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We construct a family of exact solutions to Maxwell’s equations in which the points of zero intensity form
knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more
commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite
energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we
make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero
sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but
also more intricate cable knots. While the unknot has been considered before, the solutions presented here show
that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell’s equations.
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The discovery of the electromagnetic Hopf field by
Ranada [1–4] initiated further studies of knotted electromag-
netic field lines [5–11]. This led to the formulation of a family
of knotted electromagnetic fields encoding torus knots by Ke-
dia et al. [8]. These solutions were shown to be equivalent to el-
ementary states arising in twistor theory [7], which allowed for
a generalization of the knotted solutions to other massless field
equations, in particular the linearized Einstein equations [12].
More recently Kedia et al. [13] have proposed a method capa-
ble of constructing divergence-free vector fields with knotted
field lines more general than torus knots. However, a knotted
structure can also be encoded in optical vortices, the lines of
zero intensity of an electromagnetic field. These vortices and
their topology have up to now primarily been studied in parax-
ial fields [14–17]. For example, Dennis et al. [18] employed the
paraxial wave approximation to derive and produce knotted op-
tical vortices. In contrast, Bialynicki–Birula used the Bateman
construction [19] to introduce optical vortices topologically
equivalent to lines and circles in exact solutions to Maxwell’s
equations [20]. Here we extend the class of known optical
vortices in exact solutions to Maxwell’s equations to include
all algebraic links [21–24], providing the first examples of
topologically nontrivial vortices in this context.

Algebraic links. We start with an exposition of those aspects
of knot theory necessary to describe the topology of the family
of optical vortices constructed in this paper [21–24]. Let h

be a polynomial in two complex variables with vanishing
constant term. Then the zero set of this polynomial in C2

intersected with the three-sphere of radius ε > 0, denoted by
S3

ε , is diffeomorphic to a disjoint union of circles provided that
ε is sufficiently small. This intersection is called an algebraic
link, and the topology of this link is essentially independent of
ε. Thus, in particular, an algebraic link is a one-dimensional
submanifold of S3

ε and can therefore be regarded as a one-
dimensional submanifold of R3 via stereographic projection.
Every component of such an algebraic link corresponds
uniquely to an irreducible factor of the polynomial by which it
is induced. Therefore, if the polynomial inducing the algebraic
link is irreducible, the corresponding link has one component
and is called an algebraic knot.

There exists a method due to Newton to solve h(v,w) = 0
for w in terms of v for any irreducible polynomial h that
vanishes at the origin. This method gives an explicit algorithm
to obtain successive approximations to the exact solution of
h(v,w) = 0 for w in terms of v of the form

w0 = a0v
q0/p0 ,

w1 = vq0/p0 (a0 + a1v
q1/p1 ),

... (1)

for some complex numbers a0,a1, . . . . The pairs of coprime
numbers (pi,qi) determining the exponents in the expansion
are called the Newton pairs, of which a finite number determine
the topology of the knot. Therefore, some approximation wk

containing all the information relevant to the topology of the
knot can be obtained in a finite number of steps.

For example, consider the general case for one Newton pair
(p,q) with corresponding polynomial

h(v,w) =
√

2
q
vq −

√
2

p
wp. (2)

In this case we can take ε equal to one and we obtain a
parametrization (v,w) for the knot by plugging v = eiθp/

√
2

into w = √
2

q/p
vq/p. This curve lies on the standard torus and

closes after going p and q times around the toroidal direction
and poloidal direction, respectively. Such a knot is called a
(p,q) torus knot of which an example is illustrated in Fig. 1(a).

However, care should be taken when trying to obtain
parametrizations of knots associated with more general New-
ton pairs in this way. This is due to the fact that plugging some
v of fixed absolute value into an expression for w consisting
of multiple terms will in general result in (v,w) not being a
subset of S3

ε . To resolve this issue, it is common to deform S3
ε

into a union of two solid tori:

{(v,w) ∈ C2 : |v| = ε, |w| � δ or |v| � ε, |w| = δ}. (3)

This deformation can be performed in such a way that the
zero set of the polynomial h corresponding to the knot
under consideration intersects this set in only one of the two
tori. Furthermore, it can be shown that this intersection is
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FIG. 1. A torus knot and a cable knot. (a) The red curve lying on
the yellow torus is a (2,3) torus knot. (b) The embedded yellow torus
has a (2,3) torus knot at its core. The red curve is a cable knot with
Newton pairs (2,3) and (3,2).

topologically equivalent to the knot obtained by intersecting
the zero set of h with S3

ε provided that ε is sufficiently
small.

