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Factoring integers with elliptic curves

By H. W. LENSTRA, JR.

Abstract

This paper is devoted to the description and analysis of a new algorithm to
factor positive integers. It depends on the use of elliptic curves. The new method
is obtained from Pollard's (p — l)-method (Proc. Cambridge Philos. Soc. 76
(1974), 521-528) by replacing the multiplicative group by the group of points on
a random elliptic curve. It is conjectured that the algorithm determines a
non-trivial divisor of a composite number n in expected time at most
K(p)(log n ) 2 , where p is the least prime dividing n and K is a function for
which logK(x) = /(2 + o(l))Iog χ log log χ for χ -> oo. In the worst case,
when n is the product of two primes of the same order of magnitude, this is
exp((l + o (1))/log n log log n) (for n -» oo). There are several other factoring
algorithms of which the conjectural expected running time is given by the latter
formula. However, these algorithms have a running time that is basically
independent of the size of the prime factors of n, whereas the new elliptic curve
method is substantially faster for small p.

Acknowledgements. This paper was written at the Mathematical Sciences
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Introduction

This paper is devoted to the description and analysis of a new method to
iactor positive integers. It depends on the use of elliptic curves.

The method is analogous to Pollard's (p — l)-method [17, Section 4], which
attempts to find a non-trivial divisor of a given integer n > l in the following
way. First, one selects an integer a(mod n) and a positive integer k that is
divisible by many small prime powers; for example, k = lcm{ l, 2,. . . , b} for a
suitable bound b. Next one calculates a^mod n), and one hopes to obtain a
non-trivial divisor of n by calculating gcd(ak — l, n).
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Pollard's (p — l)-method is usually successful if n has a prime factor p < n
for which p — l is built up from small prime numbers. Suppose, to be specific,
that p — l divides k, and that p does not divide a. Then in the multiplicative
group (Z/pZ)* of integers modulo p the number ak becomes equal to the
neutral element l, by Fermat's theorem, so that p divides gcd(ak - l, n). In
many cases one has p = gcd(afc — l, n), and the method finds a non-trivial
divisor of n.

On the other hand, if for each prime number p dividing n the number
p — l has a large prime factor, then Pollard's (p — l)-method is not likely to be
successful within a reasonable time limit.

The new method is obtained from Pollard's (p — l)-method by replacing
the multiplicative group by the group of points on a random elh'ptic curve. To
find a non-trivial divisor of an integer n > l, one begins by selecting an elliptic
curve E over Z/n Z, a point P on £ with coordinates in Z/n Z, and an integer k
äs above. Using the addition law of the curve, one next calculates the multiple
k · P of P. One now hopes that there is a prime divisor p of n for which k · P
and the neutral element O of the curve become the same modulo p; if £ is given
by a homogeneous Weierstrass equation y2z = x3 + axzz + bz3, with O —
(0:1:0) , then this is equivalent to the z-coordinate of k · P being divisible by p.
Hence, one hopes to find a non-trivial factor of n by calculating the greatest
common divisor of this 2-eoordinate with n.

If a single curve E is used, then the properties of this algorithm are exactly
the same äs those of Pollard's (p - l)-method, with the order p - l of (Z/pZ)*
replaced by the order of the group £(Z/pZ) of points of E with coordinates in
Z/pZ. By a theorem of Hasse (1934), this order is of the form p + l - tp, where
ip is an integer depending on £ and p for which \tp\ < 2\[p . If, for some prime
factor p < n of n, the number p + l - tp is built up from small primes, then
the above algorithm is likely to lead to a non-trivial divisor of n, and otherwise
not.

However, if the algorithm is unsuccessful, then an Option is available that
has no analogue in Pollard's (p - l)-method; namely, to repeat the algorithm
with a different elliptic curve. A different curve will give rise to a new value for
tv, so that p + l - tp has a new chance of being built up from small primes.
This can be repeated until a non-trivial divisor of n is found.

The analysis of the elliptic curve factorization method that I present in this
paper shows that the performance of the algorithm is largely determined by the
density of numbers built up from small primes in the neighborhood of p + 1. If
a reasonable conjecture concerning this density is assumed, then the following
can be proved (see (2.9) and (2.10)). Let an integer n > 0 that is not a prime
power and that is not divisible by 2 or 3 be given. Let also a positive integer g be
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given. Then, with a suitable choice of parameters, the elliptic curve method
determines with probability at least l - e~s a non-trivial divisor of n in time

gK(p)M(n),

where the notation is äs follows: p denotes the least prime divisor of n, the
function K : R > 0 - » R > 0 i s such that

and M(n) denotes an upper bound for the time needed to perform a single
addition on an elliptic curve mod n; one can take M(n) = O((logn)2) or
O(log n(loglog n)2logloglog n), depending on which method is employed.

The algorithm can be repeated until the complete prime factorization of n
is obtained. If the same conjecture is true, this takes expected time at most

o for n _> oo ^

the worst case occurring if the second largest prime factor of n is not much
smaller than {n.

There exist other factoring methods that one conjectures to be successful
within the same time limit, such äs the class group melhod [23] and the
quadratic sieve [18]. Unlike the elliptic curve method, however, none of these
has a running time that depends on the size of the prime factors of n. For a
further comparison of the elliptic curve method with earlier methods, and a
discussion of its practical merits, I refer to the end of Section 2.

The unproved assumption on which the analysis of the elliptic curve method
is based only concerns the distribution of integers built up from small prime
factors. In particular, it does not refer to elliptic curves. This is mainly due to a
result of Deuring (1941), which gives a formula for the number of elliptic curves
E over a frnite field F^ for which E(Fq) has a given Order. A Statement of this
result, in the case that ς is prime, is given in Section 1. In this section one also
finds the other results on elliptic curves over finite fields that are needed.

Section 2 is devoted to the factoring algorithm and its analysis. The most
natural way to describe the algorithm would make use of elliptic curves over
rings that are not fields, äs was done in the outline given above. This theory,
which one can find in [13, Chapter 2], is not äs easily accessible äs the theory
over fields. For this reason the details have been arranged in such a way that no
reference to the theory over rings is necessary. Accordingly, the description of
the algorithm given in Section 2 does not follow the above outline in detail.

The version of the elliptic curve method described in this paper was
exclusively designed for simplicity of exposition and ease of analysis. An exten-
sive discussion of practical aspects can be found in [16].
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An earlier application of elliptic curves to algorithmic number theory can be
found in [24]. For primality testing algorithms that depend on the use of elliptic
curves I refer to [4], [7], [10].

