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To obtain the correlation dimension and entropy from an experimental time series we derive 
estimators for these quantities together with expressions for their variances using a maximum 
likelihood approach. The validity of these expressions is supported by Monte Carlo simulations. 
We illustrate the use of the estimators with a local recording of atrial fibrillation obtained from a 
conscious dog. 

1. Introduction. At present there is considerable interest in analysing 
experimental time series using methods from nonlinear dynamical systems 
theory. For a quantitative characterization of dynamical systems from a 
measured signal, algorithms have been developed to estimate the dimension 
spectrum and the generalized Kolmogorov entropies (Broggi, 1988; Schuster, 
1988). These quantities can be used to differentiate between (quasi-) periodic, 
chaotic and stochastic processes. Time series from living organisms usually 
show irregular behaviour. It is interesting to determine whether the underlying 
dynamics is low-dimensional chaotic, because then it can in principle be 
modelled by a small set of deterministic nonlinear differential equations, 
implying that the irregularities are an intrinsic part of the process. Examples 
could be the brain activity and the functioning of the heart in both health and 
disease. The correlation integral method (Grassberger and Procaccia, 1983b; 
Takens, 1983) is widely used to estimate the correlation dimension and 
entropy. A sufficient condition for chaos is that the correlation entropy is 
positive. Thus to identify chaos, we need a measure of the uncertainty~ with 
which the correlation entropy can be estimated. Although attention has been 
given to the statistical error of estimators of the correlation dimension (Denker 
and Keller, 1986; Ramsey and Yuan, 1989; Abraham et al., 1990; Theiler, 
1990a; 1990b), this is not so for estimators of the correlation entropy. 

This paper is organized as follows. In Section 2, we describe the correlation 
integral method. In Section 3 we will derive estimators of the correlation 
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dimension and entropy together with expressions of their uncertainties using 
the maximum likelihood approach. We demonstrate their validity by Monte 
Carlo simulations in Section 4. An example of the usage of the expressions is 
given in Section 5, for a recording of atrial fibrillation and, finally, some 
conclusions are given in Section 6. 

2. The Correlation Integral. We start with a brief description of the 
correlation integral method, since it is the basis of our maximum likelihood 
approach. To characterize a dynamical system from a time series x(t), first the 
phase space of the system is reconstructed with the method of time delayed 
coordinates (Takens, 1981; Packard et al., 1980), i.e. with M vectors: 

x(ti) = [x(t,), x(t  i + l At), . . . ,  x(t  i + ( d -  1)I At)] (1) 

where At is the sample time, d is the embedding dimension and l is an 
appropriate lag. The correlation integral C(r) is defined as: 

C ( r ) = M  -2 (number of pairs (i,j) with [Ix'(t~)-x(tj)[[<~r) (2) 

where ] l ' "  [1 denotes a norm. It is assumed that distances, r ,  between two 
randomly chosen points in phase space obey the cumulative probability 
distribution function (Grassberger and Procaccia, 1983b): 

P(r) = 4~r ~ = q~ exp ( -d l  AtKE)r ~ (3) 

and that C(r) ~ P(r) for sufficiently small r and large M. We also assume that q~ 
and 4~ do not depend on r (see, however, Theiler, 1988) and that 4~ does not 
depend on the embedding dimension. The correlation dimension v is now given 
by (Eckmann and Ruelle, 1985): 

In C(r) 
v=l im lim (4) 

r-~0 ~t-~o In r 

if d is large enough (Takens, 1981). The correlation entropy K 2 is given by: 

1 
lim lim -- lim In C(r)= - l  A t K  2 . 
r~O d~oo d M~oo 

(5) 

With experimental data, a "scaling region" [-r~, r J  must be identified, for which 
the distribution (3) is valid. The dimension can be estimated by the slope of a 
straight line through a number of points (ln r i, In C(ri)) in the scaling region. 
The entropy can be estimated by observing the behaviour of C(r) as a function 
of d but using equation (5) directly may result in slow convergence. Therefore 
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one usually studies the quotient of two correlation integrals, at embedding 
dimensions d and d + e (Grassberger and Procaccia, 1983a): 

ln(. 5(r) ~=el AtK2. 
\G+e(r)/ 

(6) 

We will now show how to obtain maximum likelihood estimators for both v 
and K 2 , together with their asymptotic variances, under the assumption that 
the finite number of distances is the only source of error. 

