistent with our assumption that the disorder 1s contained entirely
within the normal region

It 1s worth emphasizing that the absence of a pairing interaction 1n the notmal
region (g(r) = 0 for < 0) implies a vanishing parr potential A(r), according
to eq (2 2), but does not imply a vanishing order parameter W (7), which 1s given
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by
T(r) = > v (rju(r)[l - 2f(e)] 24

e>0

Phase coherence between the electron and hole wave functions u and v leads to
U(r) # 0forz < 0 The term “proximuty effect” can therefore mean two ditfer-
ent things One 1s the suppresston of the pair potential A at the superconducting
side of the NS interface This 1s a small effect which 1s neglected in the present
work (and 1n most other papers 1n this field) The other 1s the induction of a non-
zero order parameter ¥ at the normal side of the NS interface Thus effect 1s fully
included here, even though ¥ does not appear explicitly 1n the expiessions which
follow The reason 1s that the order parameter quantfies the degree of phase co-
hetence between electrons and holes, but does not itself affect the dynamics ot
the quasiparticles (The BdG equation (2 1) contains A not ¥ )

We now construct a basis for the scatteting matrix (s matrix) In the noimal
lead Ny the eigenfunctions of the BAdG equation (2 1) can be written 1n the form

W N2) = (g )(k8) 72 By, 2) expl(1k5 ),

$E,2) = (] )(KD) T2 @y, 2) exp(daklia), 25)
whete the wavenumbers k¢ and kP are given by

ket = (2m/h?)V?(Ep ~ B, + 0 Pe)'/?, (26)
and we have defined ¢ = 1, o® = —1 The labels e and h indicate the election

or hole character of the wavetunction The index n labels the modes, ®,(y, z) 18
the transverse wavefunction of the n-th mode, and E,, 1ts threshold energy

(P +p2)/2m + V(y, 2)]®n(y, 2) = En®n(y, 2) 27)

The eigenfunction ®,, 1s normalized to unity, [dy [dz[®,[? = 1 With ths
normalization each wavefunction in the basis (2 5) carries the same amount of
quasiparticle current The eigenfunctions 1n lead Ny are chosen similarly, but
with an additional phase tactor exp[—10° "(e4; /h)y] from the vector potential

A wave incident on the disordered normal region 1s described in the basis (2 5)
by a vector of coefficients

e = (e (N1),e5 (Na), ¢ (Na), ¢ (N2)) (28)

(The mode-index n has been suppressed for simplicity of notation ) The 1eflected
and transmitted wave has vector of coefficients

M = (cg (N1), e (N2), ¢ (N1), ¢y (N2)) 29
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The s-matrix sy of the normal region relates these two vectors,
Pt = sycl (2 10)

Because the normal region does not couple electrons and holes, this matrix has
the block-diagonal form

sn(e) = ( Soéé?) SO(EE)* > 59 = ( o ha ) 211)

Hete sg 1s the unitary s-matrix associated with the single-electron Hamiltonian
Ho The reflection and transmission matrices r(e) and t(g) are N x N matiices,
N(e) being the number of propagating modes at energy e (We assume for sim-
plicity that the number of modes n leads N; and N3 1s the same ) The matrix sg 18
unitary (5830 = 1) and satisfies the symmetry 1elation sy(e, B),, = so(e, —B),,

Foreneigies 0 < € < A, there are no propagating modes 1n the supetconductor
We can then define an s-matrix for Andreev teflection at the NS interface which
telates the vector of coefficients (c; (N2), ¢f (N2)) to (cF(N2), ¢ (N2)) The
elements of this s-matrix can be obtained by matching the wavefunctions (2 5)
at 2 = 0 to the decaying solutions 1n S of the BdG equation If tetms of oider
A, /Er ate neglected (the so called Andreev approximation [1]), the tesult 1s
simply

s (N2) = ae’c (Ny),
ey (No) = ae™ Pt (N,), 212)

where o« = exp[—1aiccos(e/A,)] Andreev reflection tianstoims an election
mode 1nto a hole mode, without change of mode index The transformation 1s
accompanted by a phase shift, which consists of two patts

(1) A phase shift — arccos(e/4,) due to the penetration of the wavetunction
mnto the superconductor

(11) A phase shift equal to plus or minus the phase of the pair potential n the
supeirconductor (plus tor teflection fiom hole to election, minus for the reverse
process)

We can combine the 2N linear 1elations (2 12) with the 4/V relations (2 10) to
obtain a set of 2N linear relations between the incident wave n lead N; and the
1eflected wave in the same lead

c; (Ny) = seecj(Nl) + sehc;(Nl),
of (N1) = s e (N1) + sypc (N7) (213)

The four N x N mattices See, Shn, Seh, and sp. form together the scattering
matrix s of the whole system for energies 0 < £ < A, An electron incident
lead N 1s teflected either as an election (with scattering amplitudes s.) o1 as a
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hole (with scattering amplitudes sp.) Similarly, the matrices sy, and .}, contain
the scattering amplitudes for reflection of a hole as a hole or as an electron After
some algebra we find for these matrices the expressions

See(€) =711(€) + QPb15(e)r5a(—€) Mty (e), (214)
sun(€) =711 (=€) + @ty (—e)rpa(e) Myt (—¢), (215)
Sen(€) = ety (e) My t3, (—€), (2 16)
Spe(€) = ety (—2) Mty (¢), (217)

where we have defined the matrices
M, = [1 = a®rop(e)rse(—e)] 7,
M, =[1 — o®r3y(—€)raa(e)) ™ (2 18)

One can verify that the s-matrix constructed from these four sub-matrices satisfies
unitarity (s's = 1) and the symmetry relation s(e, B, ¢),, = s(e, =B, —¢),,, as
required by quasiparticle-current conservation and by tume-reversal variance,
respectively

For the Iinear-response conductance Gng of the NS junction at zero temperature
we only need the s-matrix at the Fermi level, 1 e ate = 0 We restrict ourselves to
this case and omut the argument € 1n what follows We apply the general formula
[12-14]

22 4e?
GNS = —Z—Tl" (1 — Seesle + Sheslte) = %TI" Sheslte (2 19)

The second equality follows from umtarity of s, which implies 1 — s__si, =
sopsh = (sl.)7 sl s, s, so that Tr (1 — s,.sl.) = Trs, 8., We now substi-

tute eq (2 17) for e = 0 (¢ = —1) into eq (2 19), and obtain the expression
462 T * —1px 4T T, Ty—1
Gns = TTY tiotia(1 +735m00) Tt ta1 (1 + 730m55) 7, (220)

where M'T = (M*)" denotes the transpose of a matrix The advantage of eq
(220) over eq (2 19) 1s that the former can be evaluated by using standard tech-
niques developed for quantum transport 1n the normal state, since the only mput
1s the normal-state scattering matrix The effects ot multiple Andieev teflections
ate fully incorporated by the two matrix inverstons in eq (2 20)

In the absence of a magnetic field the general formula (2 20) simplifies consid-
erably Since the s-matrix s of the normal region 1s symmetric for B = 0, one
has r,, = 71, and t,, = t3; Equation (2 20) then takes the form
_ 4e?

Gns = 5 Trt{ztu(l -+ 7"52T22)~1t12t12(1 + T;2T22)M1
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2 2
- %Tr (t{2t12(2 - tbtm)*l) @221)
In the second equality we have used the unitarity relation T;ﬁm + tIQtlz =
1 The trace (2 21) depends only on the eigenvalues of the Hermitian matuix
t{ztm We denote these eigenvalues by 1, (n = 1,2, V) Since the matrices
Liot1s tlztiz, téltm, and t21t;1 all have the same set of eigenvalues, we can omit
the indices and write simply ¢! We obtain the following relation between the
conductance and the transmission eigenvalues

N

4e? T2
GNS_TZ(%TJE (222)

n=1

This 1s the central 1esult of ref [15]

Equation (2 22) holds for an arbitrary transmission matrix ¢, 1e for arbitrary
disorder potential Itis the multi-channel generahization of a formula first obtained
by Blonder, Tinkham, and Klapwyk [12] (and subsequently by Shelankov [16]
and by Zaitsev [17]) for the single channel case (appropiiate for a geometiy such
as a planar tunnel barrier, where the different scattering channels are uncoupled)
A formula of similar generality for the normal-metal conductance Gy 1s the multi-
channel Landauer formula

262

2¢?
T = —
Gy = 7 Trit' = h E T, (223)

