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Transition from pure-state to mixed-state entanglement by random scattering

J L van Velsen and C W J Beenakker
Instituut Lorentz Universiteit Leiden PO Box 9506 2300 RA Leiden The Netherlands
(Recerved 12 March 2004, published 24 September 2004)

We calculate the effect of polarization-dependent scattering by disorder on the degree of polarization en
tanglement of two beams of radration Multimode detection converts an mitially pure state into a mixed state
with respect to the polarization degrees of freedom The degree of entanglement decays exponentially with the
number of detected modes if the scattering mxes the polarization directions and algebraically 1f 1t does not
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I. INTRODUCTION

A pair of photons m the Bell state (|HV)+|VH))/2 can
be transported over long distances with little degradation of
the entanglement of their horizontal (H) and vertical (V) po-
larizations Polanization-dependent scattering has little effect
on the degree of entanglement, as long as 1t remaimns linear
(hence describable by a scattering matrix) and as long as the
photons are detected 1n a single spatial mode only This ro-
bustness of photon entanglement was demonstrated dramati-
cally 1n a recent expertment [1] and theory [2,3] on plasmon-
assisted entanglement transfer

Polanization dependent scattering may significantly de-
grade the entanglement 1n the case of multimode detection
Upon summation over N spatial modes the mitially pure state
of the Bell parr 1s 1educed to a mixed state with respect to the
polarization degiees of freedom This loss of purity dimin-
ishes the entanglement—even 1if the two polarization direc-
tions are not muxed by the scattering

The transition from pure-state to mixed-state entangle-
ment will 1n general depend on the detailed form of the scat-
tering matrix However, a umiversal 1egime 1s entered 1n the
case of randomly located scattering centra This 1s the regime
of applicability of random-matrix theory [4,5] As we will
show 1n this paper, the transmussion of polarization-
entangled radiation through disordered media reduces the de-
gree of entanglement in a way which, on average, depends
only on the number N of detected modes (The average refers
to an ensemble of disordered media with different random
positions of the scatterers ) The degree of entanglement (as
quantified either by the concurrence [6] or by the violation of
a Bell mequality [7,8]) decreases exponentially with N 1f the
disorder randomly muxes the polarization duections If the
polarization 1s conserved, then the decrease 1s a power law
(<N~ 1f both photons are scattered and <N~ 1f only one
photon 1s scattered)

II. FORMULATION OF THE PROBLEM

We consider two beams of polarization-entangled photons
(Bell paurs) that ate scattered by two separate disordered me-
dia (see Fig 1) Two photodetectors 1n a coincidence cucuit
measuie the degiee of entanglement of the ttansmutted radia-
tion through the violation of a Bell inequality The scattered
Bell parr 1s 1n the puie state
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The mdices ne{l,2, ,M;}, me{l,2, ,M,} label the
transverse spatial modes and the indices o, 7e {+,-} label
the horizontal and vertical polarizations The first pair of
mdices n, o refers to the first photon and the second pair
of indices m, 7 refers to the second photon The scattering
amplitudes u:  relate the mcommg mode (I, *) of
the first photon to the outgomng mode (n,0), and
similarly for the second  photon The two
vectors (Wl tgen Uy a0, Uy ) and
(uy,, 15, NOYRRL I ,u,"wl_) of scattermg ampli-
tudes of the first photon are orthonormal, and similarly for
the second photon

A subset of N, out of the M| modes are detected n the
first detector We relabel the modes so that n=1,2, N, are
the detected modes This subset 1s contamned n the four vec-

e
o s
:.'..:.' = D

FIG 1 Schematic diagram of the transfer of polarization-
entangled radiation through two disordered media The degree of
entanglement of the transmutted radiation 1s measured by two mul
timode photodetectors (¥, modes) i a comncidence circuit (repre-
sented by the box with “&” 1nside) The combination of
polatization-dependent scattering and multimode detection causes a
transition from a pure state to a muxed state m the polarization
degrees of freedom, and a resulting decrease of the detected
entanglement
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o+ o -+~ —_——
tors u, =u,,, U, =u, , U, =u,,, U, =u,_

U, e Uy of length N,
each. We write these vectors in bold face, u,., omitting the
mode index. Similarly, the second detector detects N, modes,
contained in vectors v,.. A single or double dot between
two pairs of vectors denotes a single or double contrac-
tion over the mode indices: a'b=22’;1anbn, ab:cd
=SM 3N @b, .