3. Maximum Likelihood Methods. For the correlation dimension, maximum 
likelihood estimators have been derived by Takens (1985) and Ellner (1988). In 
their approach, the distribution function (3) is normalized, such that P(r,)= 1, 
with the consequence that the correlation entropy cannot be determined. 

Now suppose we have a sample that consists of N independent distances, 
with N l in the interval [0, rl], N s in [rt, r,] and N, in It , ,  1]. The likelihood 
function for this doubly censored set of data is (Kendall and Stuart, 1979): 

[- / r  \vTNz 
(7) 

where A is a permutation coefficient and p = ~br~ is used for convenience. We 
now consider the case where the sample consists of N d distances calculated at 
embedding dimension d, and Nd+~ distances calculated at embedding 
dimension d+e. We also assume that the N a and Nd+ e distances are 
independent. The likelihood function for this case, L(v, Pd, Pd+e), is the 
production of the likelihood functions Ld(v, Pd) and Ld+~(v, Pd+e)" 

By solving the likelihood equations (Kendall and Stuart, 1979), we find the 
maximum likelihood estimators of the parameters v, Pd and Pd+~. These are: 

o= Us.,+ (8) 
us.d ln(rl,d~ us.d+e 
Z l n ( r i ~ + N l ,  - -  + Z 
i=1 kr,,a/ ' \r,,d/ j= l 

rj l n ( - - ~ + N l a + e l n ( r l ' d + ~ )  
k,r..d+e/ ' \r,,n+ J 

and: 

Pa - N 'd + N ,d (9) 
Nd 

with a similar expression for Pd+e. The maximum likelihood estimator of the 
correlation entropy is: 
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vA 
ln(Paru,a+e~ 

ff;2-- \ d+e u,d/ (10) 
el A t  

where we used equation (3) and the property that a function of maximum 
likelihood estimators is itself a maximum likelihood estimator. 

The asymptotic variances of the dimension and entropy estimators are 
obtained by inverting the information matrix (Kendall and Stuart, 1979). We 
find: 

V 2 
vat(f) - (11) 

gdPd(1--(rl'd~V~-l- gd+ePd+e( /I \ruM+e / / 

and: 

1--pa 1--pa+~ var(f)ln2( r., d 
Ne+ePa+e \ru 'a+e/  (12) var(/~2) = NaPa + t- 

(el At) 2 

If r,, a = ru, a + e, then f and/£2 are uncorrelated. Moreover, the estimator of the 
entropy is equivalent to equation (6) if one substitutes r = ru, a = r,, a + e and if the 
correlation integrals are based on independent distances. 

The maximum likelihood estimator of the correlation dimension calculated 
at a single embedding dimension reads: 

- N ' a  (13) Vd- Ns,d 
ln(ri) + Nl, a ln(rl,a) 

i = 1  

Its asymptotic variance is given by: 

vJ 
var(fa) = (14) 

r v 

N a p a ( l - ( ' " a ~  ~ 
\ \ r . , d  / 

These equations are slight generalizations of Ellner's results. Note that the 
expressions for the "double" correlation dimension [-equation (8)] and entropy 
[-equation (10)] are only meaningful if the "single" correlation dimensions va 
and fa+e [equation (13)] do not significantly differ. 

4. Monte Carlo Simulations. Monte Carlo methods can be used to investigate 
properties of the distributions of random variables. Here we will study the 
properties of the derived maximum likelihood estimators in two interesting 



CORRELATION DIMENSION AND ENTROPY ESTIMATION 49 

cases: (1) using distances drawn directly from the proposed distribution 
[equation (3)]; and (2) using distances between points in reconstructed phase 
space, using time series of a (simulated) chaotic system. 

4.1. Simulations using "ideal data". From 1000 Monte  Carlo trials of the 
dimension and entropy estimates using simulated data, i.e. independent 
distances drawn from the distribution [equation (3)], the means and variances 
were estimated. These were compared with the specified v and K 2 and the 
asymptotic variances. The estimators and the expressions for the asymptotic 
variances appear to be accurate if both N~,d + Ns,d and N~,a + e + Ns,a + e are larger 
than about 50. 

