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Abstract

The scattermg-matrix product SST of a weakly absorbing medium 1s related by a umtary transformation to the time-delay
matrix without absorption It follows from this relationship that the eigenvalues of SS t for a weakly absorbing chaotic cavity
are distributed according to a generalized Laguerre ensemble © 2001 Elsevier Science BV All rnights reserved
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1. Problem

The purpose of this note 1s to answer a question
raised by Kogan et al [1], concerning the statistics of
the eigenvalues of the scattering-matrix product SS7
for an absorbing optical cavity with chaotic dynam-
1cs Without absorption the scattering matrix S 1s an
N x N unttary matrix, hence SST 1s simply the unit
matrix With absorption the eigenvalues R, Ry, ,Ry
of SST are real numbers between 0 and 1 What 1s
the probability distribution P({R, }) of these reflection
eigenvalues 1n an ensemble of chaotic cavities?

In principle, this problem can be solved by start-
g from the known distribution of S in the absence
of absorption (which 1s Dyson’s circular ensemble
[2]), and mcorporating the effects of absorption by
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a fictitious lead [3] What has been calculated m
this way 1s the distribution P({R,}) for small N [3]
and the density p(R) = (", 8(R — R,)) for large N
[4,5] These results have a complicated form, quite
unlike those familiar from the classical ensembles of
random-matrix theory [6] For example, in the pres-
ence of time-reversal symmetry the distribution for
N =21s given by Ref [3]

P(Ri,Ry) = (1= R))~*(1 - R))™*
xexp[ — (1 =R~ —y(1 — R2)™']
X|Ry = Ra|[y*(1 — & +y + y¢™)
+9(R1+ Ry = 2)(3 = 37 + 2y +ye¥ +97)
+ (1 —Ri)1—R)B—3e" + 2y

+ 3ye® + 3% + 7)), (1)
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where 7 1s the ratio of the mean dwell time 74 nside
the cavity ! and the absorption time 7,

The situation 1s simpler for reflection from an ab-
sorbing disordered waveguide In the limit that the
length of the waveguide goes to infinity, the distri-
bution of the reflection eigenvalues becomes that of
the Laguerre ensemble, aftc1 a transformation of vari-
ables from R, to A, =R, (1 — R,)"' =0 The (unno1-
malized) distribution 18 given by [7,8]

P({2,}) oc T] |4 = /1/|/j

1<y
X I}T exp[ — (BN +2 — )], (2)

where now y = 1,/7, contams the scattering tume T
of the disorder The iteger 5 = 1(2) 1n the presence
(absence) of time-reversal symmetry The eigenvalue
density 1s given by a sum over Laguerre polynomials,
hence the name “Laguerre ensemble” [6]

Kogan et al [1] used a maximum entropy assump-
tion [9] to argue that a chaotic cavity 1s also described
by the Laguerre ensemble, but m the variables R,
mstead of the 4,’s Thewr maximum entropy distti-
bution 1s
P({R,}) o [T IR _R/|/;I;ICXP(_‘1R/) (3)

1<y

The coefficient @ m the exponent 1s left undeter-
mined > Comparison with computer simulations gave
good agreement for strong absorption, but not for
weak absorption [1] This 1s unfortunate since the
weak-absorption regime (y<1) 1s likely to be the
most mteresting for optical experiments Although
we know from the exact small-N results [3] that no
simple distiibution exists m the entire range of y, one
mught hope for a simple eigenvalue distribution for
small v What 1s 1t?