The pure state has density matrix ¥, ., ¥, .- By
tracing over the detected modes the pure state is reduced to a
mixed state with respect to the polarization degrees of free-

dom. The reduced density matrix is 4 X 4, with elements

1 * * * *
Poro’r = 2(u+o-v—7'+ u_ V+T):(V_T,u+(7_/ + V+T,ll_l7,),

(2.2)

Z=> (u,,v_,+u_ v”):(vifuia+ vifuig). (2.3)

o, T
The complex numbers that enter into the density matrix are
conveniently grouped into a pair of Hermitian positive defi-
- . . *
nite matrices a and b, with elements a,,q =, u
,- One has

o' 7

*
;7= N
b(rr,rr’T Vor Vg

Zpgrots = Qigigb s ¥ Qg _oibyrip + Qg aorbir o

(2.4)

+yg gtb rip.

The degree of entanglement of the mixed state with 4
X4 density matrix p is quantified by the concurrence C,
given by [6]

C = max{0, A1 = YAy = YAz — VA4

The A,’s are the eigenvalues of the matrix product

(2.9)

p(0'y®0'y)P* '(gy®0y)’

in the order A=\, = N3Ny, with o, a Pauli matrix. The
concurrence ranges from 0 (no entanglement) to 1 (maximal
entanglement).

In a typical experiment [1], the photodetectors cannot
measure C directly, but instead infer the degree of entangle-
ment through the maximal violation of the Bell-CHSH
(Clauser-Horne-Shimony-Holt) inequality [7,8]. The maxi-
mal value £ of the Bell-CHSH parameter for an arbitrary
mixed state was analyzed in Refs. [9,10]. For a pure state
with concurrence C one has simply £=2y1+C? [11]. For a
mixed state there is no one-to-one relation between £ and C.
Depending on the density matrix, £ can take on values be-
tween ZC\/E and 2y1+C?, so £>2 implies C>0 but not the
other way around. The general formula

5=2Vu1+u2

for the dependence of £ on p involves the two largest eigen-
values u;,u, of the real symmetric 3 X3 matrix R'R con-
structed from R,=Trpo,® 0. Here 04,0,,03 refer to the
three Pauli matrices oy, oy, o, respectively.

We will calculate both the true concurrence C and the
pseudoconcurrence

(2.6)
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C' = Jymax(0,E44-1) <

inferred from the Bell inequality violation. As a special case
we will also consider what happens if only one of the two
beams is scattered. The other beam reaches the photodetector
without changing its mode or polarization, so we set v
= 8,104+ This implies b ;1= 6y 6,1 1, hence

(2.7)

(2.8)

Zpo'r,(r’ 7 = A7 7 o'

where we have defined 7=—7. The normalization is now
gven simply by Z=3, .4, o

III. RANDOM-MATRIX THEORY

For a statistical description we uvse results from the
random-matrix theory (RMT) of scattering by disordered
media {4,5]. According to that theory, the real and imaginary
parts of the complex scattering amplitudes 4, are statisti-
cally distributed as independent random variables with the
same Gaussian distribution of zero mean. The variance of the
Gaussian drops out of the density matrix; we fix it at 1. The
assumption of independent variables ignores the orthonor-
mality constraint of the vectors u, which is justified if N,
< M,. Similarly, for N, <€ M, the real and imaginary parts of
vy have independent Gaussian distributions with zero mean
and a variance which we may set at 1.