In contrast to the Landauer tormula, eq (2 22) for the conductance of an NS
junction 18 a non linear function of the transmission eigenvalues 7;, When deal-
ing with a non-linear mult: channel formula as eq (2 22), 1t 1s of importance to
distinguish between the tiansmission eigenvalue 7, and the modal transmission
pirobability 7,, = Zf:i_l |tnm|? The former 1s an eigenvalue of the matuix #tf,
the latter a diagonal element of that matrix The Landauer formula (2 23) can be
written equivalently as a sum over eigenvalues or as sum over modal transmission
probabilities

I N N

This equivalence 1s of importance for (numerical) evaluations of the Landauer
formula, in which one calculates the probability that an electron injected in mode
n 1s transmitted, and then obtains the conductance by summing over all modes
The non-lineat scattering formula (2 22), in contrast, can not be written 1n terms
of modal transmission probabilities alone The off-diagonal elements of ¢t! con-
tribute to Gng 1n an essential way Previous attempts to generalize the one-
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dimensional Blonder-Tinkham~Klapwyk tormula to more dimensions by sum-
ming over modal ttansmission probabilities (or, equivalently, by angular avei-
aging) were not successful precisely because only the diagonal elements of #¢f
wele considered

3. Three simple applications

To tllustrate the power and generality of the scattering formula (2 22), we discuss
1n this section three simple applications to the ballistic, resonant-tunneling, and
daffusive transport regimes [15]

31 Quantum point contact

Consider first the case that the normal metal consists of a ballistic constriction
with a normal-state conductance quantized at Gy = 2Nge? /h (a quantum point
contact) The integer Ny 1s the number of occupied one-dimensional subbands
(per spin direction) in the constriction, or alternatively the number of transveise
modes at the Fermi level which can propagate through the constriction Note that
Ny <« N An “ideal” quantum point contact 1s characterized by a special set of
transmission eigenvalues, which are equal to either zero o1 one [2]

T 1 if1<n<N,
T 10 if Ng<n<N,

whete the eigenvalues have been ordered from large to small ‘We emphasize that
eq (3 1) does not imply that the transport through the constriction 1s adiabatic
In the case of adiabatic transport, the transmission ergenvalue T, 1s equal to the
modal transmission probability 7,, In the absence of adiabaticity there 1s no direct
1elation between T, and 7,, Substitution of eq (3 1) into eq (2 22) yrelds

4e?
Gns = TNO (32)

3D

The conductance of the NS junction 1s quantized n units of 4e?/h Ths 1s twice
the conductance quantum 1n the normal state, due to the current-doubling effect
of Andreev reflection [18]

In the classical imit Ny — oo we recover the well known result Gyg = 2GN
for a classtcal ballistic point contact [12,16,19] In the quantum regime, however,
the simple factor-of-two enhancement only holds for the conductance plateaus,
wheie eq (3 1) applies, and not to the transition region between two subsequent
plateaus of quantized conductance To illustrate this, we compare i fig 3 the
conductances G'ng and 2Gn for Buttiker’s model [20] of a saddle-point constiic-
tion in a two-dimensional electron gas Appreciable differences appear n the
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Fig 3 Solid curve Conductance Gng veisus Feimt energy of a quantum point contact between a
noimal and a supeiconducting 1eservorir (shown schematically 1n the mset) The dotted curve 15 twice
the conductance Gy for the case of two noimal reservous [20] The constiiction 1s defined by the 2D

saddle point potentral V(z y) = Vo — %mwzxz + 3mwly? withwy /we = 3 Gys 15 calculated
fiom eq (222) with Ty, = [1 + exp(—27en/hwe)] ! en = Epr — Vo — (n — %)ﬁ,wy (From

tef {15])

transition 1egion, where Gyg lies below twice Gy This 1s actually a 11gotous
inequality, which follows from eqs (2 22) and (2 23) for arbutrary transmission
martrix

Gns < 2Gn, Vi (33)

32 Quantum dot

Consider next a small confined region (of dimensions comparable to the Fermi
wavelength), which 1s weakly coupled by tunnel barriers to two electron 1esex

voirs  We assume that transport through this guantum dot occurs via resonant
tunneling thiough a single bound state Let €., be the energy of the resonant
level, 1elative to the Ferm level in the reservorrs, and let v, /A and 2 /i be the
tunnel 1ates through the two bairiers We denote v = v, + 72 If v < AF (with
AFE the level spacing in the quantum dot), the conductance G 1n the case ot
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Fig. 4. Conductance versus energy of the resonant level, from eq. (3.8) for the case of equal tunnel
barriers (solid curve). The dotted curve is the Breit—Wigner transmission probability (3.4). The inset
shows schematically the normal-metal -— quantum-dot — superconductor junction.

non-interacting electrons has the form

h R Y172

2020N = m = Tgw, 34

with Tpw the Breit-Wigner transmission probability at the Fermi level. The
normal-state transmission matrix ¢y (&) which yields this conductance has matrix
elements [21]

VY1nY2m (35>

t12(€) = UlT(E)UQ, T(E)nm T
€ — Eres T 517

0l

where > Vin = 715 2, Yon = 72, and Uy, Uy are two unitary matrices (which
need not be further specified).

Let us now investigate how the conductance (3.4) is modified if one of the two
reservolrs is in the superconducting state. The transmission matrix product tthIZ
(evaluated at the Fermi level € = 0) following from eq. (3.5) is

1
t12t]1Lz = UlMUfa M., = 31W vV Y1nY1m - (3.6)
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Its eigenvalues are

_ TBW 1f’I’L:17
T”—{O H2<n<N G7

Substitution 1nto eq (2 22) yields the conductance

4e? [ T 2 42 2 ?
GNS=—<—M :_<% (3 8)
2 — TBW h 451@5 + Vi + Y2

The conductance on 1esonance (€,,, = 0) 1s maximal in the case of equal tunnel
rates (7, = 72), and 1s then equal to 4e%/h — independent of v The lineshape
for this case 1s shown mn fig 4 (solid curve) It differs substantially from the
Loientzian lineshape (3 4) of the Breit—Wigner formula (dotted curve)

The amplitude and lineshape of the conductance 1esonance (3 8) does not de-
pend on the relative magnitude of the resonance width v and the superconducting
energy gap A, This 1s 1n contrast to the supercurient resonance 1n a supercon-
ductor — quantum dot — superconductor Josephson junction, which depends
sensitively on the ratio v/ A, [22,23] The difference can be traced to the fact that
the conductance (in the zero-temperatute, zero-voitage limit) 1s strictly a Fermi-
level propeity, whereas all states within 4, of the Fermi level contribute to the
Josephson effect (For an extension of eq (3 8) to finite voltages, see ref [24])
Since we have assumed non-interacting quasiparticles, the above results apply to
a quantum dot with a small charging energy U for double occupancy of the 1es-
onant state Devyatov and Kupriyanov [25], and Hekking et al [26], have studied
the influence ot Coulomb repulsion on tesonant tunneling through an NS junction,
in the temperature regime kgl > v where the resonance 1s thermally broadened
The extension to the low-temperatute regime of an wntrinsically broadened reson-
ance 1emains to be mnvestigated

3 3 Disordered junction

We now tuin to the regime of diffusive tiansport through a disordered point con-
tact or microbridge between a normal and a superconducting teseivoir The model
considered 1s that of an NS junction containing a disordered normal tegion of
length L much greater than the mean free path [ for elastic impurity scattering,
but much smaller than the localization length NI We calculate the average con-
ductance of the junction, averaged over an ensemble of impurity configurations
We begin by parameterizing the transmussion eigenvalue 75, 1n terms of a channel-
dependent localization length (,

1

= o (L ¢

n
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A fundamental result 1n quantum transport 1s that the mverse localization length
1s uniformly distributed between 0 and 1/m =~ 1/1 for | < L < N[ [27-30]
One can therefore write

N
<Zn:1 f(Tn)> B fOL/C““"dm f(cosh™ )
<ZN 1 Tn> fOL/C‘“"’dm cosh™

n=

= /Oodx f(cosh™2 z),
0
(3 10)

where { ) indicates the ensemble average and f(7") 1s an arbitrary function of
the transmission eigenvalue such that f(77) — 0 tfor T -—» 0 In the second
equality in eq (3 10) we have used that L/, ~ L/l > 1 to replace the upper
tegration limit by oo

Combining eqs (2 22), (2 23), and (3 10), we find

cosh ™2z

(Gns) = 2<GN>/OOOd$ ( )2 =(Gn) (311

2 —cosh™2z

We conclude that — although Gns according to eq (2 22) 1s of second order
in the transmission eigenvalues 1, -— the ensemble aveirage (Gng) 1s of first
oider 1n {/L The resolution of this paradox is that the 7”s aie not distubuted
uniformly, but are either exponentially small (closed channels) o1 of order unity
(open channels) [28] Hence the average ot 772 1s of the same order as the av-
erage ot 1, Off-diagonal elements of the transmisston matrix tt! are crucial to
arrive at the result (3 11) Indeed, 1f one would evaluate eq -(2 22) with the tians-
mission eigenvalues 7, 1eplaced by the modal transmission probabilities 7,,, one
would find a totally wrong result Since 7,, ~ /L < 1, one would find Gng =~
(1/L)YGn — which underestimates the conductance of the NS junction by the
factor L/|