2. Solution

Absorption with rate 1/7, 18 equivalent to a shift
m frequency o by an umaginary amount dw = 1/21,

! The mean dwell time 1s related to the mean ficquency mtetval
A of the cavity modes by 14 —2n/NA so that y = 2n(z NA) !
The definition of y used m Ref [3] differs by a factor N

2We have veuified that the theory of Ref [3] agiees with Eq
(3) for stiong absorption (> 1) with coefficient a = %y/}N

If we denote by S(w) the scattering matrix with ab-
sorption and by So(w) the scattering mattix without
absorption, then S(w) = So(w + 1/27,) For weak ab
sorption we can expand

1 d
So(w +1/27,) = Sp(w) + 2—11 aESO(‘“)

1
214,

=50 [1- -0, )
where Q = —ISS dSo/dw 15 the time-delay matiix [10]
Since Sy 1s umtary, Q0 1s Hermitian The eigenvalues
of Q, the delay times 7,72, ,7Tn, ate real positive
numbers Eq (4) implies that, for weak absorption,

S@)'0) =) |1 - Low)| 5@ ©)

We conclude that the matrix product SS* 1s 1elated
to the time-~delay matrix Q by a unitary transfoima-
tion This relationship 1s a generalization to N > 1 of
the result of Ramakrishna and Kumar [11] for N =1
(when the unitary tiansformation becomes a simple
identity) Because a unitary transformation leaves the
eigenvalues unchanged, one has R, =1 —1,/t,, or
equivalently, 1, = 1,/7, (since 4, — (1 —R,)™" for
weak absorption)

The probability distribution of the delay times 1n a
chaotic cavity has recently been calculated, first for
N =11[12,13] and later for any N {14,15] The co1re-
sponding distribution of the 1eflection eigenvalues for
weak absorption 15 a generalized Laguerrc ensemble
1 the variables /A,

P({)n}) o H Ml - /I/|/j

1<y
<11 W expl — L9pNA ] (6)

The eigenvalue density 1s given mn terms of geneial-
1zed Laguerre polynomials, hence the name The cor-
responding distribution of the reflection eigenvalues 1s
P({R,,}) &« H |R1 _Rl|ﬁ

1<y

exp[ — 3yBN(1 — R;)™']

1/_[ (1 — R 2 F+3ANT2 7

The first moment of this distribution s N~ (3~ R,) =
1 — y, independent of § One can check that Eq (7)
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P(R)

Fig. 1. Probability distribution of the reflectance of a weakly
absorbing chaotic cavity that 1s coupled to the outside via a
single-mode waveguide (inset). The solid curves have been com-
puted from Eq. (8) for y=0.1 (hence (R) =1—7y=09). The
dashed curve is the exact # =2 result from Eq. (9).

is the small-y asymptote of the exact result (1) for
N=2, =1

In the case N =1 of a single scattering channel, the
distribution (7) reduces to

1+4/2
G

xexp[ — $yB(1 = R)™'], (8)

including the normalization constant. We have plot-
ted this function in Fig. 1 for y=0.1 and f=1,2.
It is totally different from the exponential distribution
P(R) oc exp(—aR) of Ref. [1]. For comparison, we
have also included in Fig. 1 the exact N =1 result
[16] (which is known only for § =2):

P(R)=(1~R)exp[ — (1 = R)"']

P(R)

X[pe" =D+ 1 +y—e)1 =R 9)

It is indeed close to the small-y asymptote (8).

3. Conclusion

Summarizing, the distribution of the reflection
eigenvalues of a weakly absorbing chaotic cavity is
the generalized Laguetre ensemble (6) in the parame-
terization 4, = R,(1 — R,)~'. The Laguerre ensemble

(3) in the variables R,, following from the maxi-
mum entropy assumption [1], is only valid for strong
absorption. For intermediate absorption strengths
the distribution is not of the form of the Laguerre
ensemble in any parameterization, cf. Eq. (1). In
contrast, the distribution of a long disordered waveg-
uide is the Laguerre ensemble (2) for all absorption
strengths.

The relationship between the reflection eigenvalues
for weak absorption and the delay times implies that
the delay times 1, for reflection from a disordered
waveguide of infinite length are distributed according
to Eq. (2) if one substitutes y4, — t./7,. The impli-
cations of this Laguerre ensemble for the delay times
will be discussed elsewhere.
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