The reduced density matrix of the mixed state depends on
the two independent random matrices a and b, according to
Eq. (2.4). The matrix elements are not independent. We cal-
culate the joint probability distribution of the matrix ele-
ments, using the following result from RMT [12]: Let W be
a rectangular matrix of dimension p X (k+p), filled with

complex numbers with distribution
P({an}) * exp(_ CTI‘WW), (3 1)

Then the square matrix H=WW" (of dimension p X p) has
the Laguerre distribution

P({H,,}) o (det H)exp(= cTeH). (3.2)

Note that H is Hermitian and positive definite, so its eigen-
values &, (n=1,2,...,p) are real positive numbers. Their
joint distribution is that of the Laguerre unitary ensemble

Py = TL i TT (= 2.

<y

c>0.

(3.3)

The factor (h,~hJ)2 is the Jacobian of the transformation
from complex matrix elements to real eigenvalues. The
eigenvectors of H form a unitary matrix U which is uni-
formly distributed in the unitary group.

To apply this to the matrix a we set c=1/2, p=4, k=N,
—4. We first assume that Ny =4, to ensure that k= 0. Then

P({agsqr o)) o (det a)N1_4exp<— %Tr a) , (3.4)

P(a,) =] a) e "] (a,~ ), (3.5)

<j

where a;,a,,a5,a,4 are the real positive eigenvalues of a. The
4 X 4 matrix U of eigenvectors of a is uniformly distributed
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FIG. 2. Average concurrence (C) (squares) and pseudoconcur-
rence {C') (iriangles) as a function of the number N of detected
modes. Closed symbols are for the case that only one of the two
beams 1s scattered and open symbols for the case that both beams
are scattered. The decay of (C’) in the latter case could not be
determined accurately enough and is therefore omitted from the
plot. The solid Iines are the analytically obtained exponential de-
cays, with constants A=31n3-4In2 and B=In(11 +5\/§)—ln 2, cf.
Eqgs. (4.8) and (4.12).

in the unitary group. If Ny=1,2,3 we set ¢c=1/2, p=Ny, k
=4-N;. The matrix a has 4- N, eigenvalues equal to 0. The
N; nonzero eigenvalues have distribution

Pa) = TTateT] (a,- a)?.

<y

(3.6)

The distribution of the matrix elements b, ,,» and of the
eigenvalues b, is obtained upon replacement of Ny by N, in
Eqgs. (3.4)—(3.6).

IV. ASYMPTOTIC ANALYSIS

‘We wish to average the concurrence (2.5) and pseudocon-
currence (2.7) with the RMT distribution of Sec. III. The
result depends only on the number of detected modes N, N,
in the two photodetectors. Microscopic details of the scatter-
ing media become irrelevant once we assume random scat-
tering. The averages (C), (C’) can be calculated by numerical
integration [13]. Before presenting these results, we analyze
the asymptotic behavior for N,>1 analytically. We assume
for simplicity that N\=N,=N.

It is convenient to scale the eigenvalues as

a,=2N(1+a,), b,=2N(1+B,). 4.1

The distribution of the a,’s and B,’s takes the same form

4
P({a,}) = eXp(— N2 [, - In(1+a,)]+ 0(1)> ,

n=1

(4.2)

where O(1) denotes N-independent terms. The bulk of the
distribution (4.2) lies in the region E,lai <1/N<1, localized
at the origin. Outside of this region the distribution decays
exponentially « exp[-Nf({a,})], with
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FIG. 3. Average concurrence {C) as a function of the number N
of detected modes, for the case of polarization-conserving scatter-
ing of both beams (open squares) and one beam (closed squares).
The data points are the result of a numerical average. The dashed
Iine 1s the asymptotic result (5.6) and the dotted line is the analyti-
cal result (5.8). The pseudoconcurrence C’ is identical to C for
polarization-conserving scattering.

4
feh) = 2 [a, - In(1 + )] (4.3)
n=1

The concurrence C and pseudoconcurrence C’ depend on
the rescaled eigenvalues a,, B, and also on the pair of 4
X 4 unitary matrices U, V of eigenvectors of a and b. Both
quantities are independent of N, because the scale factor N in
Eq. (4.1) drops out of the density matrix (2.4) upon normal-
ization.