By F(/ we denote a finite field of cardinality q. The group of units of a ring A
with l is denoted by A*.

1. Counting elliptic curves.

In this section we assemble all facts about elliptic curves over flelds that we
need. Proofs can be found in the book by Silverman [29], if no other reference is
given.

We denote by K a field; we shall mainly be interested in the case that
K = F p for some prime number p. To simplify the exposition we assume
throughout this section that the characteristic of K is not equal to 2 or 3.

(1.1) Elliptic curves. An elliptic curve over K is a pair of elements
a, b e K for which 4α3 + 27fo2 ¥= 0. These elements are to be thought of äs the
coefficients in the Weierstrass equation

(1.2) y2 = x3 + ax + b.

We denote the elliptic curve (a, b) by Ea<b, or simply by E. The set ofpoints
E (K) of such an elliptic curve over K is defined by

E(K) = {(x:y:z} e P 2 (K) : y2z = x3 + axz2 + bz3}.

Here P2(K) denotes the projective plane over K. It consists of equivalence
classes of triples (x, y, z) e K X K X K, (x, y, z) Φ (0,0,0), two triples
(x, y, z) and (x', y', z') being equivalent if there exists c e K* such that
ex = x', cy = y' and cz - z'; the equivalence class containing (x, y, z) is
denoted by (x : y : z).

Let E be an elliptic curve over K. Then E(K) contains exactly one point
(x: y : z) for which z = 0, namely the point ( 0 : 1 : 0); this point is called the zero
point of the curve and denoted by O. The other points of E(K) are the points
(x: y: 1), where x, y e K satisfy (1.2). The set £(K) has the structure of an
abelian group·, the group law, which is written additively, is defined äs follows.
First, O + P = P + O = P for all P e E(K). Next, let P = (x1:yl: 1), Q =
(x2: yz: 1) be non-zero points. Then P + Q = O if and only if χλ = χ2

 a n d

y1 = - i/2. Otherwise, let λ e K be determined by λ = (y1 - yaVi^i ~ xz)if

P ^ Q and λ = (3xf + a)/(2yi) if P = Q, and let v = yl ~ \xv Then P + Q
= fi, where jR = (a:3 : y3 : 1) with x3 = λ2 - % - £ 2 and t/3 = - λχ 3 - »».
Observe that O is the zero element of the group, and that — (x:y: z) =
(χ: ~ y.z).
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(1.3) Isomorphisms and automorphisms. Let E = Ea>b and E' = Ea,Jy be
elliptic curves over K. An isomorphism E -» E' (over K) is defined to be an
element u e K* for which a' = w4a and &' = «6fo. If an isomorphism E -> E'
exists then E and £ ' are said to be isomorphic; this is clearly an equlvalence
relation. Any isomorphism u: E -» £ ' induces an isomorphism E(K) -» E'(K)
of abelian groups that sends (x: y: z) to (u2x: u3y: z); this isomorphism will
also be denoted by u. We shall only be interested in elliptic curves up to
isomorphism.

Let E be an elliptic curve over K. An automorphism of E is an isomor-
phism E -> £. The set of automorphisms of £ is a subgroup of K*, which is
denoted by Aut £ or AutKE. An easy calculation shows that it can be explicitly
described äs follows:

(i) If α = 0 and K* has an element p of order 6, then p generates Aut £
and # A u t £ = 6;

(ii) If b = 0 and K* has an element i of order 4, then i generates Aut £
and #Aut £ = 4;

(iii) In all other cases Aut £ = (l, - 1} and #Aut £ = 2.

(1.4) The number of elliptic curves. Let p denote a prime number > 3. In
the remainder of this section we restrict to the case K = Fp.

The number of elliptic curves over Fp, äs defined in (1.1), is the number of
pairs (a, b) e Fp X Fp with 4a3 + 27bz Φ 0. The number of all pairs (a, b)
equals p2, and 4o 3 + 27fr2 = 0 if and only if α = - 3c2, b = 2c 3 for some
c <Ξ F p; this element c is uniquely determined by a, b by c = - 3fo/(2a) (if
a =£ 0). Hence 4a 3 + 27fo2 = 0 for exactly p pairs (a,b). We conclude that the
number of elliptic curves over Fp equals p2 — p.

We use this result to count the set

{ £: E elliptic curve over Fp } / = F

of isomorphism classes of elliptic curves over Fp. The number of elliptic curves
isomorphic to a given elliptic curve £ is easily seen to be # F p * / # A u t £ =
(p — l ) /#Aut £. Summing this over a set of representatives of the isomorphism
classes and dividing by p — l we obtain

7 # A u t £ ~P'

We express this by writing

#'{ E: E elliptic curve over F p } / S F = p.

Here, and in similar expressions below, # ' denotes the weighted cardinality, the
isomorphism class of £ being counted with weight (#Aut E ) " 1 .
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Since # Aut E — 2 for most E ii follows from the above forrnula that the
ordinary cardinality of the set of isomorphism classes of elliptic curves over F is
approximately 2p. The precise number can be derived from (1.3). Using that the
existence of p € Fp* äs in (1.3)(i) is equivalent to p ^ l modo, and the existence
of t e Fp* äs in (1.3)(ii) to p = l mod4, one finds that

#{ E: E elliptic curve over F p } / = F = 2p + 6,2p + 2,2p + 4,2p

for p = 1,5,7,11 mod 12, respectively. We shall have no use for this result in the
sequel.

(1.5) The order o/E(Fp). For any elliptic curve E over F we have by a
theorem of Hasse

#E(Fp] = p + l - i, with ί e Z, |f| < 2/p~.

Let, conversely, p be a prime > 3 and i an integer satisfying \t\ < 2/p. Then
the weighted number of elliptic curves E over Fp with #E(F p ) = p + l — i, up
to isomorphism, is given by a f orrnula that is basically due to Deuring [9]; see
also [1], [30], [25]:

# ' { £ : £ effiptic curve over F p , # E ( F p ) = p + l - f }/sFp = H(t2 - 4p),

vvhere H(tz — 4p) denotes the Kronecker class number of i 2 — 4p, which we

now proceed to define.

(1.6) Kronecker class numbers. We begin by recalling the properties of
binary quadratic forms that we need. See [3] for more details and for proofs.

