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Transition from pure-state to mixed-state entanglement by random scattering
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(Received 12 March 2004, published 24 September 2004)

We calculate the effect of polanzation-dependent scattering by disorder on the degree of polanzation en
tanglement of two beams of radiation Multimode detection conveits an miüally pure state mto a mixed state
with respect to the polanzation degrees of freedom The degree of entanglement decays exponentially with the
number of detected modes if the scattering mixes the polanzation directions and algebraically if it does not
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I. INTRODUCTION

A pair of photons m the Bell state (\HV)+\VH})I^2 can
be transported over long distances with httle degradation of
the entanglement of their horizontal (H) and vertical (V) po-
lanzations Polanzation-dependent scattering has httle effect
on the degree of entanglement, äs long äs it remams linear
(hence descnbable by a scattering matnx) and äs long äs the
photons are detected m a smgle spatial mode only This ro-
bustness of photon entanglement was demonstrated dramati-
cally m a recent expenment [1] and theory [2,3] on plasmon-
assisted entanglement transfer

Polanzation dependent scattering may significantly de-
grade the entanglement in the case of multimode detection
Upon summation over N spatial modes the mitially pure state
of the Bell pair is leduced to a mixed state with respect to the
polanzation degiees of freedom This loss of punty dimm-
ishes the entanglement—even if the two polanzation direc-
tions are not mixed by the scattering

The transition from pure-state to mixed-state entangle-
ment will m general depend on the detailed form of the scat-
tering matnx However, a universal legime is entered in the
case of randomly located scattering centra This is the regime
of apphcabihty of random-matnx theory [4,5] As we will
show m this paper, the transmission of polarization-
entangled radiation through disordered media reduces the de-
gree of entanglement m a way which, on average, depends
only on the number N of detected modes (The aveiage refers
to an ensemble of disordered media with different random
positions of the scatterers ) The degree of entanglement (äs
quantified either by the concurrence [6] or by the violation of
a Bell mequality [7,8]) decreases exponentially with N if the
disorder randomly mixes the polanzation dnections If the
polanzation is conserved, then the decrease is a power law
(«/V"1 if both photons are scattered and &N~m if only one
photon is scattered)

II. FORMULATION OF THE PROBLEM

We considei two beams of polanzation-entangled photons
(Bell pairs) that aie scatteied by two separate disordeied me-
dia (see Fig 1) Two photodetectors m a comcidence cucuit
measuie the degiee of entanglement of the üansmitted radia-
tion through the violation of a Bell mequality The scattered
Bell pair is m the pme state

* n c r m T ~ r^(una-vmT (21)

The mdices «e{l ,2 , ,M\}, me{l,2, ,M2] label the
Iransverse spatial modes and the mdices σ,τε{+,-} label
the horizontal and vertical polanzations The first pair of
mdices n, σ refers to the first photon and the second pair
of mdices m, τ refers to the second photon The scattering
amphtudes ufla. relate the mcoming mode (l, ±) of
the first photon to the outgomg mode (n,σ), and
similarly for the second photon The two
vectors K+,«2+, , ««1+, u\_, u+

2_, ,U+

MI_) and

(u^+,U2+, ,u~M +,Μ7_,ι<2_, ,«M-) °f scattering amph-
tudes of the first photon are orthonormal, and similarly for
the second photon

A subset of NI out of the Mj modes are detected m the
first detector We relabel the modes so that «=1,2, Nl are
the detected modes This subset is contamed m the four vec-

• ·

FIG l Schematic diagram of the transfer of polarization-
entangled radiation through two disordered media The degree of
entanglement of the transmitted radiation is measured by two mul
timode photodetectors (7V, modes) in a comcidence circuit (repre-
sented by the box with "&" inside) The combmation of
polanzation-dependent scattering and multimode detection causes a
transition from a pure state to a mixed state in the polanzation
degrees of freedom, and a resulting decrease of the detected
entanglement
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tors «Γ = Μ«+. < =<-. «n