Previous work [31,32] had obtamned the equality of Gng and G tiom semi-
classical equations of motion, as was appropriate for macroscopic systems which
are large compared to the normal-metal phase-coherence length [, The present
derrvation, m contrast, 1s fully quantum mechanical It applies to the “meso-
scopic” 1egime L < {4, 1n which transport 1s phase coherent Takane and Ebisawa
[33] have studied the conductance of a disotdered phase-coherent NS junction
by numerical simulation ot a two-dimensional tight-binding model They tound
{Gns) = (Gn) within numerical accuracy for [ <« L < NI, in agreement with
eq (311)

If the condition [ <« NI 1s relaxed, differences between (Gng) and (Gn)
appear To lowest order in L/NI, the difference 1s a manifestation ot the weak-
localization effect, as we discuss 1n the following section
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4, Weak localization

An NS junction shows an enhanced weak-localization effect, in comparison with
the noimal state [15] The onigin of the enhancement can be understood in a
simple way, as follows

We tetutn to the parameterization T, = 1/cosh®(L/¢,) mtroduced 1 eq
(39), and define the density of localization lengths p(¢, L) = (3, 6(¢ — (a)) 1
The subscript L 1efers to the length of the disordered region Using the 1dentity
cosh 2z = 2 cosh? x — 1, the ensemble-average of eq (2 22) becomes

2 )
(Grshs = /O A¢ p(¢, L) cosh (2L /C) @1

In the same parameterization, one has

2e? [

(Gx)p = | dCp(¢, L) cosh™(L/C) (42)

In the “open-channel approximation” [34], the integrals over ( aie restricted to
the 1ange ¢ > L of localization lengths gieater than the length of the conductor
In this range the density p(¢, L) 1s approximately independent of . The whole
L-dependence of the mtegrands in eqs (4 1) and (4 2) lies then 1n the atgument
of the hypeibolic cosine, so that

(Gns)L = 2(GN)aL 43)

This denivation formalizes the intuitive notion that Andieev 1eflection at an NS
interface eftectively doubles the length of the normal-metal conductor [33]

Consider now the geometty W < L relevant fot a microbridge In the noimal
state one has

<GN> = (W/L)UDlllcle - 6GN, (4 4)

whete op,ude 18 the classical Drude conductivity The L-independent term 6Gly
1s the weak-localization cotrection, given by [35] Gy = % €?/h Bquation (4 3)
then implies that

(Gns) = (W/L)opiude — 0GNs, 4 5)

with 6Gns = 28Gn  We conclude that Andieev 1eflection increases the weak-
localization cotiection, by a factor of two according to this qualitative argument
[15] A nigorous theory [36-38] of weak localization 1n an NS microbridge shows
that the inctease 1s actually somewhat less than a tactor of two,*

6Gns = (2 — 877 %) e?/h = 1 78 6GN (46)

* Equation (46) follows fiom the general formula 64 = %a(l) + fooodr (4352 +
7T2)_la(cosh_2 ) for the weak localization conection 1 a wune geometty wheic A 15 an arbit

1aty tianspoit property of the foom A = Zn a(Ty)



298 C WJ Beenakker

As pomted out m 1ef [39], the enhancement of weak localization in an NS
Junction can be observed experimentally as a dip 1n the differential conductance
Gng(V) = 9I/0V around zero voltage The dip occurs because an applied
voltage destroys the enhancement of weak localization by Andreev reflection,
thereby increasing the conductance by an amount

§Gns — 6Gn = 05¢%/h @7

at zero temperature [At finite temperatures, we expect a reduction of the size
of dip by a factor* (L./L)?, where L. = mun (lg,/AD/kgT) 1s the length
over which electrons and holes remain phase coherent ] We emphasize that in
the notmal state, weak localization can not be detected in the current—voltage
characteristic The reason why a dip occurs 1n Gyg(V') and not in Gy (V) 1s that
an applied voltage (in contrast to a magnetic field) does not break time-reversal
symmetry — but only affects the phase coherence between the elections and the
Andieev-reflected holes (which differ in energy by up to 2eV) The width V,
of the conductance dip 1s of the order of the Thouless energy E. = whD/L?
(with D the diffusion coefficient of the junction, L should be replaced by L it
L > L;) Thus energy scale 1s such that an electron and a hole acquire a phase
difference of order 7 on traversing the junction The energy £, 1s much smaller
than the superconducting energy gap A,, provided L > & (with & =~ (AD/ A ) /?
the superconducting coherence length in the dirty-metal limit) The separation of
energy scales 1s important, in order to be able to distinguish experimentally the
cuntent due to Andreev reflection below the energy gap from the quasi-particle
cutrent above the energy gap

The first measutement of the conductance dip predicted in ref [39] has been
1eported recently by Lenssen et al [40] The system studied consists of the two-
dimensional electron gas m a GaAs/AlGaAs heterostructure with Sn/Ti supet-
conducting contacts (W = 10 um, L = 08 um) No supercurrent 1s observed,
presumably because [4 ~ 0 4 pm 15 smaller than L. (The phase-coherence length
[4 1s estimated from a conventional weak-localization measurement in a mag-
netic field ) The data for the differential conductance 1s reproduced in fig 5
At the lowest temperatures (10 mK) a rather small and narrow conductance dip
develops, superimposed on a large and broad conductance minimum The size
of the conductance dip 1s about 2e*/h  Since 1 the experimental geometiy
W > L > 4, and there are two NS nterfaces, we would expect a dip of or-

* The reduction factor ( Le/L)? for the size of the conductance dip when W < L < L 1s esumated
as follows Consider the wire as consisting of L/ L. phase-coherent segments of length L. 1n seties
The fitst segment, adjacent to the superconductor, has a conductance dip §G1 ~ eQ/h, while the
other segments have no conductance dip The resistance Ry of a single segment 1s a fraction L¢ /L
of the total 1esistance R of the wie Since §G/G = —6R/R = —6R1/Rand 6Ry = ~R%6G; =~
—(Le/LY>R%e?/h we find 6G o (Lo/L)2e? /R
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Fig 5 Duiffeiential conductance as a function of applied voltage at thiee different tempeiatuies
Experimental data by Lenssen et al for a two dimensional elcction gas with superconducting contacts
The dip atound zeto voltage which 1s supetimposed on the broad minimum at the lowest temperatuie
1s attuibuted to the enhancement of weak localization by Andieev reflection (Fiom 1ef [40])

der 2(W/l4)(ls/L)* x 05€*/h ~ 6€*/h, simply by counting the number of
phase coherent segments adjacent to the superconductor This 1s thiee times as
laige as obsetved, but the presence of a tunnel barrier at the NS interface might
easily account for this discrepancy (The Schottky barrier at the interface between
a semiconductor and superconductor presents a natural origin for such a barrier )
The conductance dip has width V, ~ 0 25 mV, which 1s less than the energy gap
A, = 0 56 meV of bulk Sn — but not by much Experiments with a larger sep-
aration of energy scales are 1equired for a completely unambiguous 1dentification
of the phenomenon

An essential requirement for the appearance of a dip i the differential con-
ductance 1s a high probability for Andreev reflection at the NS boundary This
1s llustrated in fig 6, which shows the results of numerical simulations [39] of
transport through a disordered normal region connected via a tunnel barrier to a
superconductor The tunnel barrier 1s chatacterized by a transmission probability
per mode I' The dash dotted lines refer to an 1deal interface (I' = 1), and show
the conductance dip due to weak localization, discussed above For I' ~ 0 2—
0 4 the data for Gng (filled circles) shows a crossover® to a conductance peak
This 1s the phenomenon of reflectionless tunneling, discussed 1n the following
section

* The crossover 1s accompanted by an overshoot atound eV ~ L. indicating the absence of
an excess current (1e the linear I-V chaiactetstic for eV 3> L. extiapolates back thiough the
ougin) We do not have an analytical explanation for the overshoot
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Fig 6 Voltage and magnetic field dependence of Gng (filled circles) and G (open cucles) Nu-
metical stmulation of a disordered notmal region (L/W = 48,1/L = 012, N = 14) 1n seues
with a tunnel batier (tiansnussion probability pet mode I', dotted mes I" = 0 2, dashed T" = 0 6,
dash-dotted I' = 1) Note the crossover friom a dip (weak localization) to a peak (1eflectionless
tunneling) 1n Gyg on teducing I' (From ref [39])

5. Reflectionless tunneling

In 1991, Kastalsky et al. [41] discovered a large and nairow peak m the difter-
ential conductance of a Nb-InGaAs junction. We reproduce then data in fig. 7.
(A similar peak 1s observed as a function of magnetic field.) Since then a gieat
deal of experimental [42-48], numerical [39,49], and analytical work [50-54] has
been done on this effect. Here we focus on the explanation 1n terms of disorder-
induced opening of tunneling channels [30,54), which 1s the most natuial from
the view point of the scattering formula (2 22), and which we feel captuies the
essence of the effect. Equivalently, the conductance peak can be explamned
terms of a non-equilibrium proximuty effect, which 1s the preferred explanation in
a Green’s function formulation of the problem [52,55-57]. We begin by reviewing
the numerical work [39].