Let Δ be a negative integer, Δ s 0 or l mod 4. A positive definite integral
binary quadratic form of discriminant Δ, briefly a form, is a polynomial
F = aXz + bXY + cY2 with a, b, c e Z, α > 0, bz - 4ac = Δ. An isomor-
phism from a form F = aX2 + bXY + cY2 to a form F' = a'Xz + b'XY + c'Y2

is a matrix l " f with a, ß,y,8 & Z, a8 - ßy = l for which
\r 8!

aX2 + bXY + cYz = a'X'2 + b'X'Y' + c'Y'2,

where X' = aX + ßY and Y' = yX + SY. If such an isomorphism exists, the
forms F and F ' are said to be equivalent; this is indeed an equivalence relation.
An automorphism of a form F is an isomorphism from F to F. The set of
automorphisms of a form F is a subgroup of the group SL2Z of 2 X 2-matrices
with integral entries and determinant 1; this subgroup is denoted by Aut F. We
have:

(i) Aut F is cyclic of order 6 if F is equivalent to aX2 + aXY + aY2 for
some positive integer o; in this case Δ = — 3α2;

(ii) Aut F is cyclic of order 4 if F is equivalent to aX2 + aY2 for some
positive integer a; in this case Δ = — 4ö2;
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(iii) In all other cases, the group Aut F is of order 2, and equals
l 0\ ( - 1 0\\

o ij'l o -ij/·
For fixed Δ, the set of equivalence classes of forms of discriminant Δ is

finite. The Kronecker class number Η(Δ) of Δ is defined to be the weighted
cardinality of this set, the equivalence class containing F being counted with
weight (#AutF)~ 1 :

Η(Δ) = #'{F: F is a form of discriminant Δ } / ~
with ~ denoting equivalence and the meaning of #' being äs in (1.4). For
example, H(- 3) = 1/6, H(- 4) = 1/4, H(- 7) = 1/2. (Warrang: one often
finds the Kronecker class number defined twice äs large.) The existence of the
form X2 + bXY - ((Δ - &2)/4)Y2, where Δ s bz mod4, shows that Η(Δ) > 0.

A form F = aXz + bXY + cY2 is called primitive if gcd(a, b, c) — 1. We
denote by h(A.) the weighted cardinality of the set of equivalence classes of
primitive forms of discriminant Δ, counted with the same weights äs above. It is
easy to see that

(1.7) tf(A) = EMVd2),
d

the summation ranging over those positive integers d for which Δ/d2 is an
integer satisfying Δ/d2 Ξ 0 or Imod4. The largest such d is called the
conductorfoi Δ, and Δ0 = Δ//2 is the fundamental discriminant associated to
Δ; the d 's in the above summation are exactly the positive divisors of /.

The quadratic chamcter χ: Z > 0 -» (0, l, - 1} associated to Δ is defined
by

χ(1) = A^-^mod /, x(l) e {0, l, - 1} if / is an odd prime,

χ(2) = 0, l, - l forAsOmod4, ImodS, 5mod8,
respectively,

x(nm) = x(n)x(m) for all n, m e Z > 0 .

The analytic class number formula for 7ι(Δ) is

V- Δ ~ χ(η)
— -- L(l, χ) , where L(s, χ) = Σ — ~ f o r s e C, Re s > 0.

·

If χ 0 denotes the quadratic character associated to Δ0, one has

L ( l , x ) = = L ( l , X o ) - n U , ,
i\f\ II

1 Χο(0\
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where l ranges over the primes dividing /. Combining the last two formulae
with (1.7) one finds that

where ψ: Ζ > 0 -» R is defined by

/- rk

if / is prime, k > l and χ0(1) = 0, l, - l, respectively,

ψ(ηηι) = ψ(η)ψ(ηι) if n, m e Z > 0 , gcd(n, m) = 1.

We are interested in obtaining upper and lower bounds for Η(Δ). It is easily
seen that

= 0((loglog/)2)

(see [11, Theorem 328]), where φ denotes the Euler φ-function. Further we have

= 0(log|A0 |);

see [20, Kapitel IV, Lemma 8.1]. To obtain a satisfactory lower bound for

L(l, X0) we must sacrifice one value for Δ0. Applying [20, Kapitel IV, Section 6,

Satz 6.6 and the argument following Section 8, eq. (8.26)] one finds that there

exists a positive effectively computable constant CL such that for all z e Z>1

there exists Δ* < — 4 with the property that

(If the generalized Riemann hypothesis is assumed we can replace log z by
log log z, and there is no need to exclude an exceptional value Δ* for Δ0.)

(1.8) PROPOSITION. There exist effectively computable positive constants

c2, c3 such that for each z^Z>l there exists Δ* = Δ*(«) < - 4 such that

°2 Δ < Η(Δ) < c3 · ν ^ Δ " · log|A| · (1ο
log z

for all Δ e Z with - 2 < Δ < 0 , Δ ^ Ο or Imod4, except that the left
inequality may be invalid ί/Δ0 = Δ*.

Proof. This follows from the inequalities in (1.6).
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(1.9) PROPOSITION. There exist effectively computable positive constants
c4, c5 such that for each prime number p > 3 the following two assertions are
valid; for the notation # ' , see (1.4).

(a) IfSisa sei of integers s with \s — (p + 1)| < 2{p then

# ' { £ : £ elliptic curve over Fp , #E (F„ ) e S } / =Fp

< c4 · #S · fa · (log p) · (loglog pf.

(b) IfSis a set of integers s with \s - (p + l)\ < {p then

#'{E:E elliptic curve over Fp, #E(fp) <= S }/=Fp

Proof. In both (a) and (b), the left band side of the inequality equals

Σ Η(ί2-4ρ)

by the formula in (1.5). We apply (1.8) with z = 4p. Then (a) follows im-
mediately, with a suitable constant c4. For (b), we note that | i 2 — 4p\ > 3p if
p + l — f e S. To prove (b), it thus suffices to show that there are at most two
integers t, \t\ < {p , for which the fundamental discriminant associated to
t2 - 4p equals Δ*. Let L = Q(\fÄ*), and let t be such an integer. Then the
zeros a, 5 of X2 - tX + p belong to the ring of integers A of L. Also, aä = p,
and by unique prime ideal factori/ation in A and the fact that A* = ( l , — 1}
(because Δ* < - 4) this determines α up to conjugation and sign. Hence
t = a + ä is determined up to sign, äs required. This proves (1.9).

(1.10) Modular curves. We are interested in estimating the weighted num-
ber of elliptic curves E over Fp for which #£(Fp) is divisible by a given prime
number l. For this purpose we need some facts about the modular curves X(Z)
and X^l). For proofs we refer to [28], [12], [13].