+ = «n+. M„ =«„- of length Λ^
each. We write these vectors in bold face, u±±, omitting the
mode Index. Similarly, the second detector detects N2 modes,
contained in vectors v±±. A single or double dot between
two pairs of vectors denotes a single or double contrac-

C' = Vmax(0,£2/4-l) =S C (2.7)

tion over the mode indices: a-b=E^i1<2„£,!, ab: cd

The pure state has density matrix By

tracing over the detected modes the pure state is reduced to a
mixed state with respect to the polarization degrees of free-
dom. The reduced density matrix is 4 X 4, with elements

Ρστ,σ'τ' =

(«+o-v_T+ u_„.v+T):(v!Tu*0.+ ν*

(2.2)

(2.3)

The complex numbers that enter into the density matrix are
conveniently grouped into a pair of Hermitian positive defi-
nite matrices a and b, with elements a£rT0./T/-u0.T-uo.,T,,

6 σ τ σ ν = ν σ τ · , . One has

+ α+σ,_σΛ_Τι+τ, · (2.4)

The degree of entanglement of the mixed state with 4
X 4 density matrix p is quantified by the concurrence C,
given by [6]

(2.5)

The λ, 's are the eigen values of the matrix product

in the order λ]

· p* · (ay ® ay),

\4, with a a Pauli matrix. The
concurrence ranges from 0 (no entanglement) to l (maximal
entanglement).

In a typical experiment [1], the photodetectors cannot
measure C directly, but instead infer the degree of entangle-
ment through the maximal violation of the Bell-CHSH
(Clauser- Horne-Shimony-Holt) inequality [7,8]. The maxi-
mal value 8 of the Bell-CHSH parameter for an arbitrary
mixed state was analyzed in Refs. [9,10]. For a pure state
with concurrence C one has simply €=2\jl+C2 [11]. For a
mixed state there is no one-to-one relation between S and C.
Depending on the density matrix, £ can take on values be-
tween 2C\/2 and 2^1 + C2, so £>2 implies C>0 but not the
other way around. The general formula

(2.6)

for the dependence of B on p involves the two largest eigen-
values u{,u2 of the real Symmetrie 3 X 3 matrix R7 R con-
structed from Äw=Trp^®a;. Here σ1;σ2,σ3 refer to the
three Pauli matrices σχ,σν,σζ, respectively.

We will calculate both the true concurrence C and the
pseudoconcurrence

inferred from the Bell inequality violation. As a special case
we will also consider what happens if only one of the two
beams is scattered. The other beam reaches the photodetector
without changing its mode or polarization, so we set vfna.
= ήη,ι<5σ·,±· This implies b^^^-δ^δ^^, hence

στ, σ' τ' τσ, τ' σ' (2.8)

where we have defined τ=—τ. The normalization is now
given simply by Ζ=Σσ.7Λσ7.στ.

III. RANDOM-MATRIX THEORY

For a statistical description we use results from the
random-matrix theory (RMT) of scattering by disordered
media [4,5]. According to that theory, the real and imaginary
parts of the complex scattering amplitudes u%T are statisti-
cally distributed äs independent random variables with the
same Gaussian distribution of zero mean. The variance of the
Gaussian drops out of the density matrix; we fix it at 1. The
assumption of independent variables ignores the orthonor-
mality constraint of the vectors u, which is justified if Nl
<$Ml. Similarly, for N2<M2 the real and imaginary parts of
υσ

ητ have independent Gaussian distributions with zero mean
and a variance which we may set at 1.