5.1. Numerical stmulations

A sharp peak 1n the conductance around V, B = 0 1s evident in the numerical sim-
ulations for I" = 0.2 (dotted lines in fig. 6). While G depends only weakly on B
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Fig 7 Differential conductance (normalized by the normal-state 1esistance Ry = 0278) as a
function of applicd voltage at seven different temperatutes Expenimental data by Kastalsky et al
for a Nb-InGaAs junction Note the diffetence with fig 5 A peak rather than a dip develops at
the lowest temperatures and the size of the peak (0 6 2~% ~ 15 x 10*e?/h) 15 fow orderts of
magnitude gieater The width of the peak 15 compaiable to the width of the dip in fig 5 (Fiom
et [41])

and V 1n this range (open circles), G'ng drops abruptly (filled ciicles) The width
of the conductance peak 1n B and eV 1s respectively of order B, = h/eLW (one
flux quantum through the normal 1egion) and ¢V, = whD/L? = E. (the Thou-
less energy) The width of the peak 1s the same as the width of the conductance
dip due to weak localization, which occurs for larger barrier tianspaiencies The
size of the peak 1s much greater than the dip, however

It 1s stiuctive to first discuss the classical resistance RY3% of the NS junc-
tion The basic approximation in R 1s that cutrents rather than amplitudes ate
matched at the NS 1nterface [31] The result 1s

RS = (h/2Ne?) [L/1 + 2% + O(1)] CR))

The contubution trom the barrier 1s oc I'"2 because tunneling into a supercon-
ductor 15 a two-particle process [58] Both the incident electron and the Andieev-
reflected hole have to tunnel thtough the barrier (the net result being the addition
of a Cooper pair to the supetconducting condensate [1]) Equation (5 1) is to be
contiasted with the classical resistance RG™S in the notmal state,

Ry™ = (h/2Ne?) [L/1+ T+ 0(1)], 02

whete the contribution of a tesistive barrier 1s < I'™! In the absence of a tunnel
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Fig 8 Filled circles Numerically calculated resistance Ryg of a disordered NS junction versus the
transmission probability per mode I" of the tunnel barrier at the NS interface Open cucles Resistance
Ry of the same junction 1n the normal state (a) 1s for zero magnetic field (b) 1s for a flux of 10 h /e
through the disordered tegion The dotted and solid curves are the classical eqs (5 1) and (52) The
dashed curve 1s the theory of ref [52] which for ' > {/L ~ 0 12 comncides with eq (5 3) (Fiom
ref [39])

barrier (1 e for ' = 1), R{&® = R for L > [, 1n agreement with refs [31,32]
Let us now see how these classxcal results compare with the simulations [39]

In fig 8 we show the resistance (at V' = 0) as a function of I" mn the absence
and presence of a magnetic field (The parameteis of the disordered region are
the same as for fig 6 ) There 1s good agreement with the classical eqs (5 1) and
(5 2) for a magnetic field corresponding to 10 flux quanta through the disordered
segment (fig 8b) For B = 0, however, the situation 1s different (fig 8a) The
normal-state resistance (open circles) still follows approximately the classical for-
mula (solid curve) (Deviations due to weak localization are noticeable, but small
on the scale of the figure ) In contrast, the resistance of the NS junction (filled
circles) lies much below the classical prediction (dotted curve) The numerical
data shows that for I >> /L one has approximately

Rns(B =0,V =0) = Rg>s, (53)

which for I' < 1 1s much smaller than R{3%® This 1s the phenomenon of reflec-
tionless tunneling In fig 8a the barrier contrlbutes to Ryg 1 order ™1, just as
for single-particle tunneling, and not 1 order I'"2, as expected for two-particle
tunneling It is as if the Andreev-reflected hole 1s not reflected by the barrier The
interfering trajectories responsible for this effect were first identified by Van Wees
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et al [50] The numerical data of fig 8a 1s 1n good agreement with the Green’s
function calculation of Volkov, Zaitsev, and Kiapwik [52] (dashed curve) Both
these papers have played a crucial role 1n the understanding of the effect The scal-
g theory reviewed below [54] 1s essentially equivalent to the Green’s function
calculation, but has the advantage of explicitly demonstrating how the opening of
tunneling channels on increasing the length L of the disordered region induces a
transition from a I'~2 dependence to a I'"! dependence when L ~ [/T

52 Scaling theory

We use the parameterization

1
Th=——5—, 54
cosh? Tn G
similar to eq (3 9), but now with a dimensionless variable z, € [0,00) The
density of the z-variables, for a length L of disordered region, 1s denoted by

p(z, L) = (32,6(x ~an))L (5 5)

Foir L = 0, 1e 1 the absence of disorder, we have the initial condition imposed
by the barrier,

p(x,0) = Né(x — xp), (5 6)

with T' = 1/cosh®z The scaling theory describes how p(z, L) evolves with
mereasing L This evolution 1s governed by the equation

1 0 a [~
—p(z, S)é—m— / dz’ p(a’,s)In |simh? ¢ — smh? 2’|,
0

a pu—
3:°@:8) =~
67N

0s

where we have defined s = L/l This non-linear diffusion equation was derived
by Mello and Pichard [59] fiom a Fokker—Planck equation [34,60,61] for the joint
distiibution function ot all N eigenvalues, by integrating out N — 1 eigenvalues
and taking the large-N Iimit This limit testricts 1ts validity to the metallic re-
gime (N > L/I), and 1s sutficient to determine the leading order contribution
to the avetage conductance, which 1s O(N) The weak-localization correction,
which 1s O(1), 1s neglected here A prior, eq (57) holds only for a “quasi-
one-dimensional” wire geometry (length Z much greater than width W), because
the Fokkei—Planck equation from which 1t 1s derived requires L > W Numei-
1cal simulations indicate that the geometry dependence only appears 1n the O(1)
corrections, and that the O(N') contitbutions are essentially the same for a wire,
square, o1 cube

In ret [54] 1t 1s shown how the scaling equation (5 7) can be solved exactly,
tor arbitraty imtial condition p{z,0) = po(z) The method of solution 1s based
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sN-! p(x,s)

2

Fig 9 Eigenvalue density p(z, s) as a function of x (numts of s = L/l) foo T = 01 Curves
a,b,c,d,e are for s = 2,4,9, 30,100, respectively The solid curves are fiom eq (5 8), the dashed
cmves ftom eq (5 12) The collision of the density piofile with the boundary at x = 0, for s =
sc = (1 — T)/T, signals the disorder-induced opening of tunneling channels responsible for the
reflectionless tunneling effect (Fiom ref [54])

on a mapping of eq. (5 7) onto Euler’s equation for the 1sobaric flow of a two-
dimensional 1deal flmd- L corresponds to time and p to the y-component of the
velocity field on the z-axis. [Please note that 1n this section z 1s the auxihary
variable defined 1n eq. (5 4) and not the physical coordinate 1n fig. 2 | The result
18

p(z,8) = (2N/7)Im U(z —10%, 5), (5.8)
where the complex function Uz, s) 1s determined by
U(z,s) = Up(z — sU(z,s)). 59
The function Up(z) 1s fixed by the 1nitial condition,
sinh2z [ polz")
Up(z) = da’ . 5.10
o(2) 2N sinh? z — sinh? ! (5.10)

The implicit equation (5.9) has multiple solutions 1n the entire complex plane; We
need the solution for which both z and z — sU(z, s) lie 1n the strip between the
lines y = 0 and y = —7/2, where z = z + iy.