Let p be a prime number, p > 3, and l a prime number different from p.
We consider pairs (E, P) consisting of an elliptic curve E over Fp and a point
P e E(Fp) of order /. Two such pairs (E, P) and (£ ' , ? ' ) are said to be
equivalent over Fp if there exists an isomorphism u: E — > E' over Fp that maps
P to P' (see (1.3)). We denote the set of equivalence classes by Z^/XFp). If, in
the definition just given, u is allowed to be j n the algebraic closure Fp of Fp

rather than in Fp (so that a map £(Fp) -> £'(Fp) rather_than £(Fp) -» £'(Fp) is
induced), we obtain the definition of equivalence over F . The set of classes of
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this equivalence relation is denoted by Yj(Z)(Fp). There is an obvious surjective
map Z^XF,,) - Y^XFp).

We can estimate the cardinality of Yi(0(Fp) by using the following
properties of the modular curve Xi(l):

(i) Xj(/) is a complete non-singular irreducible curve defined over Fp;
(ii) The genus of X^l) equals 0 for l = 2 or 3, and l + ±(l - l)(l - 11)

for l > 5;
(iii) The set Y^/XF ) can in a natural way be considered äs a subset of the

set X^OCFp) of points of Χλ(1) defined over Fp;
(iv) The cardinality of the complement of Y^XFp) in X^XFp) is

bounded from above by the number of cusps of X±(1), which equals 2 for l = 2
and / - l for Z > 2.

If C is a complete non-singular irreducible curve of genus g over F p then by
Weil's inequality [2] the cardinality of the set C(Fp) of points of C over F p

satisfies

#C(F„) - (p

Applying this to C = Xj(/) we find, using the above properties:

(1.11)

the constant implied by the O-symbol being absolute and effectively computable.
With p and l äs above, suppose now in addition that p = l mod l, and let a

primitive Z-th root of unity ξ & Fp be chosen. We consider triples (E, P, Q)
consisting of an elliptic curve E over Fp and two points P, Q e E(Fp) of order l
satisfying β,(Ρ,ς>) = ξ, where e, denotes the Weil pairing [29, Chapter III,
Section 8]. Equivalence of two such triples (E, P, Q) and (£ ' , P', Q') over Fp (or
over Fp) is defined äs before; the only difference is that « should not only map P
to P ' but Q to Q' äs well. The sets of equivalence classes over Fp and Fp are
denoted by Z(l)(Fp) and Y(Z)(Fp), respectively. There is an obvious surjective
map Z(Z)(F„) ^ Y(0(Fp).

The modular curve X(Z) has the following properties:
(i) X(l) is a complete non-singular irreducible curve defined over Fp;
(ii) The genus of X(Z) equals 0 for l = 2, and l + ^ ( / 2 - 1)(Z - 6) for

l > 3;
(iii) The set Y(/)(F ) c a n i n a n a t u r a l w a y ^ e considered äs a subset of the

set X(Z)(F ) of points of X(0 defined over Fp;
(iv) The cardinality of the complement of Y( l)(Fp) in X(/)(F„) is bounded

from above by the number of cusps of X(l), which is 3 for / = 2 and (l2 - l ) /2
for / > 2.
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Applying Weil's inequality cited above to C = X(l) we find from these proper-
ties that

the O-constant again being absolute and effectively computable.

(1.13) LEMMA. Let p, l be primes, p > 3, l Φ ρ.

(a) Let E be an elliptic curve over Fp and P e £(Fp) a point oforder l.
Denote by AE p the subgroup of all u e AutFp£ that send P to P. Then the
number of elements o/Z1(/)(Fp) that map to the class of (£, P) in Y^/XF )
equals # A E p.

(b) Suppose that p = l mod l, and let a primitive Z-th root of unity f e F
be chosen. Let E be an elliptic curve over Fp and P, Q <Ξ £(Fp) points oforder l
satisfying et(P, Q) = ξ. Denote by AE _P ̂  the subgroup AE_P n AE ρ of AutFJE.
Then the number of elements o/Z(/)(Fp) that map to the class of(E,P, Q)Pin
T(0(Fp) equals #AE_P>(?.

Remark. The numbers # A £ P and # A E P ρ in the lemma equal 2 for l = 2
and l for / > 2, provided that # A u t F £ = 2, which for given p is true in all but
O(l) cases.

Proo/o/(1.13). (a) Let £ be given by a, b, and let P = (x : y ·. 1). If E', P'

is another such pair, given by a', b', x', y', then (£, P) and (£', P') give rise to
the same element of Y1(Z)(Fp) if and only if we have (a', b', x', y') =
(u4a, ueb, u2x, u3y) for some u e Fp*, and to the same element of Z1(Z)(F ) if
and only if u can be taken in Fp*. It follows that the number of elements of
z i ( 0 ( F p ) mapping to the class of (£, P) equals index [BE > P : CE > p ] , where the
subgroups BE p, CE P of Fp* are defined by

^V*:{u*a,ueb,uzx,u3y} cF p ) ,

C£ P = {u e Fp*: (u4a, ueb, u2x, u3y) = (υ4α, υ6&, u2x, v3y)

for some ü e F * } .

To count Bt p, we notice that for u e Fp* we have «4a e Fp if and only if
(u4a)p = u4a, so if and only if (u^ 1 ) 4 « = ß; and similarly with ubb, u2x, u3y;
hence the map sending u to « ρ - 1 maps BE P onto the group AE p of all
u e Autjp£ sending P to itself. The kernel is Fp*, so that

From the definition of C£ P it is easy to see that CE p is generated by F * and
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AE p, so that

and

index[BE>P: C£,P] =

äs required.
This proves (a). The proof of (b) is similar, and left to the reader. This

proves (1.13).

(1.14) PROPOSITION. Let p, l be primes, p > 3, l Φ p. Then the number

#'{ E: E elliptic cuwe over F p , #E(F p ) = Omod l }/=Fp

equals

l _
mod Z,

l . ._.
/a _ 1 P + ° ( ;VP j tfP =

# ' /s os in (1.4), and the O-constants are absolute and effectively
computable.

Remark. Comparing (1.14) with the result of (1.4) we see that, for fixed l,
Ihe probability that a "random" elliptic curve E over Fp satisfies # £ ( F p ) Ξ
Omod l tends to l /(l — 1) and //(/ 2 - 1) if p tends to infinity over the primes
with p Φ l mod / and p s l mod l, respectively. In particular, # £ ( F p ) is even
with probability approximately 2/3; this can also be deduced from the observa-
tion that # £ ( F p ) is even if and only if X3 + aX + b has a zero in F p, where E
is given by a, b. A proposition similar to the above one, but with different
constants, can be proved for the case in which l is not prime.