The reduced density matrix of the mixed state depends on
the two independent random matrices a and b, according to
Eq. (2.4). The matrix elements are not independent. We cal-
culate the joint probability distribution of the matrix ele-
ments, using the following result from RMT [12]: Let W be
a rectangular matrix of dimension p X (k+p), filled with
complex numbers with distribution

„m c> 0. (3.1)

Then the square matrix H=WW* (of dimension pXp) has
the Laguerre distribution

P((Hnm}) « (det #)*exp(- cTrfl) . (3.2)

Note that H is Hermitian and positive definite, so its eigen-
values hn (n =1,2, ... ,p) are real positive numbers. Their
joint distribution is that of the Laguerre unitary ensemble

P({hn}} « Π hk

ne-c""U (h, - hj)2. (3.3)
n l<j

The factor (Α,-Α,)2 is the Jacobian of the transformation
from complex matrix elements to real eigenvalues. The
eigenvectors of H form a unitary matrix U which is uni-
formly distributed in the unitary group.

To apply this to the matrix a we set c=l/2, p=4, k=N{

-4. We first assume that N^4, to ensure that k^O. Then

Ρ({αστ,σ>Τ>}) * (det a)"i

p(M) - n ̂ '-v

(3.4)

where a,, a2, a3, α4 are the real positive eigenvalues of a. The
4 X 4 matrix U of eigenvectors of a is uniformly distributed
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FIG. 2. Average concurrence (C) (squares) and pseudoconcur-
rence (C1) (tnangles) äs a function of the number N of detected
modes. Ciosed Symbols are for the case that only one of the two
beams is scattered and open Symbols for the case that both beams
are scattered. The decay of (C) in the latter case could not be
determmed accurately enough and is therefore omitted from the
plot. The solid lines are the analytically obtained exponential de-
cays, with constants A=3 In 3-4 In 2 and 5=ln(ll+5V5)-ln2, cf.
Eqs. (4.8) and (4.12).

in the unitary group. If Λ^ = 1,2,3 we set c=l/2, p=N\, k
=4-yVj. The matrix a has 4—Ni eigenvalues equal to 0. The
NI nonzero eigenvalues have distribution

P(M) « Π (a, - a,)2

The distribution of the matrix elements Zv

(3.6)

and of the
eigenvalues bn is obtained upon replacement of Λ^ by N2 in
Eqs. (3.4)-(3.6).

IV. ASYMPTOTIC ANALYSIS

We wish to average the concurrence (2.5) and pseudocon-
currence (2.7) with the RMT distribution of See. III. The
result depends only on the number of detected modes Λ/Ί ,N2

in the two photodetectors. Microscopic details of the scatter-
ing media become irrelevant once we assume random scat-
tering. The averages (Cf, (C') can be calculated by numerical
Integration [13]. Before presenting these results, we analyze
the asymptotic behavior for TV, §> l analytically. We assume
for simplicity that N{=N2 = N.

It is convenient to scale the eigenvalues äs

a„ - 2N(l + a„), bn = 2N(l + ß„). (4.1)

The distribution of the a„'s and ßn's takes the same form

P({a„}) - exp [a„ -

(4.2)

where 0(1) denotes TV-independent terms. The bulk of the
distribution (4.2) lies in the region 2„a^:£ 1//V<I l, localized
at the origin. Outside of this region the distribution decays
exponentially °c exp[-./V/({a„})], with

0 8 , -

0 6

0 4 -

0 2 -
κΝ i/s
*····,

«Ν"1

1 5 1 0 1 5 2 0 2 5
Ν

FIG. 3. Average concurrence (C) äs a function of the number N
of detected modes, for the case of polarization-conserving scatter-
ing of both beams (open squares) and one beam (closed squares).
The data points are the result of a numerical average. The dashed
line is the asymptotic result (5.6) and the dotted line is the analyti-
cal result (5.8). The pseudoconcurrence C' is identical to C for
polarization-conserving scattering.

/({«„}) = Σ [>„-ln(l+ «„)]. (4.3)
n=l

The concurrence C and pseudoconcurrence C' depend on
the rescaled eigenvalues an, ß„ and also on the pair of 4
X 4 unitary matrices U, V of eigenvectors of a and b. Both
quantities are independent of N, because the scale factor N in
Eq. (4.1) drops out of the density matrix (2.4) upon normal-
ization.