The 1n1t1al condition (5.6) corresponds to

Up(z) = Lsinh 2z (cosh® z — 1) 7! (511)
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The 1esulting density (5 8) 1s plotted n fig 9 (solid curves), for I' = 01 and
sevetal values of s For s > 1 and = < s 1t simphfies to

z = Larccosht — 10s(7? — 1)}/ cos o,
o=7msN 'p(r,s), 7=c(lssimo)?, (512)

shown dashed in fig 9 Equation (S 12) agrees with the 1esult of a Gieen’s func-
tron calculation by Nazarov [30] For s = 0 (no disorde1), p 1s a delta tunction at
7o On adding disorder the eigenvalue density 1apidly spieads along the z-axis
(cutve a), such that p < N/s for s > 0 The sharp edges of the density profile,
so uncharacteristic for a diftusion profile, reveal the hydiodynamic nature of the
scaling equation (5 7) The upper edge 1s at

Tmax = S + %ln(s/F) + O(1) (513)

Since L/2 has the physical significance of a localization length {34], this uppet
edge cottesponds to a minimum localization length £,y = L/ Tmax of order |
The lower edge at 1,,,,,, propagates fiom zg to 0 1n a “time” s, = (1 —I') /T" For
1 <« s < 3. one has

Lo = Larccosh (sc/s) — 3[1 — (s/5c)?]/? 514

It follows that the maximum localization length &nax = L/2my tncreases i
disorder 1s added to a tunnel junction This paradoxical 1esult, that disoider en-
hances transmission, becomes intuitively obvious fiom the hydrodynamic cortes-
pondence, which 1mplies that p(z, s) spreads both to larger and smallet © as the
fictitious time s progresses When s = s, the diffusion profile hits the boundary
at 2 = 0 (curve c¢), so that a,,, = 0 This implies that for s > s. theie ex-
1st scattering states (eigenfunctions of #¢7) which tunnel thiough the barrier with
near-unit transmission probability, even 1f I' < 1 The number Nypen of trans-
mission eigenvalues close to one (open channels) 1s of the oider ot the number
of 2,,’s 1n the range 0 to 1 (since T,, = l/cosh2 T, vanishes exponentially if
1n > 1) Fol s > s (curve e) we estimate

Nopen = p(0,8) = N(s +T71H) 7, (5 15)
where we have used eq (5 12) The disorder induced opening of tunneling chan-
nels was discovered by Nazarov [30] It 1s the tundamental mechanism for the
I'—2 to I'"! transition 1n the conductance of an NS junction, as we now discuss

Accotding to eqs (2 22), (223), (54), and (5 5), the average conductances
{Gns) and (Gy) are given by the integrals

462 ee —2
(Gns) = - / dz p(zx,s) cosh™ 21, (5 16)
0

2e? [ _
(Gn) = e / da p(x,s)cosh™“z 517)
0
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Here we have used the same trigonometric identity asmeq (41) ForT" > [/L
one 1s 1n the regime s > s. of curve e in fig 9 Then the dominant contribution
to the integrals comes from the range 2 /s < 1 where p(x, s) ~ p(0,s) = N(s+
I'~1)~1 1s approximately independent of z Substitution of p(z, s) by p(0, s) n
eqs (5 16) and (5 17) yields directly

(Gns) = (Gn) = 1/RG™, (5 18)

in agreement with the result (5 3) of the numerical simulations

Equation (5 18) has the linear I' dependence characteristic for reflectionless
tunneling The crossover to the quadratic " dependence when I < [/ L 1s obtained
by evaluating the integrals (5 16) and (5 17) with the density p(x, s) given by eq
(5 8) The result 1s [54]

(Gns) = (2Ne*/h)(s + Q™) 7, (519)
(Gn) = (2Ne*/h)(s + T 1)~ (5 20)
The “effective” tunnel probability () 1s defined by

6
" scosd <I‘sc059(1+sme)_1> ’ (521)

where 8 € (0,7/2) 1s the solution of the transcendental equation

6[1 — 3T(1 —sin )] = Lscosf (522)
For ' <« 1 (or s » 1)eqs (521) and (522) sumphtfy to @ = I'siné,
f = T'scos#, in precise agreement with the Green’s function calculation of

Volkov, Zaitsev, and Klapwyk [52] According to eq (5 20), the normal state
resistance increases linearly with the length L of the disordered region, as ex-
pected from Ohm’s law This classical reasoning fails if one of the contacts 1s 1n
the superconducting state The scaling of the resistance Ryg = 1/(Gng) with
length, computed from eq (5 19), 1s plotted in fig 10 For I' = 1 the resistance
increases monotonically with L The ballistic it L — 0 equals 2 /4Ne?, half
the contact resistance of a normal junction because ot Andreev reflection (cf sec-
tton 3 1) ForI' $ 0 5 a resistance minimum develops, somewhat below L == [ /T
The resistance mimimmum 1s assoctated with the crossover from a quadratic to a
linear dependence of Ens on 1/T

It I's > 1 one has § — 7/2, hence Q — I' In the opposite regime I's < 1
one has @ — T's, hence @ — I'?s The corresponding asymptotic expressions foi
{Gng) are (assummg T' < 1 and s > 1)

(Gns) = (2Ne? /W) (s + 17171, of Ts>1, (523)
(Gns) = (2Ne? /h)T%s, of Ts < 1 (524)
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Fig 10 Dependence of the resistance Ryng on the length L of the disordered notmal tegion (hatched
1n the nset), for different values of the transmittance I" of the NS mterface Sohd curves are computed
fiomeq (519),forI' =1 08,06,04 01 fiom bottom to top For I' <« 1 the dashed curve 15
apptoached (From1ef [54])

In erther Iimit the conductance 1s gieater than the classical result
Glass = (2Ne? /h)(s + 2T 72) 71, (5 25)

which holds 1f phase coherence between electrons and holes 1s destroyed by a
voltage or magnetic field The peak in the conductance around V, B = 0 1s of
order AGns = (Gns) — valg“, which has the relative magnitude

AGns 2
(Gns) T 24T

(5 26)

The scaling theory assumes zero temperature Hekking and Nazarov [53] have
studied the conductance of a resistive NS interface at finite temperatures, when
L 1s greater than the correlation length L, = mn ({4, \/iD/kgT) Their result
1s consistent with the limiting expression (5 24), 1f s = L/l 1s 1eplaced by L /!
The implication 1s that, 1f L > L., the non-hnear scaling of the resistance shown
i fig 10 only applies to a disordered segment of length L. adjacent to the su-
perconductor For the total resistance one should add the Ohmic contribution of
order (h/e?)(L — L)/l from the 1est of the wire
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53 Double-barrier junction

In the previous subsection we have discussed how the opening of tunneling chan-
nels (1 e the appearance of transmission eigenvalues close to one) by disorder leads
to a minimum 1n the resistance when L ~ {/T" The minimum separates a I'~!
trom a I' =2 dependence of the resistance on the transparency of the interface We
1eferned to the '~ dependence as “reflectionless tunneling”, since 1t 1s as if one of
the two quasiparticles which form the Cooper pair can tunnel thiough the bartier
with probability one In the present subsection we will show, following tet [62],
that a qualitatively similar eftect occuis 1f the disorder 1n the normal region 1s te-
placed by a second tunnel bartier (tunnel ptobability I'') The 1esistance at fixed T’
shows a muinimum as a function of I" when I ~ T" For I < T the resistance has
aT'~! dependence, so that we can speak agam of reflectionless tunneling

We consider an NI;NI»S junction, whete N = normal metal, S = supeicon-
ductot, and I, = msulator or tunnel barrier (transmission ptobability per mode
r,.=1/ cosh? o,) We assume ballistic motion between the batriers (The effect
of disotder 1s discussed later ) A straightforward calculation yields the transmus-
ston probabilities T, of the two barriers 1n series,

Tn = (a+bcosp,) !, (527)
a =1+ 4 cosh2ay cosh2as, b= 14smh2aq, smh2ay, (5 28)

where @, 18 the phase accumulated between the barriers by mode n Since the
transmission mattix * 1s diagonal, the trtansmisston probabilities 7, are identical
to the eigenvalues of tt! We assume that L > A\pr (\r 1s the Fermt wavelength)
and NT', > 1, so that the conductance 1s not dominated by a single tesonance In
this case, the phases ,, are distributed uniformly in the interval (0, 27) and we
may replace the sum over the transmission eigenvalues n eqs (2 22) and (2 23)

by ntegrals over o 337, Flion) — (N/2r) [27 di f(sp) The result is

4Ne? cosh 2a;; cosh 2¢
Grs = — ! - 2 75 (5 29)
" (cosh® 2a; + cosh® 2a ~ 1)
4Ne?
Gn = ¢ (cosh 2a; + cosh 2ary) ™ (5 30)

These expressions are symmetiic in the mdices 1 and 2 It does not matter which
of the two batriers 1s closest to the superconductor In the same way we can com-
pute the entue distribution of the transmussion eigenvalues, p(T) = > 6(T —
T,) — (N/27) 027r dp 8(T —T(¢)) Substituting T(¢) = (a+bcosp) ! from
eq (5 27), one finds

p __ﬁ 22 32y —1/2
p(f)_WT(bT (aT —1)?) (531)
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Fig 11 Dependence of the resistances Ry and Ryg of balhistic NININ and NINIS stiuctures,
1espectively, on bartier triansparency I';, while transparency I'y = 0 1 1s kept fixed [computed fiom
eqs (529)and (5 30)] The insct shows the NINIS stiuctuie consideted (From ref [62])

In fig 11 we plot the resistance Ry = 1/Gy and Rys = 1/Gys, following
from eqs (5 29) and (5 30) Notice that Ry follows Ohm’s law,

_h
" 2Ne?
as expected from classical considerations In contrast, the resistance Eng has a
muumum 1f one of the I's 1s varied while keeping the other fixed This resistance
munumum cannot be explained by classical seties addition of barrier resistances
If ©'s <« 11s fixed and T’y 1s varted, as in fig 11, the mmmimum occurs when
Iy = /2Ty The minimal resistance RR4$ 1s of the same order of magnitude
as the resistance Ry 1n the noimal state at the same value of I'; and I's In
patticular, we find that R% depends linearly on 1/T",, whereas for a single bartier
Rng o< 1/1?