4.2. Simulations using time series. Time series were generated using the 
following classical examples: 

1. The H6non map, governed by the equations (Grassberger et al., 1988; 
H6non, 1976): 

Xn + 1 = 1 - ax 2 + by,  

Y,+x - -x ,  (15) 

with a =  1.4 and b=0.3,  x o and Yo were chosen uniformly in [ - 1 ,  1] and 
[ - 0 . 1 ,  0.1], respectively. Initial conditions within this area cause the iterates 
to approach the at tractor (H6non, 1976). Literature values are: v = 1.22 and 
K 2 = 0.325 (Grassberger and Procaccia, 1983a). 

2. The logistic map, governed by the equation (Grassberger et al., 1988): 

x , + l = l - a x  2 (16) 

For a = 2, analytical results (Grassberger et al., 1988) are v = 1 and K 2 = In 2. x o 
was chosen uniformly in [ -  1, 1], so that any x o is near the attractor. 

3. The sine wave: 

x, = sin(on + on0) (17) 

with (n = 2In, resulting in approximately 10 points per cycle and (n o chosen 
uniformly in [0, 2hi. The values for v and K 2 are 1 and 0, respectively. 

The x-variable was used to generate a time series of length L (At = 1); the first 
L s iterates were discarded to avoid transient effects. 

4.2.1. Effects of correlations between distances. For  the derivation of the 
maximum likelihood estimators of the correlation dimension and entropy and 
their variances, we had to assume that the distances used are independent. The 
question now arises how many distances are independent if we have P 
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independent points in phase space. Ellner (1988) states that these distances 
must be calculated from non-overlapping collections of point, so that: 

N ~ P / 2  (18) 

where P ~< L - ( d -  1)l. However, Theiler (1990) states that N ~< P can be used. 
We performed Monte Carlo simulations to investigate the effects of correlated 
distances, using time series obtained from the H6non map. Pairs of random 
indices for the vectors [equation (1)] were drawn and the distances between 
these vectors calculated with the supremum norm. For different values of N, the 
dimension and entropy were estimated 1 000 times. The embedding dimen- 
sions were chosen rather small (d = 3 and e = 1) because for higher values the 
number of distances and the length of the time series should also be increased, 
making this experiment very expensive with regard to computer time. 

The averaged estimated dimension and entropies were plotted vs log N in 
Fig. 1. We see that the entropy estimates have large systematic errors, due to 
the low value of the embedding dimension. This however, is of no consequence 
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Figure 1. Averaged "single" dimension (upper panel) and entropy (lower panel) 
estimates with 95% confidence intervals (see text) as a function of N for the H6non 
map (L = 1000, d = 3, e = 1, l = 1, r~ = 0.01, r, = 0.07). The horizontal lines denote the 

literature values for the dimension and entropy. 
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for our purpose to study the behaviour of the variances. We estimated 95% 
confidence intervals in two ways: (1) from the sample variance of the 1 000 
estimates (narrow bars); and (2) from the expressions of the asymptotic 
variances, but with averaged estimates of v and N~ + N s (wide bars) since we do 
not know q~. Increasing N does decrease the fluctuations of the dimension and 
entropy estimates, but not  as much as predicted by the formulas because the 
distances are becoming more and more correlated. From the figure we see that 
the variances are correct for values of N between 1 000 and 10 000. The lower 
bound arises from the fact that N~ + Ns is getting below 50. Correlations due to 
the deterministic nature of the dynamics are assumed to be of no consequence 
since for long time series the invariant probability measure on the attractor is 
approached. Furthermore,  dynamical correlations in short time series can be 
suppressed by a method due to Theiler (1986). 