Now consider a more general knot described by two Newton
pairs (p0,q0) and (p1,q1). In this case we can plug v = εeiθp1p2

into the expression for w1 to obtain a parametrization for
the knot corresponding to the given Newton pairs due to the
discussion in the previous paragraph. The additional term in
w1 with respect to w0 can be interpreted as perturbing the
(p0,q0) torus knot described by (v,w0). The resulting knot can
then be described as a curve in a tubular neighborhood of the
(p0,q0) torus knot, which is an embedded solid torus with the
torus knot at its core. To give a precise description of the knot
itself, imagine a (p1,q1) torus knot on a torus T and embed
this torus in such a way that it is a tubular neighborhood of the
(p0,q0) torus knot and such that the image of a curve with all its
tangent vectors in the toroidal direction on T is unlinked with
the core of the embedding of T . Then the knot corresponding
to the given Newton pairs is obtained by applying the same
embedding to the (p1,q1) torus knot on T . This process is
demonstrated in Fig. 1, where we start with a torus knot in
Fig. 1(a) and illustrate its tubular neighborhood and a cable
knot corresponding to the additional Newton pair (3,2) in
Fig. 1(b). This procedure can be repeated by embedding a
torus such that its core is a cable knot if there are additional
Newton pairs. Alternatively, one can start from some fixed
Newton pairs and construct a corresponding polynomial in
two complex variables as described in Ref. [22].

Algebraic links in electromagnetism. Now we go on to
show how algebraic links can be implemented as optical
vortices in electromagnetic fields. To do so, we describe an
electromagnetic field with its Riemann–Silberstein vector

F = E + iB. (4)

Provided that an electromagnetic field is null, i.e., satisfies
F · F = 0 which means that the fundamental invariants of the
electromagnetic field E · B = 0 and |E|2 − |B|2 are zero, there
exist smooth complex-valued functions α,β on Minkowski
space satisfying

∇α × ∇β = ±i(∂tα∇β − ∂tβ∇α), (5)

for which the field can be written as F = ∇α × ∇β, as shown
by Hogan [25]. Given such functions α and β, which we will
refer to as Bateman variables, as well as arbitrary smooth maps
f and g from C2 to C, it holds that f (α,β) and g(α,β) are
also Bateman variables [19]. The Bateman variables for the
Hopf field seem to have originated from work by Robinson
and Trautman [26] and Bialinicki–Birula [20], which was
expanded upon by Besieris and Sharaawi [6], Van Enk [9],
and Kedia et al. [8]. Here we will use a specific choice of
Bateman variables for the Hopf field that is given in Ref. [8]:

α = r2 − t2 − 1 + 2iz

r2 − (t − i)2
and β = 2(x − iy)

r2 − (t − i)2
. (6)

How the Hopf field and its Bateman variables can be obtained
from a solution of the scalar wave equation is described in
the Appendix. By multiplying α and β with ε/

√
2 for any

ε > 0, we obtain Bateman variables αε and βε for a scaled
version of the Hopf field FH . Then the map (αε,βε), restricted
to a fixed time, can be interpreted as a map from R3 to
S3

ε because |αε |2 + |βε |2 = ε2 holds at any fixed time. To
obtain an electromagnetic field with an optical vortex that
is topologically equivalent to a given algebraic link L, we take
a corresponding polynomial h and ε > 0 and choose

f (v,w) =
∫

h(v,w)dv and g(v,w) = w. (7)

Then, as we now show, the null field given by

FL = ∇f (αε,βε) × ∇g(αε,βε)

= h(αε,βε)∇αε × ∇βε (8)

has optical vortices topologically equivalent to L at every
time. This construction is possible by virtue of the fact that
the intensity of the Hopf field is never zero and the fact that
Bateman variables of the Hopf field can be written as done
in Eq. (6), which at t = 0 describe the inverse stereographic
projection.