Proof of (1.14). Write Ylt Z1 for Y^OiFp), Zi(0(Fp)· H P Ξ l mod/ let
an element f e Fp* of order l be chosen, and write Υ, Ζ for Y(J)(Fp), Z(Z)(Fp).

Let W be the set of isomorphism classes of elliptic curves E over F p with
# £ ( F p ) s O m o d Z . For each such E, the group E(Fp)[Z] = {P e £(F p):
ff = O} has order / or /2 (see [29, Chapter III, CoroUary 6.4]) and if the order
is l2 then p = lmod/ (ibidem, Corollary 8.1.1). We write W = W1UW2

(disjoint), with W, consisting of the classes of those E for which #£(Fp)[Z] = l';
so W2 == 0 unless p = l mod l.

The map Zx -» W mapping the class of (JE, P) to the class of E is clearly
suqective. Two pairs (E, P), (E, P') with the same E represent the saroe
element of Zl if and only if P and P' belong to the same orbit of AutF(£; also,
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the size of the orbit is exactly index[AutFE: A£ P] = # A u t F E / # A E p with
AE p denoting the stabilizer of P in AutF(E (äs in (1.13)(a)).PFixing E with
#E(Fp)[i] = l' and summing over the orbits of P we obtain

#Aut F E

P

Dividing by #Aut F E and summing over isomorphism classes of E we obtain

Σ Ί — = (ι - ι) · #'w, + (iz - i) · #fwz

with # ' äs in (1.4) and the summation ranging over Z^ By Lemma (1.13)(a) the
left-hand sum equals exactly #Y1; and with (1.11) we now find

(/ - 1) · tf'Wj + (/2 - 1) · #'W2 = p +

If p Φ l mod l, then this simply means that

and the required result follows upon division by l — 1.
Let, for the rest of the proof, the hypotheses be äs in (1.13)(b). Then we

study in a similar way the map Z -> W2 that sends the class of (E, P, Q) to the
class of E. For each E with #E(Fp)[l] = l2 there are l(lz - 1) pairs of points
P, p e £(Fp)[Z] with e,(P, p ) = f. Hence we have, for such an E:

#Aut F E

Σ
where the sum is over AutFE-orbits of pairs of points P, Q äs above and AE P

is äs in (1.13)(b). In the same way äs before this leads to

£ — - - = 1(1* - 1) · #'W,
z ^-"-Ε,ρ,ς)

and (1.13)(b) and (1.12) now imply that

i(i2 - i) · #'W2 = p + ofzVp )·
Hence

#>W = #'Wj_ + #'W2

= -((i - i) · #rw, + (i2 - i) · #'wz)
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which is the required result. This proves (1.14).

(1.15) PROPOSITION. There exists a positive effectively computable constant

ce such that for all pairs ofprimes p, l with p > 3 we have

#'[E: E elliptic curve over Fp, #E(fp] Φ Omod l}/ = F > cep.

Proof. By (1.14) and (1.4), the left-hand side is ((l - 2)/(Z - l))p + O(fyp~)
if p Φ 0, Imod l and ((l2 - l - l)/(/ 2 - l))p + O(l{p~) ii p = Imod L The
coefficient at p is at least 1/3, so if l < c7\fp for a suitable positive constant c7

then the proposition is correct.

Applying (1.9)(a) to the set S = {s e 2: |s - (p + 1)| < 2/p, s s
Omod l}, which has cardinality O(l + {p -Z"1), we find that the proposition is
also valid if p > c8 and l > c9(log p)(loglog p) 2 for suitable positive constants
C8> C 9 '

In the remaining cases we have p < c8 or cg(log p)(loglog p)2 > c7{p, i.e.
p is bounded. But for fixed p the proposition is obvious, since by Deuring's
formula (see (1.5)) and /ί(Δ) > 0 (see (1.6)) there are elliptic curves EI} E2 over
F p with

# £ 1 ( F p ) = p , # E 2 ( F p ) = p

and / is not a divisor of at least one of p, p + 1.

This proves (1.15).

(1.16) PROPOSITION. There is a positive effectively computable constant c 1 0

such that for every prime number p > 3 the following two assertions are valid.

(a) If S is a set ofintegers s with \s - (p + 1)| < {p, then the number of

triples (a, x, y) e F^ for which

4o 3 + 27fo 2^0, #£ 0 > f o (F p ) e S ,

where b = y2 - x3 - ax, is at least c 1 0 (#S - 2)p5/z/log p.

(b) If l is any prime number, then the number of triples (a,x,y) e F^ for

which

4α3 + 27b2 Φ 0, # E e i b ( F „ ) Φ Omod Z,

where b = y 2 - x3 — ax, is at least c 1 0 p 3 .

Proof. (a) The number to be estimated equals the number of quadruples
(a, b, x, y) e Fp

4 for which E„ fc is an elliptic curve over F p with (x:y:l)
e £„>fo(Fp) and #£„ > b (F p ) e S. Each elliptic curve £ over F p is isomorphic to
E a j b for exactly (p - l)/#Aut E pairs (a, fc) e Fp

2 (see (1.4)), and each £„ j f c

gives rise to exactly #Ea 6(F„) - l points (x : y : 1). Therefore the number to be
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estimated equals

(p - 1)(#£(F„) - 1)

# A u t £

the sum ranging over the elliptic curves E over Fp, up to isomorphism, for which
#E(Fp) e S. Applying Hasse's theorem (see (1.5)) and (1.9)(b) we find that this
is at least

äs required.
(b) This is proved in the same way, with (1.15) instead of (1.9)(b).
This proves (1.16).

2. The factoring algorithm

We call a divisor d of a positive integer n non-trivial if l < d < n. In this
section we describe and analyze an algorithm to find a non-trivial divisor of a
positive integer.

(2.1) ElUptic curves modulo n. Let n be a positive integer. Consider the set
of all triples (x, y, z) e (Z/nZ)3 for which x, y, z generate the unit ideal of
Z/nZ. The group of units (Z/nZ)* acts on this set by u(x, y, z) = (ux, uy, uz).
The orbits under this action are the points of the projective plane over Z/nZ.
The orbit of (x, y, z) is denoted by (x:y. z), and the set of all orbits by
P2(Z/nZ).