4.2.2 Coverage frequencies. In this section we present results from Monte 
Carlo simulations, using time series from the given models, for different values 
of the embedding dimension. Furthermore, following Ellner, we computed 
coverage frequencies, i.e. the fractions of trials for which the confidence 
intervals: 

two-sided: [gl-Z~/2a, gl+ Z~/za ] 

lower: [4 -Z~a ,  oo] 

upper: [ - o e , 4 + Z ~ a ]  (19) 

contain the true values. Here 0 denotes a dimension or entropy estimate, a the 
square root of its (estimated) asymptotic variance, Z~ the probability-c~ critical 
value of the standard normal distribution and e the size of the test. For the size 
of a test we always used e--0.05. The asymptotic variances were estimated by 
substitution of the estimated values of v, Pd and Pd + e in equations (14), (11) and 
(12). This procedure was repeated 100 times. The scaling regions were chosen 
by visual inspection, and justified by X 2 goodness-of-fit tests. Due to the 
supremum norm, the scaling regions hardly move to higher distance ranges as 
the embedding dimension increases, so we used the same r~ and r u for every 
embedding dimension. Furthermore, we checked that there were no significant 
differences in successive "single" dimension estimates [-equation (13)]. 

In Table 1 the results for the H6non map are summarized. Noting th~it we 
have to divide the standard deviation by the square root of the number of 
Monte Carlo trials to obtain the standard error of the mean, we observe that 
the dimension estimates (Table la  and b) generally show small but statistically 
significant deviations from the literature value. Since N~ + N s is large enough, 
these systematic errors are not due to the use of the maximum likelihood 
estimator per sO, but to another source, probably lacunarity [non-constant 4~ 
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Table l(a). Averaged "single" dimension (f), standard deviation (~'D) and coverage 
frequency (CF) estimates for the H6non map as functions of the embedding dimension. 
N t + Ns, averaged number of distances below r u (L = 10 000, L s = 1 000, l= 1, rt---0.01, 

ru=0.07 and N= 100 000) 

d f S'D(f) Two-sided CF Lower CF Upper CF N l + N s 

1 0.942 0.009 0.00 1.00 0.00 15241.2 
2 1.195 0.018 0.66 0.99 0.48 6587.9 
3 1.256 0.021 0.64 0.45 1.00 4227.4 
4 1.203 0.026 0.89 1.00 0.80 2547.1 
5 1.186 0.028 0.77 1.00 0.69 1711.0 
6 1.201 0.035 0.94 0.98 0.91 1145.6 
7 1.199 0.044 0.93 0.99 0.88 789.8 
8 1.205 0.050 0.97 0.98 0.94 553.6 
9 1.201 0.065 0.95 0.98 0.92 388.8 

10 1.231 0.078 0.95 0.96 0.96 281.8 
11 1.235 0.095 0.96 0.93 0.95 194.8 
12 1.229 0.128 0.91 0.95 0.90 138.9 
13 1.199 0.150 0.89 0.94 0.89 95.4 
14 1.171 0.141 0.90 0.99 0.88 70.9 
15 1.206 0.177 0.96 0.97 0.93 51.0 
16 1.185 0.240 0.90 0.97 0.87 36.4 
17 1.213 0.244 0.93 1.00 0.88 26.1 
18 t.292 0.361 0.95 0.98 0.92 18.8 
19 1.272 0.415 0.93 0.98 0.87 14.1 
20 1.229 0.454 0.91 1.00 0.88 10.5 

Table l(b). Averaged "double" dimension, standard deviation and coverage frequency 
estimates for the H6non map; e = 1 

d f S"D(¢) Two-sided CF Lower CF Upper CF 

4 1.202 0.020 0.87 0.99 0.81 
6 1.202 0.028 0.92 1.00 0.88 
8 1.213 0.043 0.95 0.98 0.92 

10 1.227 0.070 0.90 0.96 0.90 
12 1.204 0.093 0.89 0.97 0.88 
14 1.164 0.109 0.90 1.00 0.84 

(Theiler, 1988)]. In  general,  the two-s ided coverage  frequencies are too  low and  
the lower and  upper  coverage frequencies are asymmetr ic ;  these should  all be 

0.95 _+ 0.02. Since the asympto t i c  var iances are accurate ,  these results are m o s t  

p r o b a b l y  due to systematic  errors  in the es t imated corre la t ion  dimension.  This 

is further  i l lustrated by the fact that  if we use the m e a n  d imens ion  est imate f rom 

the M o n t e  Car lo  trials as the " t rue"  value, the coverage  frequencies f luctuate  
closely a r o u n d  0.95. We emphasize  tha t  in con t ras t  to Ellner 's  numer ica l  results 