The linear dependence on the barrier transparency shows the qualitative simil-
arity of a ballistic NINIS junction to the disordered NIS junction considered 1n the
previous subsection To 1llustrate the similarity, we compare 1n fig 12 the densit-

Ry

(1/T7 +1/T9 - 1), (532)
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Fig 12 Density of transmission eigenvalues through a normal region containing a potential batriet
(transmussion piobability I' = 0 4) The left panel (a) shows the disorder mduced opening of tunnel
ing channels (solid curve s = 0 04 dotted s = 04, dashed s = 5 where s = L/l) The nght
panel (b) shows the opening of channels by a second tunnel batier (transparency IV, solid cuive
T' =095, dotted I'' = 0 8, dashed TV = 0 4) The curves 1n (a) are computed fiom eq (5 8) the
curves in (b) fromeq (5 31) (From ref [62])

1es of normal-state transmission eigenvalues The left panel 1s for an NIS junction
[computed using eq (5 8)], the right panel 1s for an NINIS junction [computed
from eq (531)] In the NIS junction, disorder leads to a bimodal distribution
p(T), with a peak near zero transmission and another peak near unit transmiss-
sion (dashed curve) A simular bumodal distribution appears 1n the ballistic NINIS
Junction, for approximately equal transmission probabilities of the two bairiers
There are also differences between the two cases The NIS junction has a um-
modal p(T) f L/l < 1/T, while the NINIS junction has a bimodal p(7") for any
ratio of I'; and Iy In both cases, the opening of tunneling channels, 1 e the ap-
pearance of a peak in p(T') near T' = 1, 1s the origin for the 1/T" dependence of
the resistance

The scaling equation of section 5 2 can be used to mvestigate what happens
to the resistance mmmimum 1f the region of length L between the tunnel barriers
contains 1mpurities, with elastic mean free path [ As shown i ref [62], the
resistance minimum persists as long as [ 2 'L In the diffusive regime (I < L) the
scaling theory 1s found to agree with the Green’s function calculation by Volkov,
Zaitsev, and Klapwyk for a disordered NINIS junction [52] For stiong barriers
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(1,72 < 1) and strong disorder (L > [), one has the two asymptotic formulas
INe? TP
3/2°
ho(rer3)
2Ne?

Gns = if Ty,T2 <« /L, (5 33)

Gns = (LJI+1/Ty +1/T9)7 Y, of Ty, Ty > /L (534)

Equation (5 33) comncides with eq (5 29) 1n the limit oy, g > 1 (recall that T, =
1/ cosh? a,) Thus shows that the eftect of disorder on the resistance minimum can
be neglected as long as the resistance of the junction 1s dominated by the barriers
In this case Gg depends linearly on I'y and I'; only 1if I'; = T’ Equation (5 34)
shows that if the disorder dominates, Gns has a linear I'-dependence 1egardless
of the relative magnitude of I'; and 'y

We have assumed zero temperature, zero magnetic field, and mfinitesimal ap-
plied voltage Each of these quantities 1s capable of destroying the phase coher-
ence between the electrons and the Andreev-reflected holes, which 1s respons-
1ble for the resistance mimimum  As far as the temperature 7" and voltage V' are
concerned, we require kg7, eV < K/Tawen for the appearance of a resistance
mummum, where 7Tgywen 1S the dwell tume of an electron 1n the region between
the two barriers  PFor a ballistic NINIS junction 7awenn =~ L/upl’, while for a
disordered junction Tqwen =~ L?/vpD'l 1s larger by a factor L/l 1t follows that
the condition on temperature and voltage becomes more restrictive if the disorder
increases, even if the resistance remains dominated by the barriers As far as the
magnetic field B 1s concerned, we 1equire B < h/eS (with S the area of the
Junction perpendicular to B), 1f the motion between the barriers 1s diffusive For
ballistic motion the trajectories enclose no flux, so no magnetic field dependence
1s expected

A possible experiment to verify these results might be scanning tunneling mi-
croscopy (STM) of a metal particle on a superconducting substrate [63] The
metal-superconductor 1nterface has a fixed tunnel probability I'; The probabil-
ity I'y for an electron to tunnel from STM to particle can be controlled by varying
the distance (Volkov has recently analyzed this geometry 1n the 1egime that the
motion from STM to particle 1s diffusive rather than by tunneling [64] ) Another
possibility is to create an NINIS junction using a two-dimensional electron gas n
contact with a superconductor An adjustable tunnel barrier could then be imple-
mented by means of a gate electrode

54 Crrcutt theory

The scaling theory of ref [54], which was the subject of section 5 2, desctibes
the transition from the ballistic to the diffusive regime In the ditfusive regime
1t 1s equivalent to the Green’s function theory of ref [52] A third, equivalent,
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theory for the diffusive regime was presented recently by Nazarov [65] Starting
from a continuity equation for the Keldysh Green’s function [66], and applying
the appropriate boundary conditions [67], Nazarov was able to formulate a set
of rules which reduce the problem of computing the resistance of an NS junc-
tion to a simple exercise m circuit theory Furthermore, the approach can be ap-
plied without further complications to multi-termnal networks involving several
normal and superconducting reservoirs Because of 1ts practical importance, we
discuss Nazarov’s circuit theory n some detail

The superconductors .S, should all be at the same voltage, but may have a dif-
ferent phase ¢, of the paiwr potential Zero temperature 1s assumed, as well as
infimtesimal voltage differences between the normal reservorrs (linear response)
The reservoirs are connected by a set of diffusive normal-state conductors (Iength
L,, mean free path [,, s, = L,/l, > 1) Between the conductors there may be
tunnel barriers (tunnel probability I',) The presence of superconducting reser-
vorrs has no effect on the resistance (h/2Ne?)s, of the diffustve conductors, but
affects only the resistance h/2Ne?T"*" of the tunnel barriers The tunnel probab-
ihty T, of barrier 2 1s renormalized to an effective tunnel probability T, which
depends on the entire circuit

Nazarov’s rules to compute the effective tunnel probabilities are as follows To
each node and to each terminal of the circuit one assigns a vector 12, of unit length
For a normal reservorir, n, = (0,0, 1) 1s at the north pole, for a superconducting
reservorr, 1, = (cos ¢,,sin ¢,,0) 1s at the equator For a node, n, 1s somewhere
on the northern hemisphere The vector n, 1s called a “spectral vector”, because 1t
1s a particular parameterization of the local energy spectrum If the tunnel barrier
1s located between spectral vectors 11 and no, 1ts effective tunnel probability 15*

I = (n; ny)I" =T'cos by, (5 35)

where 612 1s the angle between ny and 1, The rule to compute the spectral
vector of node 1 follows from the continuity equation for the Green’s function
Let the index k label the nodes or terminals connected to node ¢ by a single tunnel
barrier (with tunnel probability I';) Let the index ¢ label] the nodes or terminals
connected to ¢ by a diffusive conductor (with L/l = s,) The spectral vectors
then satisfy the sum rule [65]

arccos(n, mg)

;(nz X )Tk + Z(nl x nQ)Sq\/l—W =0

q

(5 36)

This 1s a sum rule for a set of vectors perpendicular to n, of magnitude I'y, sin 6,
or #,4/s4, depending on whether the element connected to node 7 1s a tunnel

* It may happen that cos 612 < 0, 1n which case the effective tunnel probability 1s negative Nazaiov
has given an example of a four-termunal circuit with T < 0, so that the current through this baiier
flows 1n the duection opposite to the voltage drop [68]
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Fig. 13. At left: Circuit containing two terminals (open circles), one node (filled circle), and two
elements: A diffusive conductor (shaded) and a tunncl barrier (black). At right: Spectral vectors
associated with the terminals N,S and with the node A.

barrier or a diffusive conductor. There is a sum rule for each node, and together
the sum rules determine the spectral vectors of the nodes.