The two quantities C and C’ are identically zero when the
a,’s and B,’s are all <1 in absolute value. For a nonzero
value one has to go deep into the tail of the eigenvalue dis-
tribution. The average of C is dominated by the “optimal
fluctuation” a2, B, UP!, V' of eigenvalues and eigenvec-

tors, which minimizes f({a,})+f({8,}) in the region C>0.
The decay

(€} = exp(~ NIf{ D) + FABINH] = e

of the average concurrence is exponential in N, with a coef-
ficient A of order unity determined by the optimal fluctua-
tion. The average (C')=¢"5N also decays exponentially with
N, but with a different coefficient B in the exponent. The
numbers A and B can be calculated analytically for the case
that only one of the two beams is scattered.

Scattering of a single beam corresponds to a density ma-
trix p which is directly given by the matrix a, cf. Eq. (2.8).
To find A, we therefore need to minimize f({e,}) over the
eigenvalues and eigenvectors of a with the constraint C>0,

A= {irl;rb {f{ahiClp({a,),U)) > 0}. (4.5)

(4.4)

The minimum can be found with the help of the following
result [14]: The concurrence C(p) of the two-qubit density
matrix p, with fixed eigenvalues A; = A, = A;= A, but arbi-
trary eigenvectors, is maximized upon unitary transformation
by
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max C(QPQT) = maX{O,Al - A3 -2 VA2A4} (4 6)
Q

(The matrix € varies over all 4 X4 unitary matrices ) With
this knowledge, Eq (4 5) reduces to

Az?llr}l{f({a,l})la1~a3-—2\/(1 +ay)(1 + ay) > 0}, 47

where we have ordered o= oy = a3 = oy This yields for the
opumal fluctuation af*'=1, e5"'=aP'=afP'=-1/3 and

PHYSICAL REVIEW A 70, 032325 (2004)

A=3In3-4In2=0523 (4 8)

The asymptotic decay {C)xe 4" 15 1n good agreement with a
numerical calculation for finite N, see Fig 2

The asymptotic decay of the average pseudoconcurience
{C'y for a single scattered beam can be found m a simular
way, using the result [10]

max C'(QpQ7) = \/max{0,2(A1 ~ A2+ 2(As = Ag)? — (A + Ay + As+ A 49)
Q

To obtam the optimal fluctuation we have to solve

B= r{mr}l{f({an})|2(a1 - a4)2 +2(ap - a3)2

—(4+a;+ ay+ az + ay)? > 0}, (4 10)

which gives

1 1
af'=(-1+ 2V2+\5), o= o = S- J5),

a2"‘=%(—1—26+ V3), @11)

hence
B=In(11+5v5) - In2=2 406 (4 12)

The decay {C’')ce™®" 15 agam 1 good agreement with the
numerical results for finite N (Fig 2)

If both beams are scattered, a calculation of the optimal
fluctuation 1s more complicated because the eigenvalues
{a,}, {B,} and the eigenvectors U, V get mixed 1n the density
matrix (2 4) The numercs of Fig 2 gives (Cyxe 33N for the
asymptotic decay of the concurrence The averaged
pseudoconcurrence for two-beam scattering could not be de-
termuned accurately enough to extract a reliable value for the
decay constant

V. COMPARISON WITH THE CASE
OF POLARIZATION-CONSERVING SCATTERING

If the scatterers are translationally invariant i one direc-
tion, then the two polarizations are not mixed by the scatter-
g Such scatterers have been realized as parallel glass fibers
[15] One polarization corresponds to the electric field paral-
lel to the scatterers (TE polarization), the other to parallel
magnetic field (TM polarization) The boundary condition
differs for the two polarizations (Dirichlet for TE and Neu-
mann for TM), so the scattering amplitudes w..,, v, u__, v__
that conserve the polarization can still be considered to be
mdependent random numbers The amplitudes that couple

different polanizations vanish w,__, v, u_,, v_, are all zero
The reduced density matrix (2 4) simplifies to

chrT o' = é\(1' ?50" 7Aoo o'o’bn‘ i a (5 1)

with 7=—7, 7 =—7 We will abbreviate A, =a,, ., By,
=b., . The concurrence C and pseudoconcurrence C' are
calculated from Eqs (2 5) and (2 7), with the result

oo 2B

= (52)
A.B__+A_B,,

It 1s again our objective to calculate {C) for the case N,
=N,=N The distribution of the matrices A and B follows by
substituting N;—4—N-2 m Eq (34)