The two quantities C and C' are identically zero when the
an's and ßn's are all <§1 in absolute value. For a nonzero
value one has to go deep into the tail of the eigenvalue dis-
tribution. The average of C is dominated by the "optimal
fluctuation" a°pt, ß°pt, i/opt, V°pt of eigenvalues and eigenvec-
tors, which minimizes /({«„}) +/({/?„}) in the region C>0.
The decay

(C) - exp(- (4.4)

of the average concurrence is exponential in N, with a coef-
ficient A of order unity determined by the optimal fluctua-
tion. The average (C') — e~BN also decays exponentially with
N, but with a different coefficient B in the exponent. The
numbers A and B can be calculated analytically for the case
that only one of the two beams is scattered.

Scattering of a single beam corresponds to a density ma-
trix p which is directly given by the matrix a, cf. Eq. (2.8).
To find A, we therefore need to minimize /({«„}) over the
eigenvalues and eigenvectors of α with the constraint C>0,

A = min {/TK})|C(p(K}, U)) > 0}. (4.5)

The minimum can be found with the help of the following
result [14]: The concurrence C(p) of the two-qubit density
matrix p, with fixed eigenvalues Αι^Α2^Λ.^^Α4 but arbi-
trary eigenvectors, is maximized upon unitary transformation
by

032325-3



J L van VELSEN AND C W J BEENAKKER PHYSICAL REVIEW A 70, 032325 (2004)

A = 3 In 3 - 4 In 2 = 0 523 (48)

The asymptotic decay (C)χ e~AN is in good agreement with a
A = mm\f({an})\al - a3 - 2v(l + «2)(1 + a4) > 0}, (4 7) numencal calculation for finite N, see Fig 2

'""' The asymptotic decay of the average pseudoconcunence
where we have ordered a^a2^a3^a4 This yields for the (C') for a smgle scattered beam can be found m a sinular
optimal fluctuation a?pt=l, α2

ρί=α3

ρι-α^ί=-1/3 and way, usmg the result [10]

max C(ilpilf) = max{0, Λ, - Λ3 - 2 VA2A4} (4 6)
Ω

(The matnx Ω vanes over all 4 X 4 unitary matnces ) With
this knowledge, Eq (4 5) reduces to

max C'
Ω

= Vmax{0,2(A, - Λ4)
2 + 2(Λ2 - Λ3)

2 - (Aj + Λ2 + Λ3 + Λ4)
2} (49)

Το obtam the optimal fluctuation we have to solve

- a3)
2B = min{/({a„})|2(a1 - a4)

2

{<*,}

- (4 + 0}, (410)

which gives

/C\ Opl , Opt /

(411)

hence

+ 5\/5)-ln2 = (412)

The decay (C')^e~BN is agam in good agreement with the
numencal results for finite N (Fig 2)

If both beams are scattered, a calculation of the optimal
fluctuation is more comphcated because the eigenvalues
{«„}, {ß„} and the eigenvectors U, V get mixed m the density
matnx(24) The numencs of Fig 2 gives (C) * e~3 3Λί for the
asymptotic decay of the concurrence The averaged
pseudoconcurrence for two-beam scattermg could not be de-
terrmned accurately enough to extract a rehable value for the
decay constant

V. COMPARISON WITH THE CASE

OF POLARIZATION-CONSERVING SCATTERING

If the scatterers are translationally invariant m one direc-
tion, then the two polanzations are not mixed by the scatter-
mg Such scatterers have been reahzed äs parallel glass fibers
[15] One polanzation corresponds to the electnc field paral-
lel to the scatterers (TE polanzation), the other to parallel
magnetic field (TM polanzation) The boundary condition
differs for the two polanzations (Dinchlet for TE and Neu-
mann for TM), so the scattermg amphtudes u++, v++, u__, v__
that conserve the polanzation can still be considered to be
mdependent random numbers The amphtudes that couple

different polanzations vanish u+_, v+_, u_+, v_+ are all zero
The reduced density matrix (2 4) simplifies to

with τ=—τ, τ'' =-TJ We will abbreviate λστ=ασσττ, Βστ

= b„.aTr The concurrence C and pseudoconcurrence C' are
calculated from Eqs (2 5) and (2 7), with the result