CORRELATION DIMENSION AND ENTROPY ESTIMATION 53 

(Ellner,  1988), o u r  c o m p u t e d  conf idence  intervals  a re  no t  "conserva t ive" .  T h e  
e n t r o p y  es t imates  conve rge  to  the l i te ra ture  va lue  r a the r  s lowly (Table  lc  and  
d). In  T a b l e  2a we p resen t  the  results  for the logistic m a p .  N o t e  t ha t  the n u m b e r  

Table 1 (c). Averaged entropy (~22), standard deviation and coverage frequency estimates for 
the H6non map; e = 1 

d K 2 SD(K2) Two-sided CF Lower CF Upper CF 

4 0.3980 0.0311 0.33 0.23 1.00 
6 0.3718 0.0496 0.79 0.70 0.98 
8 0.3535 0.0728 0.90 0.87 0.95 

10 0.3709 0.1061 0.89 0.86 0.98 
12 0.3785 0.1551 0.90 0.87 0.95 
14 0.3370 0.2034 0.96 0.94 0.95 

Table 1 (d). Averaged entropy, standard deviation and coverage frequency estimates for the 
H6non map; e = 3 

d K22 SD(/~2) Two-sided CF Lower CF Upper CF 

4 0.3905 0.0131 0.00 0.00 1.00 
6 0.3604 0.0210 0,53 0.45 0.99 
8 0.3490 0.0325 0.87 0.78 0.97 

10 0.3627 0.0450 0.86 0.79 1.00 

of  d is tances  used did  no t  satisfy e q u a t i o n  (18). Never the less  the results  for  the 
cove rage  f requencies  indica te  tha t  the va r i ance  are precise.  Similar  s imula t ions ,  
in which  e q u a t i o n  (18) was satisfied, do  no t  yield be t te r  cove rage  frequencies  as 
can  be seen f r o m  T a b l e  2b. T a b l e  3 shows the resul ts  for  the sine wave:  the 
e s t ima ted  en t rop ies  do  no t  s ignif icantly differ f rom zero ,  except  a t  e m b e d d i n g  
d imens ion  4. 

Table 2(a). Averaged entropy, standard deviation and coverage frequency estimates for tlae 
logistic map (L=2 000 000, L~= 1 000, l= 1, rt =0.001, G=0.005, N=  1 000 000 and e= 1) 

T A 

d K 2 SD(K2) Two-sided CF Lower CF Upper CF 

4 0.6774 0.0455 0.92 0.98 0.88 
6 0.6743 0.0915 0.94 0.97 0.92 
8 0.7172 0.1902 0.95 0.93 0.95 
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Table 2(b). Averaged entropy, standard deviation and coverage frequency estimates for the 
logistic map (L= 100 000, Ls= 1 000, l=  1, r~=0.001, r u =0.005, N =  1 000 000 and e=  1) 

T A 

d K 2 SD(K2) Two-sided CF Lower CF Upper CF 

4 0.6787 0.0449 0.95 0.97 0.90 
6 0.6891 0.0780 0.97 0.98 0.97 
8 0.7063 0.1990 0.91 0.91 0.96 

Table 3. Averaged entropy, standard deviation and coverage frequency estimates for the sine 
wave [L=  10 000, Ls=0, l= 3; with Theiler correction 3 (Theiler, 1986). r~= 0.01, r, = 0.07, 

N =  10 000 and e = 1] 

d K-'~ ~(R2) Two-sided CF Lower CF Upper CF 

4 0.0056 0.0211 0.96 0.92 0.97 
6 0.0002 0.0218 0.93 0.94 0.93 
8 -0.0042 0.0212 0.96 0.95 0.94 