As a simple example, let us consider the system of section 5.2, consisting of
one normal terminal (N), one superconducting terminal (S), one node (labeled A),
and two elements: A diffusive conductor (with L/l = s) between N and A, and
a tunnel barrier (tunnel probability I') between A and S (see fig. 13). There are
three spectral vectors, nn, ng, and o . All spectral vectors lie in one plane. (This
holds for any network with a single superconducting terminal.) The resistance of
the circuit is given by R = (h/2Ne?)(s + 1/T°%), with the effective tunnel
probability

I*f = Dcosfag = ['sinb. (5.37)

Here @ € [0, 7/2] is the polar angle of 4. This angle is determined by the sum
rule (5.36), which in this case takes the form

T'cos—6/s=0. (5.38)

Comparison with section 5.2 shows that I'*¥ coincides with the effective tunnel
probability @ of eq. (5.21) in the limit s >> 1, i.e. if one restricts oneself to the
diffusive regime. That is the basic requirement for the application of the circuit
theory.

Let us now consider the “fork junction” of fig. 14, with one normal terminal (N)
and two superconducting terminals Sy and S (phases ¢1 = —¢/2 and o = ¢/2).
There is one node (A), which is connected to N by a diffusive conductor (L /] =
s), and to Sy and Sy by tunnel barriers (I'y and I';). This structure was studied
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N

Fig 14. Circutt diagram and spectral vectors for a structure contamning one normal and two super-
conducting terminals (phase difference ¢).

theoretically by Hekking and Nazarov (53] and experimentally by Pothier et al.
[69]. For simplicity, let us assume two identical tunnel barriers I'y = T'y = T
Then the spectral vector na = (sind,0,cosé) of node A lies symmetrically
between the spectral vectors of terminals Sy and S,. The sum rule (5.36) now
takes the form

2T| cos 3| cos — 0/s = 0. (5.39)

Its solution determines the effective tunnel rate I = T'| cos } ¢/ sin 6 of each of
the two barriers in parallel, and hence the conductance of the fork junction,

2Ne?
h
Two limiting cases of eqs. (5.39) and (5.40) are

G=(2Ne*/h)(s + 3T cos 1g|™1)71, if sT|cosdg| > 1, (5.41)
G = (4Ne?/h)sT*(1 + cos¢), if sT|cosig| < 1. (5.42)

For ¢ = 0 (and 2" — T") these expressions reduce to the results (5.23) and (5.24)
for an NS junction with a single superconducting reservoir. The limit (5.42) agrees
with the finite-temperature result of Hekking and Nazarov [53], if s is replaced by
L./l and a series resistance is added due to the normal segment which is further
than a correlation length from the NS interfaces. The possibility of a dependence
of the conductance on the superconducting phase difference was noted also in
other theoretical works, for different geometries [70-75].

The ¢-dependence of the conductance of a fork junction has recently been ob-
served by Pothier et al. [69]. Some of their data is reproduced in fig. 15. The

G = [s+ (Tl cos 14| sin§) =]~ (5.40)



Quantum Transport in Semiconductor-Superconductor Microjunctions 315

-0.4 -0.2 0.0 0.2 0.4
B (mT)

Fig 15 Conductance of a fork junction as a function of magnetic field, showing the dependence on
the phase difference ¢ of the superconductor at two tunnel barriers The circles are measurements
by Pothzer et al [69] of the current I through a Cu wire connected to an oxidized Al fork (normal-
state resistance Ry = 1 56 k€2) The apphied voltage V 1s sufficiently low that I/V 1s close to the
linear-tesponse conductance (The amplitude of the oscillations at V. = 015 3 94 x 1076 Q1
somewhat larger than 1n the figure ) The solid curve 15 a cosne fit to the data The offset of maximum
conductance from B = 0 1s atttibuted to a small residual field in the cryostat (Courtesy of H
Pothier)

conductance of a Cu wire attached to an oxidized Al fork oscillates as a function
of the applied magnetic field. The period corresponds to a flux increment of h/2e
through the area enclosed by the fork and the wire, and thus to A¢ = 27. The
experiment 1s 1n the regime where the junction resistance 1s dominated by the tun-
nel barriers, as 1n eq. (5.42).* The metal-oxide tunnel barriers in such structures
have typically very small transmission probabihities (I" ~ 1075 1n ref. [69]), so
that the regime of eq (5.41) 1s not easily accessible. Larger I’s can be realized
by the Schottky barrter at a semiconductor — superconductor interface It would
be of interest to observe the crossover with increasing I' to the non-sinusoidal
¢-dependence predicted by eq. (5.41), as a further test of the theory.

* Equation (5 42) provides only a qualitative description of the experiment, mainly because the
motion 1n the arms of the foik ts diffusive rather than ballistic This 1s why the conductance minima
i fig 15 do not go to zero A solution of the diffusion equation 1n the actual experimental geometry
15 required for a quantitative comparison with the theory [69]
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6. Universal conductance fluctuations

So tar we have considered the average of the conductance over an ensemble ot
mmpurity potentials In fig 16 we show results of numerical simulations [39]
for the variance of the sample-to-sample fluctuations of the conductance, as a
function of the average conductance in the normal state A range of parameters
L,W,l, N was used to collect this data, in the quasi-one-dimensional, metallic,
diffusive regmme | < W < L < NI An ideal NS interface was assumed (I' =
1) The results for Var G are as expected theoretically [34,35] for “universal
conductance fluctuations” (UCF)

VarGn = % B /h)? 6 1)

The index 3 equals 1 mn the presence and 2 i the absence of time-1eversal sym-
metry The 1/3 dependence of Var Gn unplies that the variance of the conduct-
ance fluctuations 1s reduced by a factor of two upon application of a magnetic
field, as observed in the simulation (see the two dotted lines in the lower part
of fig 16) The data for Var Gng at B = 0 shows approximately a four-fold in-
crease over Var Gy For B # 0, the simulation shows that Var G 1s essentially
unaffected by a time-reversal-symmetry breaking magnetic field In contrast to
the situation 1n the normal state, the theory for UCF 1n an NS junction 1s quite
different for zero and for non-zero magnetic field, as we now discuss

In zero magnetic field, the conductance of the NS junction 1s given by eq (2 22),
which 1s an expression of the form A = 3~ a(77,) Such a quantity A 1s called
a linear statistic on the transmission eigenvalues The word “linear” refers to
the fact that A does not contain products of different 7;,’s The function a(T')
may well depend non-linearly on T, as 1t does for Gyg, where a(T') 1s a rational
function of 7' The Landauer formula (2 23) for the normal-state conductance 1s
also a linear statistic, with a(I') o« T It 1s a general theorem 1n random-matrix
theory [76] that the variance of a linear statistic has a 1/8 dependence on the
symmetry index 8 Moreover, the magnitude of the variance 1s mdependent of
the microscopic properties of the system (sample size, degree of disorder) This
1s Imry’s fundamental explanation for UCF [28]

For a wire geometry, there exists a formula for the variance of an arbitrary
linear statistic [37,77,78],

=g fon o (42) (52
e S




1

Quantum Transport m Semiconductor-Superconductor Microjunctions 317

T T T T | T T T T
| iy - i
9.\2_ #t-gi x % + x —
i - X o
P \NS i
2
U1k N _
L e
5oL i
= L Hy + 4 s
L x X% x X % i
1 1 L 1 | 1 i ] |
OO 10 20

Gy (e?/h)

Fig 16 Numeiical calculation of the vanance of the fluctuations in Gy and Gnsg, as a function
of the avetage Gn (+ for B = 0, x for a flux of 10 h/e) Dotted lines aie the analytical 1esults
fiom eqs (6 1) and (6 3) Note the absence of a factor of two 1eduction 1n Var Gng on applymg a
magnetic field (From ief [39])

where 2(T) = arccoshT~/2 1In the normal state, substitution of a(T) =
(2€?/h)T nto eq (6 2) reproduces the result (6 1) In the NS junction, substitu-
tron of a(T") = (4e*/h)T?(2 — T)~2 yields, for the case 3 = 1 of zero magnetic
field,