(52)

It is agam our objecüve to calculate (C) for the case Nl

=N2=N The distnbution of the matnces A and B follows by
substitutmg yVj-4—>W-2 m Eq (34)

(53)Ρ({Αστ}) cc (det A)w-2expl -

The average over this distnbution was done numerically, see
Fig 3 For large ^V we may perform the followmg asymptotic
analysis

We scale the matnces A and B äs

A = 2N(l + Ä),B = 2N(l + B) (54)

In the limit N-^ °° the Herrmtian matnces Λ and B have the
Gaussian distnbution

Ρ({Αστ}} (55)

(The same distnbution holds for B) In contrast to the analy-
sis in See IV the concurrence does not vanish m the bulk of
the distnbution The average of Eq (5 2) with distnbution
(5 5) yields the algebraic decay

~
4 N

(56)

in good agreement with the numencal calculation for finite N
(Fig 3)

A completely analytical calculation for any N can be done
in the case that only one of the beams is scattered In that
case Βστ= l and the concurrence reduces to
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r> _ (57)

Averagmg Eq (5 7) over the Laguene distubution (5 3)
gives

(58)

For laige N, the average concurrence (5 8) falls off äs

(59)

This case is also mcluded in Fig 3

VI. CONCLUSION

In summary, we have applied the method of random-
matrix theory (RMT) to the problem of entanglement tians-
fei through a random medmm RMT has been used before to
study production of entanglement [16-23] Heie we have
studied the loss of entanglement in the üansition fiom a pure
state to a mixed state

A common feature of all these theories is that the results
are universal, independent of microscopic details In our
problem the decay of the degree of entanglement depends on
the number of detected modes but not on microscopic param-
eters such äs the scattermg mean free path

The origm of this umversality is the central hrmt theorem
The complex scattenng amplitude from one mode in the
souice to one mode m the detector is the sum over a laige
number of complex partial amplitudes, corresponding to dif-
ferent sequences of multiple scattermg The probability dis-
tribution of the sum becomes a Gaussian with zero mean
(because the random phases of the partial amplitudes aveiage

out to zeio) The vanance of the Gaussian will depend on the
mean fiee path, but it diops out upon normalization of the
reduced density matnx The apphcabihty of the central hmit
theoiem only requires that the scattermg medmm is thick
compared to the mean fiee path, to ensure a large number of
terms m the sum over partial amplitudes

The degiee of entanglement (äs quantified by the concur-
rence or violation of the Bell mequality) then depends only
on the numbei N of detected modes We have identified two
qualitatively different types of decay The decay is exponen-
tial <xe~cN if the scattermg mixes spatial modes äs well äs
polarization directions The coefficient c depends on which
measure of entanglement one uses (concurrence or violation
of Bell mequality) and it also depends on whether both pho-
tons in the Bell pair are scattered or only one of them is For
this latter case of single-beam scattenng, the coefficients c
aie 3 In 3-4 In 2 (concurrence) and ln(ll+5V5)-ln2
(pseudoconcurrence) The decay is algebiaic <xff~p if the
scattenng preserves the polarization The power p is l if both
photons aie scattered and 1/2 if only one of them is
Polarization-conserving scattermg is special, it would requne
translational invanance of the scatterers in one direction The
generic decay is therefore exponential

Finally, we remark that the results piesented here apply
not only to scatteiing by disorder, but also to scattermg by a
cavity with a chaotic phase space An expenmental search
for entanglement loss by chaotic scattenng has been reported
by Woerdman et al [24]
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