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Incorporation of density-matrix wave functions in Monte Carlo simulations:
Application to the frustrated Heisenberg model

M. S. L. du Croo de Jongh, J. M. J. van Leeuwen, and W. van Saarloos
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 8 February 2000; revised manuscript received 5 July) 2000

We combine the density-matrix renormalization-grdDMRG) technique with Green function Monte Carlo
(GFMC) simulations using a special representation of the DMRG wave function. As a test case we apply the
method to the two-dimensional frustrated Heisenberg antiferromagnet. By supplementing the branching in
GFMC simulations with stochastic reconfiguration we get a stable simulation with a small variance also in the
region where the fluctuations due to the minus sign problem are maximal. The sensitivity of the results to the
choice of the guiding wave function is extensively investigated. In agreement with earlier calculations it is
found from the DMRG wave function that for small ratios of the next-nearest-to-nearest neighbor coupling
strength the system orders as aeNgype antiferromagnet and for large ratios as a columnar antiferromagnet.
The spin stiffness suggests an intermediate regime without magnetic long-range order. The energy curve
indicates that the columnar phase is separated from the intermediate phase by a first-order transition. The
combination of the DMRG and GFMC techniques allows us to substantiate this picture by calculating also the
spin correlations in the system. We observe a pattern of spin correlations in the intermediate regime which is
in between dimerlike and plaquette-type ordering, states that have recently been suggested. It is a state with
strong dimerization in one direction and weaker dimerization in the perpendicular direction and thus it lacks
the square symmetry of the plaquette state.

I. INTRODUCTION esting systems are so large that it is impossible to use a wave
function via a lookup table. The value of the wave function
The density-matrix renormalization-grodPpMRG) tech-  in a configuration has to be calculated by an in-line algo-
nique has proved to be a very efficient method to determin&ithm. This has limited the guiding wave functions to simple
the ground-state properties of low-dimensional systbh'ftsr expressions which are fast to evaluate. Consequently such
a quantum chain it produces extremely accurate values fduiding wave functions are not an accurate representation of
the energy and the correlation functions. In two-dimensionafhe true ground-state wave function, in particular if the phys-
systems the calculational effort increases rapidly with thdCS Of the ground state is not well understood. In this paper

size of the system. The most favorable geometry is that of ¥'© des;:fripe a method to read out thel DMRG wave f“”?tiﬁ”
long small strip. In practice the width of the strip is limited to I @n €fficient way by using a special representation of the

around eight to ten lattice sites. Greens function Monte CarIPMARSe&ine fl:ggré?;]"s that a good auiding wave function
(GFMC) simulations are not directly limited by the size of P ! 9 guiding wave functi

the system but by the efficiency of the importance Samp”ngalleviates the minus sign problem, but cannot remove it as
) . .~ Jlong as it is not exact. We resolve this dilemma by applyin
When the system has a minus sign problem the statistics g Y applying

. . . : S the method of stochastic reconfigurati@®R) which has re-
ruined in the long run and accurate estlmaftes are mpps&blgently been proposed by SoreflaThe viability of our
Many pr_oposal% have been made to alleviate or avoid the methog js tested for the frustrated Heisenberg model.
minus sign problem with varying success, but all of them  The pehavior of the two-dimensional Heisenberg antifer-
introduce uncontrollable errors in the sampling. In theromagnet has been intriguing for a long time and still is in
DMRG calculation of the wave function the minus sign the center of research. The source of the complexity of the
problem is not manifestly present. In all proposed cures ofjround state is the large quantum fluctuations which coun-
the minus sign problem the errors decrease when the guidingract the tendency of classical ordering. The unfrustrated
wave function approaches the ground state. two-dimensional Heisenberg antiferromagnet orders in a