For a, b G Z/n Z we consider the cubic curve E = Eö fc defined over
Z/n Z by the equation

y2 = x3 + ax + b.

The set of points E(Z/nZ) of such a curve over Z/n Z is defined by

E(Z/nZ) = {(x: y: z) e P2(Z/nZ): yzz = x3 + axz2 + bz3}.

If 6(4a3 + 27fo2) e (Z/nZ)* then E is called an elliptic curve over Z/nZ, and
in this case the set E (Z/n Z) has a natural abelian group law; it is defined by
formulae that are more general than those in (1.1), cf. [4].

The most convenient way to formulate the factoring algorithm to be
presented in this section would make use of the group structure just mentioned.
We shall avoid this, because the literature on elliptic curves over rings is not
easily accessible. We shaLl only need the group structure in the case that n is
prime (see (1.1)). For general n we shall work with a partially defined
" pseudo-addition" on a subset of E (Z/n Z); cf. [10].
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We denote the point (0 : l : 0) of P2(Z/nZ) by O, and we let the subset Vn

of P2(Z/nZ) consist of the "finite" points together with O:

Vn= {(i:y:l):i,ye(Z/nZ)}U{0}.

For P e Vn and a prime p dividing n we denote by Fp the point of P2(F )
obtained by reducing the coordinates of P modulo p. Observe that Pp = Op if
and only if P = O.

(2.2) Addition. We describe an algorithm that given n e Z > 1; a e Z/nZ
and P, Q e Vn, either calculates a non-trivial divisor d oi n, or determines a
point R & Vn with the following property: if p is any prime dividing n for
which there exists b e Fp such that

6(4ä3 + 27fe2) ¥= 0 forc = (omodp) ,

then Rp = Pp + Qp in the group £a-,b(Fp).
If P = O put R = (? and stop. If P * Ο, ρ = O put R = P and stop. In

the remaining case P Φ O, Q Φ O, let P = (x1 : yi : 1) and ζ) = (x2 : y2 : 1). Use
the Euclidean algorithm to calculate gcd(xj - x2, n). If this gcd is not l or n,
cali it d and stop. If gcd(s:1 - xz, n) = l then the Euclidean algorithm also
gives (x1 — Xz)"1, m t n i s c a s e

x 3 = λ 2 - * ! - sc2, y 3 = X(acx - x 3 ) -

and stop. Finally assume that gcd(x1 - xz, n) = n, so that x{ = x2- Calculate
g,cd(y1 + yz, n). If it is not l or n, call it d and stop. If it is n (so that
y\ = ~ ί/a)» put B = O and stop. If gcd(yj + y2, n) = l, put

x3 = λ2 - xl - x2, y3 = \(x1 - x3) - i/i,

and stop. (Notice that in this last case one actually has yj_ = y2 and P = Q.)
This finishes the description of the algorithm.

The correctness of the algorithm is an immediate consequence of the
formulae given in (1.1).

If the algorithm determines a point R with the stated property we shall
denote it by P + Q, and the partial binary Operation on V„ defined in this way
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shall be called addition. U there exists b e Z/n Z such that

6(4a3 + 27fc2) e (Z/nZ)*,

then P + ζ>, if deflned, actually equals the sum of P and Q in the group
£ a fo(Z/nZ), but we shall not need this. The only property of addition that we
do need is formulated at the beginning of (2.2).

(2.3) Multiplication. By repeated addition one readily derives from (2.2) an
algorithm that accomplishes the following. Given fceZ>0,neZ>l5ae Z/n Z
and P e Vn, it eiffoer calculates a non-trivial divisor d of n, or determines a
point jR e Vn with the following property: if p is any prime dividing n for
which there exists b e Fp such that

6(4ä3 + 27fc2) ¥= 0 forä = (amodp) ,

then Rp = k · P„ in the group EÄ>j,(F„).
If this algorithm determines a point R with the stated property we shall

denote it by kP. We call the partial Operation defined in this way multiplication.
The number of additions that one has to perform in this algorithm is at most

the length of the addition chain that is used, see [14, Section 4.6.3]. One can, for
example, use an addition chain that is derived from the binary representation of
k, which has length O(log k). Whether or not kP is defined may depend on the
addition chain that is used (if n is composite). It can be proved that if kP is
defined for each of two addition chains, then the two outcomes are the same.
Since we do not need this fact we omit the proof.

If k is given äs k = fcjfc2 f°r certain positive integers &1? kz,
 o n e c a n

calculate kP by kP = k1(k2P).
Suppose now that k is given äs a product

fc = f ] r
e ( r ) ,

where r ranges over a certain finite set of positive integers and each e(r) is a
positive integer. Applying the above repeatedly we see that in order to multiply
a point P by k it suffices to perform e(r} multiplications by r for each r. We
shall assume in the sequel that the multiplications by r are performed with r in
increasing order.

(2.4) Factoring with one curve. Let n, v, to e ϊ>ι and a, x, y e Z/nZ
be given. We describe an algorithm that attempts to find a non-trivial divisor d
of n.
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For each integer r > 2, denote by e(r) the largest integer m with
rm < v + 2,1/v + l, and put

Let P = (κ ·. y ·. 1) e Vn. Attempt to calculate kP by the method just explained.
If this attempt fails then a non-trivial divisor of n is found, and the algorithm
halts, with d equal to this divisor. If kP is calculated successfully then the
algorithm haits äs well, with the message that it has failed to find a non-trivial
divisor of n. This finishes the description of the aigorithm.

In (2.6) below we give a suffident condition for the algorithm to be
successful. The choice of a, x, y determines the elliptic curve that one uses. The
number v may be thought of äs an upper bound for the divisor d that one is
trying to find, although it is by no means guaranteed that indeed d < υ. The
Parameter w essentially measures the time that is spent on the algorithm (see
(2.9)); the probability of success increases with w.

(2.5) Ifactoring with several curves. Let n,v,w,h&Z>1'be given. We
describe a probabilistic algorithm that attempts to find a non-trivial divisor d
of n.

(*) Draw three elements a, x, y e Z/n Z at random, and apply algorithm
(2.4) to n, v, w, a, x, y. If this results in a non-trivial divisor of n, halt, with d
equal to this divisor. In the other case, go back to (*), except if algorithm (2.4)
has already been applied h times; in this case, report failure and halt.

The number v should again be thought of äs an upper bound for the divisor
that one is trying to find. The parameter w is basically the time that one is
willing to spend on a single curve, and h is the number of curves that one tries.
For the success probability of the algorithm, äs a function of w and h, see (2.8).
The optimal choice of w and h is discussed in (2.9).