P{A,)) « (detA)N_zexp<- %Tr A) (53)

The average over this distribution was done numerically, see
Fig 3 For large N we may perform the following asymptotic
analysis

We scale the matrices A and B as

A=2N(1+A), B=2N(1+B) (5 4)

In the limit N — o the Hermtian matrices A and B have the
Gaussian distribution

P({ Ay} oc e (INTEAAT (55)

(The same distribution holds for ) In contrast to the analy-
sis 1 Sec IV the concurrence does not vanish mn the bulk of
the distribution The average of Eq (5 2) with distribution
(5 5) yields the algebraic decay

1
C)=——,N>1, 5
=7 (56)

m good agreement with the numerical calculation for finite N
(Fig 3)

A completely analytical calculation for any N can be done
m the case that only one of the beams 1s scattered In that
case B,,=1 and the concurrence reduces to

032325-4
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__2A ] (57)
A +A_

Averagmng Eq (57) over the Laguene distubution (5 3)
gives

JrT(N+172)

CO=— 58
© 2 T(N+1) SR
For laige N, the average concurrence (5 8) falls off as
\/—7; 1
C=——F7=,N>1 (59
©=F = )

This case 1s also mcluded i Fig 3

VI. CONCLUSION

In summary, we have applied the method of random-
matrix theory (RMT) to the problem of entanglement tians-
fer through a random medmuum RMT has been used before to
study production of entanglement [16-23] Heie we have
studied the loss of entanglement 1n the tiansition from a pure
state to a mixed state

A common feature of all these theonies 1s that the results
are universal, mdependent of microscopic detaills In our
problem the decay of the degree of entanglement depends on
the number of detected modes but not on microscopic param-
eters such as the scattering mean free path

The origin of this universality 1s the central limit theorem
The complex scatterng amplitude from one mode m the
souice to one mode 1 the detector 1s the sum over a laige
number of complex partial amplitudes, corresponding to dif-
ferent sequences of multiple scattering The probability dis-
tribution of the sum becomes a Gaussian with zero mean
(because the random phases of the partial amplitudes average

PHYSICAL REVIEW A 70, 032325 (2004)

out to zeto) The variance of the Gaussian will depend on the
mean fiee path, but it diops out upon normalization of the
reduced density matrix The applicability of the central limit
theortem only requires that the scattering medium 1s thick
compared to the mean fiee path, to ensure a large number of
terms 1n the sum over partial amplitudes

The degtee of entanglement (as quantified by the concur-
rence or violation of the Bell mequality) then depends only
on the numbet N of detected modes We have identified two
qualitatively different types of decay The decay 1s exponen-
tial e~V if the scattermg mixes spatial modes as well as
polarization directions The coefficient ¢ depends on which
measure of entanglement one uses {concurrence or violation
of Bell mequality) and 1t also depends on whether both pho-
tons m the Bell patr are scattered or only one of them 1s For
this latter case of single-beam scattering, the coefficients ¢
ate 3In3-4In2 (concurrence) and In(11+5v5)-In2
(pseudoconcurrence) The decay 1s algebiaic «N77 if the
scattering preserves the polarization The power p 1s 1 1f both
photons ate scattered and 1/2 if only one of them 1s
Polarization-conserving scattering 1s special, 1t would requue
translational mvariance of the scatterers mn one direction The
generic decay 1s therefore exponential

Fmally, we remark that the results piesented here apply
not only to scattering by disorder, but also to scattering by a
cavity with a chaotic phase space An experimental search
for entanglement loss by chaotic scattermg has been reported
by Woerdman et al [24]
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