5. An Application. Atrial fibrillation is a commonly encountered arrhythmia 
of the heart. Understanding its nature is an important issue in clinical 
cardiology. To study the underlying dynamics, recordings of induced 
fibrillation were collected from chronically instrumented conscious dogs with 
30 unipolar electrodes sutured to the atria (see Rensma et al., 1988, for 
experimental details). Time series consisting of approximately 4 000 points 
were obtained using an 8-bit analog-to-digital converter at a sampling 
frequency of 1 000 Hz. The time lag for the reconstruction of phase space was 
determined by the mutual information criterion (Fraser and Swinney, 1986), 
which yielded l=  21. See Fig. 2 for plots of the time series and a phase portrait. 
The correlation dimension and entropy were estimated from 40 000 distances 
(from randomly chosen vector indices). We set the Theiler correction 
parameter (Theiler, 1986) Wto 21. We used e = 3 in equation (10) to reduce its 
variance. The scaling region was [0.061, 0.198] so ru/r ~ is about 3. The results 
are presented in Fig. 3. We see that both the dimension and entropy estimates 
converge. The "double" correlation dimension and the correlation entropy for 
d = l l  and e = 9  are f=2.6_+0.1 and /~2=9 .7±0 .8  [nats s - l ] .  These results 
suggest that this particular episode of fibrillation may be characterized by a 
low-dimensional chaotic process. To check whether the saturation is not 
caused by autocorrelated or coloured noise, we randomized the phases of the 
signal (Theiler, 1990a). For this "randomized" signal, the estimated correlation 
dimension does not saturate with increasing embedding dimension. Increasing 
the Theiler correction parameter W hardly changes our results. To create a 
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F i g u r e  2.  P l o t  o f  t h e  r e c o r d i n g  o f  a t r i a l  f i b r i l l a t i o n  ( u p p e r  p a n e l )  a n d  a p h a s e  

p o r t r a i t  ( l o w e r  p a n e l ) ;  z=l  At, l = 2 1 ,  A t  = 0 . 0 0 1 .  

time series that mimicks the fibrillation data we used the x-component  of the 
R6ssler system (see Wolf  et al., 1985). For  parameter  values L = 4  000, 
At = 0.06, l = W =  22, [r l, r,] = [0.029, 0.102], d = 11 and e = 9, we found for the 
"double" correlation dimension and entropy f = 2.2 ___ 0.1 and/£2 = 0.10 _+ 6.01 
[nats s -1]  which is in reasonable agreement with the literature values. We 
remark that the R6ssler time series was only corrupted by a small amount  of 
"integration noise". Work  is in progress with longer experimental electrograms 
and time series from model systems to study both the effects of noise and 
methods of noise reduction (Kostelich and Yorke, 1990) on the estimated 
correlation dimension and entropy. 
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Figure 3. Correlation integral C(r) vs r for the recording of atrial fibrillation (upper 
panel). The values for d are 1 (top curve), 2 , . . . ,  20 (bottom curve). The vertical 
lines are the boundaries of the scaling regions. Estimated correlation dimensions 

(middle panel) and entropies (lower panel) with 95% confidence intervals. 

6. Conclusions. Our numerical results from the simulated data indicate that 
the expressions for the asymptotic variances are reliable. In combination with 
mathematical models for which the correlation dimension and entropy are 
known theoretically these expressions can be used to identify systematic errors 
and limitations of the dimension and entropy estimators in general; in 
applications they can be useful to identify chaos. To obtain the most precise 
estimates for the correlation dimension and the correlation entropy, the 
maximum likelihood method suggests to choose the largest possible values for 
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r, and for e. We remark that our expressions are also valid if the scaling regions 
are not  the same at different embedding dimensions, which occurs if one uses 
the Euclidean norm. A potential  disadvantage of this maximum likelihood 
approach is that  the distances used must be independent.  This is almost 
unavoidable in order  to have a simple enough likelihood function. 

The results obtained by applying the derived estimators to the electrogram 
recorded from the atr ium of a conscious dog suggest that some types of atrial 
fibrillation may be characterized by low-dimensional chaotic dynamics. As 
aptly pointed out  by Ruelle (1990) there is a real danger that the present 
methods for detecting chaos are applied beyond their domain of validity. 
However,  in our  application to the atrial fibrillation data the time series and the 
scaling region seem long enough for the estimation of a low value of the 
correlation dimension. Of  course to draw firm conclusions about  the dynamics 
of experimental time series in general and atrial fibrillation in particular much 
more work has to be done. 

We are greatly indebted to Professors R. D. Gill and W. R. van Zwet for 
suggestions and reading the manuscript  and to Professor M. A. Allessie and his 
group for providing the electrograms. 
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