(2.6) PROPOSITION. Let n, v, w e Z> l and a, x, y e Z/nZ be äs in (2.4),
put b = t/2 - x3 - ax e Z/nZ and P = (x: y: 1) e Vn (see (2.1)). Suppose
that n has prime divisors p and q satisfying the folbwing conditions.

(i) p < v;
(ii) 6(4ä3 + 27b2) Φ 0 for 5 = (a mod p), b = (b inod p);
(iii) each prime number r dividing # £ δ ^(Fp) saüsfies r < w;
(iv) 6(4a3 + 27έ2) Φ 0 for a = (a mod q), b = (b mod q);
(v) #Eä fe(F ) is not divisible by the largest prime number dividing the

order ofPp (see (2.1)).
Then algorithm (2.4) is successful in finding a non-trivial divisor o/n.
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Remark. Note that conditions (ii) and (iv) imply that Eg j,(Fp) and Ea &(F )
have a group structure. Also, Pp Φ Op in E--h(Vp), so the largest prime number
referred to in (v) does exist. Clearly (v) implies that q Φ ρ.

Proof. From p < v and Hasse's inequality (see (1.5)) it follows that

ri(Fp) < v + 2i/v + 1; so for each prime number r the exponent of r in
^(Fp) is at most the number e(r) defined in (2.4). The same is then true for

the exponent of r in the order ω of Pp. Denote by l the largest prime number
dividing ω, and by m the exponent of l in ω; so l < m < e(l). Put

then k0 Φ Omod ω and k0l = Omod ω, so that

kop

p * Op, kJPp = Op in the group Εδι1(Έρ).

From (iii) we see that l < w, so k0 and k0l are divisors of the number k
appearing in (2.4). Moreover, if kP is successfully calculated by the algorithm,
then k0P and k0lP are calculated along the way. Hence to prove (2.6) it suffices
to show that Jc0P and kQlP cannot both be defined. To do this, we use the
observation made at the end of (2.1), äs follows.

If külP e Vn exists, then (k0lP)p = k0l · Pp = Op in the group E3>l(Fp)
and therefore fc0ff = O in Vn; but then k0l · Pq = (kQlP)q = Oq in the group
Eä^(Fq); so by (v) we have knPc/ = Oq äs well. Therefore, if k0P e Vn is also
defined, we must have kQP = O and hence k0Pp = Op, contradicting what we
proved above.

This proves (2.6).

(2.7) PROPOSITION. There exists a positive, effectively computable constant
c u with the following property. Let n, v, w e Z > λ be such that n has at least
two distinct prime divisors > 3, and such that the smallest prime divisor p of n
for which p > 3 satisfies p <; v. Put

u = # ( s e Z: s — (p + l) | < ]fp , and each prime dividing s is < w ] .

Then the number N of tnples (a, x, y) e (Z/nZ) 3 for which algorithm (2.4)
succeeds in finding a non-tnvial divisor of n satisfies

N cn u-2

n3 log p 2[{p\ + l '

Remark. The proposition asserts that the probability that a random triple
(a, x, y) is successful, which is N'/n3, is not rauch less than the probability that a
random integer in the interval (p + 1 — \fp , p + \ + {p) has all its prime
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divisors < w; the latter probability is u/(2[\fp] + 1). From the proof and the
remark made just before (1.8) it will be clear that under the assumption of the
generalized Riemann hypothesis the proposition is also valid with the stronger
inequality

N c„ u
n

n 3 loglog p 2[/pJ + l

Proof. Let q be a prime divisor > 3 of n that is different from p. For each
positive integer s, let Ts be the set of triples (a, ξ, η) e Fp

3 with the property
that

4α3 + 27β**0, #Ea,ß(Fp)=S,

where β = ηζ - ξ3 - αξ. For (α, ξ, η) e Ts, let the largest prime divisor of the
order of the point (ξ: η : 1) in the group £ a i j 3 (F p ) be denoted by Ιαζη, and let
υαξη be the set of triples (α', £', η') e F 3 for which

4α' 3 + 27/ϊ'2 Φ Ο, #Εα,_^(F,) is not divisible by Ζβ£η,

where ß ' = η ' 2 — ξ'3 — a'ξ'. With this notation, Proposition (2.6) implies that

jV> Y Y Y #v
— L·^ i—i t—j αξηας η'

s (a, £,ij)eTs (α',ί',η')ευαίν

where s ranges over the set of positive integers built up from primes < w and

^«ίηα'ξγ = { ( a ' a r ' ?/) e (Z/«Z)3: (a mod p, x mod p, y mod p] = (a, ξ, -η],

(a mod q, x mod q, y mod q) = (α', ξ', η ' )] .

Clearly each V„iT)a<iV has cardinality n3/(pq)3, and by (1.16)(b) we have

> c10c/3. Hence we obtain

~n3 " 1 0 7 P 3 '

the sum ranging over the positive integers s built up from primes < w.
Restricting the sum to the integers s that also satisfy \s - (p + 1)| < {p, and
applying (1.16)(a), one finds that

N _

n 3 ~~ I 0

and the proposition follows.
This proves (2.7).

We now suppose that the random number generator that is used in
algorithm (2.5) to draw the triple (a,x,y)e (Z/nZ) 3 gives each triple with
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equal probability, and that the successive calls to the random number generator
are independent.

(2.8) COROLLARY. There exists an effectively computable constant c12 > l
with the following property. Let n, v e Z > 1 be such that n hos at least two
distinct prime divisors > 3, and such that the smallest prime divisor p ofn for
which p > 3 satisfies p < v. Let further w e Z > 1 be such that the number u
defined by

u = #{ s e Z: s — (p + 1) | < ]fp , and each prime dividing sis < w ]

satisfies u > 3, and let f(w) = u/(2[{p] + 1) denote the probability that a
random integer in the interval (p + l — {p ,p + \ + {p) hos all its prime
factors < w. Then for any h e Z > 1 the success probability ofalgorithm (2.5)
on input n, v, w, h is at least l — cf2'

l/("')/logü.