First, we note that since the intensity of the Hopf field
is nowhere zero, the optical vortices of FL are determined
completely by the zero set of h(αε,βε). Second, the fact that,
restricted to t = 0, the map (αε,βε) describes the inverse
stereographic projection implies that the optical vortices of
FL at t = 0 are topologically equivalent to the zero set of h in
S3

ε , provided that the latter does not contain (1,0). If it does,
we can choose another polynomial giving rise to the same link
for which this is not the case. Third, it turns out that (αε,βε)
restricted to any fixed time t∗ has rank three, which means that
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FIG. 2. The Hopf link as an optical vortex. These plots are created
by taking the intersection of the surfaces where the real and imaginary
parts of h1 are zero at (a) t = 0 and (b) t = 3. The aforementioned
surfaces are included for clarity and are denoted by the transparent
orange surfaces.

it is a local diffeomorphism from {t∗} × R3 to S3
ε . Thus, the

zero set of h(αε,βε) at any fixed time is diffeomorphic to a
disjoint union of circles and hence a link. Finally, it should
be noted that the restriction of h to S3

ε has rank two which,
together with the fact that (αε,βε) restricted to a fixed time t∗ is

a local diffeomorphism, implies that the zero set of h(αε,βε) in
Minkowski space is a two-dimensional manifold. This implies
that the zero set of h(αε,βε) at any fixed time is topologically
equivalent to the zero set of h(αε,βε) at t = 0, which, in turn,
is equivalent to L as mentioned above.

We note that the fields under consideration here fall into
a class for which it is known that the structure is transported
by a rescaled nowhere zero version of the Poynting vector
field [27,28]. This observation leads to the same conclusion as
our proof above.

We will now examine some general properties of the class
of electromagnetic fields that we have constructed. First, we
note that the energy density of an electromagnetic field FL

with corresponding polynomial h and ε is given by

FL · F̃L = |h(αε,βε)|2 FH · F̃H , (9)

where F̃ denotes the complex conjugate of F. Since the energy
of the Hopf field is finite and |h(αε,βε)|2 is bounded from
above, we can conclude that the energy of FL is finite as well.
Second, the Poynting vector is given by

SL = Re[FL] × Im[FL]

= |h(αε,βε)|2 Re[FH ] × Im[FH ]. (10)

Thus, away from the zero set of the Poynting vector field which
is topologically equivalent to the algebraic link L, the integral
curves of the Poynting vector have the structure of the Hopf
fibration. Also, since the momentum of the Hopf field is finite,
the same holds for the momentum of FL.

The vector potentials for the electric and magnetic fields
can be described by a complex vector

V = C + iA, (11)

where C and A are given by the real and imaginary parts of
f (α,β)∇β, respectively. Since the fields under consideration

FIG. 3. Energy densities corresponding to F1 and F2. (a)–(c) Logarithmic plot of the energy density of the field corresponding to Eq. (12)
in the xy, xz, and yz planes, respectively. (d)–(f) Logarithmic plot of the energy density of the field corresponding to Eq. (13) in the xy, xz,
and yz planes, respectively.
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are null, the electric and magnetic helicities, which can be
computed from the vector potentials, are conserved quanti-
ties [11].

Now we will illustrate some of the general properties for
the Hopf link and a cable knot. The polynomial corresponding
to the Hopf link is given by

h1(v,w) = v2 + w2. (12)

The polynomial corresponding to a cable knot with Newton
pairs (2,3) and (3,2) is given by

h2(v,w) = w6 − 3w4v3 + 3w2v6

− 6w2v8 − v9 − 2v11 − v13, (13)

Then F1 = h1(α,β)∇α × ∇β and F2 = h2(α,β)∇α × ∇β are
electromagnetic fields with optical vortices that are at any time
topologically equivalent to the Hopf link and a cable knot with
Newton pairs (2,3) and (3,2), respectively. The evolution of the
vortex in F1 is illustrated in Fig. 2. Furthermore, the energy
densities at t = 0 of both F1 and F2 are illustrated in Fig. 3.

Summary. We have derived analytic expressions for a
new family of finite-energy null electromagnetic fields with
optical vortices that are topologically equivalent to algebraic
links. Furthermore we provide a rigorous explanation for the
emergence of these new topologically nontrivial structures.
Since our solutions are based on the Bateman construction, it
follows from a recent result by Goulart [29] that they are also
exact solutions of nonlinear electrodynamics. We expect that
the implementation of knot theory to generate topologically
nontrivial structures in electromagnetism introduced here
will lead to generalizations in linearized gravity [12,30],
Bose–Einstein condensate configurations [31], and plasma
configurations [32,33].
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lands Organisation for Scientific Research (NWO) through
NWO VICI Grant No. 680-47-604 and Spinoza Award 2014,
and by the National Science Foundation NSF PHY-120611.
We thank an anonymous referee for pointing out an important
observation regarding the persistence of the topology of the
vortex lines.