32
Var Gng = E(2 — 907 *)(e?/h)? = 4 30 Var Gy (63)

A factor of four between Var Gns and Var Gy was estimated by Takane and
Ebisawa [33], by an argument similar to that which we descuibed 1n section 4
for the weak-localization correction (A diagrammatic calculation by the same
authors [79] gave a tactor of six, presumably because only the dominant diagiam
was mcluded ) The numerical data in fig 16 1s withuin 10 % ot the theoretical
prediction (6 3) (upper dotted line) Similar numerical results for Var Gyg 1n
zero magnetic field wete obtamed in refs [33,80]

We conclude that UCF 1n zero magnetic field 1s basically the same phenomenon
for Gy and Gys, because both quantities are linear statistics for § = 1 If time-
reversal symmetry (TRS) 1s broken by a magnetic field, the situation 1s qualit-
atively differtent For Gy, broken TRS does not affect the umiversality of the
fluctuations, but merely reduces the variance by a factor of two No such simple
behavior 1s to be expected for Gng, since 1t 1s no longet a linear statistic for
8 = 2 That 1s a crucial distinction between eq (2 20) for Gxs and the Land-
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auer formula (2 23) for G, which remains a linear statistic regardless of whether
TRS 1s broken or not This expectation [15] of an anomalous § dependence of
Var Gys was borne out by numerical simulations [39], which showed that the
conductance fluctuations 1n an NS junction without TRS remain independent of
disorder, and of approximately the same magnitude as in the presence of TRS
(compare + and x data points 1n the upper part of fig 16) An analytical theory
remains to be developed

7. Shot noise

The conductance, which we studied 1n the previous sections, 1s the time-averaged
current I divided by the applied voltage V' Time-dependent fluctuations 61(t)
1n the current grve additional information on the transport processes The zero-
frequency noise power P 1s defined by

P4 / "t (s1(1)51(0)) a1
0

At zero temperature, the discreteness of the electron charge 1s the only source of
fluctuations 1n time of the current These fluctuations are known as “shot noise”,
to distinguish them from the thermal noise at non-zero temperature A furthei
distinction between the two 1s that the shot-noise power 1s proportional to the ap-
plied voltage, whereas the thermal noise does not vamish at V' = 0 Shot noise 1s
therefore an intrinsically non-equiltbrium phenomenon If the transmission of an
elementary charge e can be regarded as a sequence of uncorrelated events, then
P = 2e|I| = Pposson as 1n a Poisson process In this section we discuss, follow-
ing ref [81], the enhancement of shot noise in an NS junction The enhancement
originates from the fact that the current 1n the superconductor 1s carried by Cooper
pairs m units of 2¢ However, as we will see, a sumple facto1-of-two enhancement
applies only 1n certain limiting cases

In the normal state, the shot-noise power (at zero temperature and infimitesimal
applied voltage) 1s given by [82]}

N
Py=RTreti(1-tth)y =Py Y T,(1-To), (72)
n=1

with Py = 2e|V|(2¢?/h) Equation (7 2) 1s the multi-channel generalization of
earlier single-channel formulas [83,84] It 1s a consequence of the Paul principle
that closed (7}, = 0) as well as open (7}, = 1) scattering channels do not fluctuate
and therefore give no contribution to the shot noise In the case of a tunnel barrier,
all transmission eigenvalues are small (T, < 1, for all n), so that the quadiatic
terms 1n eq (7 2) can be neglected Then 1t follows from compatison with eq

-
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(2 23) that Py = 2¢|V|Gn = 2¢|I| = Ppoisson In contrast, for a quantum point
contact Py <€ Pposson Since on the plateaus of quantized conductance all the
T,.’s are exther O or 1, the shot noise 1s expected to be only observable at the steps
between the plateaus {84] For a diffusive conductor of length L much longer
than the elastic mean free path [, the shot noise Py = %Ppmsson 1s one-third the
Poisson noise, as a consequence of noiseless open scattering channels [85,86]
The analogue of eq (7 2) for the shot-noise power of an NS junction 1s [81]
N 2
Png = 4P Tr shesge(l - shesfw) = P, Z %"—E—I-IT)];’Q,

n=1

(73)

whete we have used eq (2 17) (with € = 0) to relate the scattering matrix sy, for
Andreev reflection to the transmission eigenvalues 7, of the normal region This
requires zero magnetic field As in the normal state, scattering channels which
have 7,, = 0 or T,, = 1 do not contribute to the shot noise However, the way
i which partially transmitting channels contribute 1s entirely different from the
notmal state result (7 2)

Consider first an NS junction without disorder, but with an arbitrary transmis-
sion probability I' per mode of the interface In the normal state, eq (7 2) yields
Py = (1 — ') Ppeosson, implying full Poisson noise for a high tunnel barrier
(I' « 1) For the NS junction we find from eq (7 3)

2
Pys = PON16(]; £1F)4F) - ?él_ FI);) PPoxssona (74)
where 1n the second equality we have used eq (2 22) This agrees with results
obtamed by Khlus [83], and by Muzykantskii and Khmel’nitskii [87], using dif-
ferent methods If I' < 2(\/.5 — 1) = 0 83, one observes a shot noise above the
Poisson noise For I' < 1 one has

PNS = 46|I| = 2I)P‘mssona (7 5)

which 1s a doubling of the shot-noise power divided by the current with respect
to the normal-state result This can be inteipreted as uncorrelated current pulses
of 2e-charged particles
Consider next an NS junction with a disordered normal region, but with an
1deal interface (I' = 1) We may then apply the formula (3 10) for the average
of a linear statistic on the transmission eigenvalues to eqs (2 22) and (7 3) The
result 1s
(Pns) _ 2 B
(Gns) 3 2e2/h
Equation (7 6) 1s twice the result in the normal state, but still smaller than the
Poisson noise Corrections to (7 6) are of lower order in N and due to quantum-
iterference effects [88]

= (Pxs) = %elI| = 2 Ppoisson (7 6)
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Fig 17 The shot notse power of an NS junction (in umts of Ppoisson = 2e|I|) as a function of the
length L (in units of [/T") for barrier transparencies ' = 1 09 08 06 04 0 2 from bottom to
top The dashed curve gives the lumiting result for I' <« 1 For L = 0 the noise power varies as a
function of T" according to eq (7 4) between doubled shot nowse ({Pns) = 4e|l|) for a high batuier
(I" < 1) and zero 1n the absence of a barrier (I' = 1) For I — oo the noise power apptoaches the
limiting value (Png) = %em for each I' (From ref [81])

Finally, consider an NS junction which contains a disordered normal region
(length L, mean free path [) as well as a non 1deal interface The scahing theory
of section 5 2 has been applied to this problem in ref [81] Results are shown
in fig 17, where {Pxs}/Pposson 18 plotted against I'L /I for various ' Note the
crossover from the ballistic result (7 4) to the diffusive result (7 6) For a high
barrier (I' < 1), the shot noise decreases from twice the Poisson noise to two-
thirds the Poisson noise as the amount of disorder increases

8. Conclusion

We have reviewed a scattering approach to phase coherent transport accross the
interface between a normal metal and a superconductor For the reflectionless
tunneling phenomenon, the complete equivalence has been demonstrated to the
non-equilibrium Green’s function approach (The other effects we discussed have
so far mainly been treated 1n the scattering approach ) Although mathematically
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equivalent, the physical picture offered by the two approaches 1s quite different
We chose to focus on the scattering approach because 1t makes direct contact with
the quantum interference effects studied extensively 1n the normal state The same
techmques used for weak localization and universal conductance fluctuations 1n
normal conductors could be used to study the modifications by Andieev reflection
mn an NS junction

In the limit of zero voltage, zero temperature, and zero magnetic field, the
transport properties of the NS junction are determined entirely by the transmis-
ston eigenvalues T, of the normal region A scaling theory for the distribution
of the T7,’s then allows one to obtain analytical results for the mean and vari
ance of any observable of the form A = Y~ a(7},) The conductance 1s of this
form, as well as the shot-noise power The only difference with the normal state
1s the functional form of a(T") (polynomal 1n the normal state, rational function
for an NS junction), so that the general results ot the scaling theory [valid for
any function a(7T")] can be applied at once At finite V', T, or B, one needs the
entire scattering matrix of the normal region, not just the transmission eigenval-
ues This poses no difficulty for a numerical calculation, as we have shown
several examples However, analytical progress using the scattering approach
becomes cumbersome, and a diagrammatic Green’s function calculation 1s more
efficient
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Note added February 1995

The theory of section 4 has been extended to non-zero voltage and magnetic field
by PW Brouwer and the author (Phys Rev B 52 (1995) R3868) The results are
6Gns(V = 0,B # 0) = 1e?/h, 6Gns(V # 0,B = 0) = 2¢*/h, 6Gns(V #
0,B # 0) = 0 The disagreement with the numerical simulations discussed 1n
section 4 1s due to an 1nsufficiently large system size
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