Proof. By Proposition (2.7) and the assumptions made just before the
corollary, the failure probability of the algorithm equals (l — N/n3)h, where

N cn u — 2 cnf(w)
* n
* « ^ _ < _ - v ^

3 log p 2[/p] + 1 3 log«

It follows that

( i - -
l 1 n3

This proves (2.8).
(2.9) Efficiency. Let M(n) denote an upper bound for the time, measured

in bit operations, that is needed to perform a single addition äs in algo-
rithm (2.2). One can take M(n) = O((log n)2) if one uses the ordinary
Euclidean algorithm [14, Exercise 4.5.2.30], and a faster Version leads to M(n) =
0((log n)(loglog n)2(logloglog n)); see [26].

With this notation, the time required by algorithm (2.4) is
O(w(log ü)M(n)); this follows from the fact that the number k appearing in
(2.4) satisfies log k ·-= O(w log v).

The time spent on the factoring algorithm (2.5) is at most h times äs large,
so is O(hw(log u)M(n)). (This does not count the time that the random number
generator may need; it is called at most h times.) Corollary (2.8) shows that in
order to have a reasonable chance of success, one should choose the number h of
the same order of magnitude äs (log v)/f(w). Hence, to minimize the estimated
running time, the number w should be chosen such that w/f(w) is minimal.
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At this point we need an unproved conjecture. For a real number χ > e,
define

L(x} = giA°sxl°giogx

A theorem of Canfield, Erdös and Pomerance [6, Corollary to Theorem 3.1]
implies the following. Let α be a positive real number. Then the probability that
a random positive integer s < χ has all its prime factors < L(x)a is
L(*)~ 1 / ( 2 o i ) + o(1), for χ -> oo. The conjecture we need is that the same result is
valid if s is a random integer in the interval (x+l — ]fx,x+l + Jx). Putting
χ = p we see that the conjecture implies that

f(L(PD = L(pr 1 / ( 2 "> + o ( I > for p - o o ,

for any fixed positive a, with / äs in (2.8).
With w = L(p)a, the conjecture would imply that

/ rl \ τ t \1/(2α) + α + ο(1) r
w/f(™} = L(p) for p — oo,

which suggests that for the optimal choice of w we have

w = L ( p ) V ^ + o ( 1 ) , «,//(«;) = L ( p ) ^ + o ( 1 ), for p

A slight practical problem with this choice of w is that p, the least prime factor
> 3 of n, is not known beforehand. One can solve this problem by replacing p
by v in the above formula for w, and performing algorithm (2.5) for a suitable
increasing sequence of values for v. Notice that the factors log v in the running
time estimate are L(v)°(r>.

These arguments lead to the following conjectural running time estimate for

the elliptic curve factoring algorithm.

(2.10) CONJECTURE. There is a function K : R > 0 — R > 0 with

Κ(χ) = gV^^W^s^og1^* forx — oo

such that the following assertion is true. Let n e Z > 1 be an integer that is not a
prime power and that is not divisible by 2 or 3, and let g be any positive integer.
Then algorithm (2.5), when applied with suitable values for v, w, h, can be
used to find, with probability at least l - e~&, a non-trwial divisor of n within
time

gK(p)M(n),

where p denotes the least prime divisor of n and where M(n) ·= O((log n) 2 ) or

O((log n)(loglog n)2(logloglog n)) is äs in (2.9).
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It may be possible to replace the conditions on n in this conjecture by the
simpler condition that n be composite; but in any case integers that are divisible
by 2 or 3, or that are perfect powers, are easy to recognize directly.

It is not guaranteed that the divisor found by algorithm (2.5) is the smallest
prime divisor of n, although in practical circumstances this will often be the
case.

The algorithm may be repeated on the divisors that are found, until the
complete prime factorization of n is obtained. The estimate for the running time
will then also contain terms gK(p')M(n) corresponding to the other prime
divisors p' of n, with the exception of the largest one. In all cases one may
expect the total factoring time to be at most L(n) 1 + o ( 1 ) for n -» oo, with L äs
in (2.9). The worst case occurs if the second largest prime divisor of n is not
much smaller than ]/n, so that n is the product of some small primes and two
large primes that are of the same order of magnitude.

(2.11) Comparison to other methods. We just mentioned that the elliptic
curve factoring method may be expected to factor any integer completely in
time at most L(n)1 + o ( 1 ) . Several other factoring methods have been proposed
for which, conjecturally, the running time is given by the same formula, such äs
the class group method [23] and the quadratic sieve [18]; see also the discussion
in [8]. For these other methods the running time is basically independent of the
size of the prime factors of n, whereas the elliptic curve method is substantially
faster if the second largest prime factor of n is much smaller than yn ·

The storage requirement of the elliptic curve factoring method is only
O(logn). This is also true for the class group method [23], but all other known
factoring algorithms of conjectured speed L(n) 1 + o(1) have a storage requirement
that is a positive power of L (n).

(2.12) Numbers built up from small prime factors. The elliptic curve
method is particularly efficient in discovering small prime divisors of a number n.
This means that it can be used for a purpose different from factoring, namely for
recognizing numbers that are built up from prime factors below a certain bound.
Several factoring methods, such äs the continued fraction method, the random
squares method of Dixon and the class group method of Seysen (see [18], [27]),
need an efficient subroutine for performing this task. The analysis of these
methods such äs given in [18] assumes that the Pollard p-method or the
Pollard-Strassen method is used for this purpose. Using the elliptic curve
method instead improves the theoretical performance of these factoring al-
gorithms. It should be noted that for a rigorous analysis of the elliptic curve
method, when applied in this way, much less is needed than the conjecture
stated in (2.9). Namely, it suffices to have an average form of a weaker Statement,
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and this appears to be within reach of the present techniques of analytic number
theory; these ideas are developed in [19].

Several practical primality tests depend on large completely factored di-
visors of certain integers related to the number being tested, see [21], [31]. The
elliptic curve method can be used to search for such divisors. It is likely that this
will improve the performance of these primality testing algorithms.

(2.13) Practical performance. The version of the elliptic curve method
described in this paper was designed for simplicity of exposition and ease of
analysis. In an actual Implementation one might prefer to make several modifi-
cations, such äs using a different model for elliptic curves, selecting the parame-
ters in a different way, or adding a routine, äs in Pollard's original (p — l)-method,
that enables one to use curves Ea h for which #ES $(F ) is allowed to have one
prime factor that is somewhat larger (cf. (2.6)(üi)). For a discussion of these and
other points, see [16], [5], [7].

It turns out that, with these modifications, the elliptic curve method is one
of the fastest integer factorization methods that is currently used in practice. The
quadratic sieve algorithm still seems to perform better on integers that are built
up from two prime numbers of the same Order of magnitude; such integers are of
interest in cryptography [22].
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