APPENDIX

The Bateman variables for the electromagnetic Hopf field
have been found and presented in the literature without an
explicit derivation. Here we show how the Bateman variables
emerge naturally when the Hopf field is derived from a
superpotential.

Throughout this Appendix, we describe electromagnetic
fields with differential two-forms on Minkowski space. In this
formalism [23], Maxwell’s equations in free space are given
by

dF = 0 and d � F = 0, (A1)

where � is the Hodge star operator induced by the metric. The
Hodge star operator on Minkowski space satisfies �2F = −F

for any two-form F . Therefore, the eigenvalues of � are
±i which leads us to choose F to be complex valued. A
real solution to Maxwell’s equations can always be obtained
from the complex-valued form due to linearity of Maxwell’s

equations. If �F = iF holds, we call the form self-dual and if
�F = −iF holds, we call the form anti-self-dual. A complex-
valued two-form is a solution to Maxwell’s equations if it is
(anti-)self-dual and closed. Given smooth maps α,β : M →
C, the two-form F = dα ∧ dβ is closed by construction but
only (anti-)self-dual if

∇α × ∇β = ±i(∂tα∇β − ∂tβ∇α). (A2)

Provided that α and β satisfy this equation, one can easily show
that F = df (α,β) ∧ dg(α,β) is also a solution to Maxwell’s
equations for arbitrary smooth maps f,g : C2 → C. This
shows how the Bateman construction arises naturally from
the formalism employed here.

Now we show how a solution to Maxwell’s equations can be
constructed from a superpotential, i.e., a solution to the scalar
wave equation 	W = (dδ + δd)W = 0. This construction, for
which we base ourselves on Chapter 9 of Synge’s book on
special relativity [34], can be formulated in the formalism
of differential forms as follows: Let W be a solution of the
scalar wave equation, and let K be a constant two-form on
Minkowski space, then

A = �(dW ∧ K) (A3)

is a potential. To see this, note that this one-form satisfies the
Lorentz gauge condition δA = 0 which implies that it is a
potential since its components satisfy the wave equation. In
the same chapter, Synge notes that

W = [r2 − (t − i)2]−1 (A4)

is a solution of the wave equation without singularities. If we
take K to be given by

K = −dz ∧ dx − idy ∧ dz − dx ∧ dt + idy ∧ dt,

(A5)

the construction described above gives a potential given by

A = −2(y + ix)

[x2 + y2 + z2 − (t − i)2]2
dz

+ 2(y + ix)

[x2 + y2 + z2 − (t − i)2]2
dt

+ −2it + 2iz − 2

[x2 + y2 + z2 − (t − i)2]2
dx

+ −2t + 2z + 2i

[x2 + y2 + z2 − (t − i)2]2
dy. (A6)

The field F = dA corresponding to this potential is then a
self-dual two-form for which the corresponding electric and
magnetic fields are that of the Hopf field. Note that for an
electromagnetic field of the form F = dα̃ ∧ dβ̃, potentials are
given by A = α̃dβ̃ and A′ = −β̃dα̃. Also, in Eq. (A6) there
are four functions that serve as components, but two of them
are related by a minus sign and the other two by a factor i. How-
ever, these two functions cannot be Bateman variables since the
denominator of the product of one of these functions with the
derivative of the other will be of higher order than the denom-
inator of A. Therefore it is natural to consider the same func-
tions without the square in the denominator. These maps are
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indeed Bateman variables for the Hopf field and are given by

α̃(t,x,y,z) = 2i − 2t + 2z

r2 − (t − i)2
, (A7)

β̃(t,x,y,z) = 2(ix + y)

r2 − (t − i)2
. (A8)

To obtain the Bateman variables used in the main article from
the Bateman variables derived here, one has to take a factor i

from β̃ to α̃ and add one to iα̃. This explicit form is necessary
in the main text as it allows us to interpret (α,β) as a map into
the three-sphere.
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