The idea of this paper is that DMRG wave functions areNeel state and by numerical methods the properties of this
much better, also for larger systems, than the educatestate can be analyzed accuratélfhe situation is worse
guesses which usually feature as guiding wave functionswhen the interactions are competing as in a two-dimensional
Moreover, the DMRG approach is a general technique tsquare lattice with antiferromagnetic nearest-neigtihand
construct a wave function without knowing too much aboutnext-nearest-neighbal, coupling. This spin system with
the nature of the ground state, with the possibility to systemeontinuous symmetry can order in two dimensions at zero
atically increase the accuracy. Thus DMRG wave functiongemperature, but it is clear that the magnetic order is frus-
would do very well when they could be used as guidingtrated by the opposing tendencies of the two types of inter-
functions in the importance sampling of GFMC simulations.action. The ratioJ,/J; is a convenient parameter for the
There is a complicating factor which prevents a straightforfrustration. For small values the system orders antiferromag-
ward implementation of this idea due to the fact that inter-netically in a Nel-type arrangement, which accommodates
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the nearest-neighbor interaction. For large ratios a magneticeptibilities for orientational and translational symmetry
order in alternating columns of aligned spifisolumnar breaking. They conclude that the ground state is a plaquette
phase will prevail; in this regime the roles of the two cou- state with full symmetry between the horizontal and vertical
plings are reversed: the nearest-neighbor interaction frusdirections.
trates the order imposed by the next-nearest-neighbor inter- From the purely theoretical side the problem has been
action. In between, for ratios of the order of 0.5, thediscussed by Read and Sachtlen the basis of a large spin
frustration is maximal and it is not clear which sort of ground expansion. From their analysis a scenario emerges in which
state results. This problem has been attacked by varioukie Neel phase disappears upon increasing frustration in a
methods but not yet by the DMRG technique and only verycontinuous way. Then a gapped spatial-inhomogeneous
recently by GFMC simulations.This paper addresses the phase with dimerlike correlations appears. For even higher
issue by studying the spin correlations. frustration ratios a first-order transition takes place to the
A simple road to the answer is not possible since frustracolumnar phase. Although this scenario is qualitative, with-
tion implies a sign problem which prevents a straightforwardout precise location of the phase transition points, it defini-
use of the GFMC simulation technique. Moreover, the frus-ively excludes dimer formation in the magnetically ordered
tration substantially complicates the structure of the groundNeel and columnar phases. It is remarkable that two quite
state wave function. Generally frustration encourages the fordifferent order parametefghe magnetic order and the dimer
mation of local structures such as dimers and plaquettesrden disappear simultaneously and continuously on oppo-
which are at odds, but not incompatible, with long-rangesite sides of the phase transition. In this scenario, this is
magnetic order. These correlation patterns are the most ifaken as an indication of some kind of duality of the two
teresting part of the intermediate phase and the main goal gfhases.
this investigation. Given all these predictions it is of utmost interest to fur-
Many attempts have been made to clarify the situationther study the nature of the intermediate state. Due to the
Often simple approximations such as mean-field or spinsmallness of the differences in energy between the various
wave theory give useful information about the qualitative possibilities, the energy will not be an ideal test for the phase
behavior of the phase diagram. A fairly sophistocated meandiagram. Therefore we have decided to focus on the spin
field theory using the Schwinger boson representation doesorrelations as a function of the ratig/J;. In this paper we
not give an intermediate phaS&iven the complexity of the first investigate the two—dimensional frustrated Heisenberg
phase diagram and the subtlety of the effects it is not cleamodel by constructing the DMRG wave function of the
whether such approximate methods can give in this case ground state for long strips up to a width of eight sites. The
reliable clue to the qualitative behavior of the system. ground-state energy and the spin stiffness which are calcu-
Exact calculations have been performed on small systemated confirm the overal picture described above, but the re-
up to size 6x6 by Schulzet al.” Although this information  sults are not accurate enough to allow for a conclusive ex-
is very accurate and unbiased to possible phases, the extragoapolation to larger systems. Then we study an open 10
lation to larger systems is a long way, the more so in view ofX 10 lattice by means of the GFMC technique using DMRG
indications that the anticipated finite-size behavior only apwave functions as the guiding wave function for the impor-
plies for larger systems. Another drawback of these smalftance sampling. The GFMC simulations are supplemented by
systems is that the ground state is assumed to have the fidtochastic reconfiguration as proposed by Sotelgan ex-
symmetry of the lattice. Therefore the symmetry breakingtension of the fixed node techniqifeThis method avoids the
associated with the formation of dimers, ladders, or plaiminus sign problem by replacing the walkers regularly by a
quettes, which is typical for the intermediate state, cannot beew set of positive sign with the same statistical properties.
observed directly. The first observation is that GFMC improves the energy of
More convincing are the systematic series expansion athe DMRG technique in a substantial and systematic way as
reported recently by Kotowet al®® and by Singhetal,'® can be tested in the unfrustrated model where sufficient in-
which bear on an infinite system. They start with indepenformation is available from different sources. Second, the
dent dimergplaquettesand study the series expansion in the spin correlations become more accurate and less dependent
coupling between the dimekplaquettes By the choice of on the technique used for constructing the DMRG wave
the state, around which the perturbation expansion is madéynction. The DMRG technique is focused on the energy of
the type of spatial symmetry breaking is fixed. These studiethe system and less on the correlations. The GFMC tech-
favor in the intermediate regime the dimer state over thenique probes mostly local correlations of the system as all
plaquette state. Their dimer state has dimers organized imoves are small and correspond to local changes of the con-
ladders in which the chains and the rungs have nearly equéigurations. With these spin correlations we investigate the
strength. So the system breaks translational invariance onlghase diagram for various values of the frustration ratio
in one direction. The energy differences are, however, small,/J;.
and the series is finite, so further investigation is useful. Our After giving the definition of the model we briefly de-
simulations yield correlations in good agreement with theirsscribe the DMRG method and its results for the energy and
but do not confirm the picture of translational invariant lad-the stiffness. Then we go into more detail about the way the
ders. Instead we find an additional weaker symmetry breakeonstructed wave functions can be used as guiding wave
ing along the ladders, such that we come closer to the plafunctions in the GFMC simulation. This is a delicate prob-
quette picture. lem since the full construction of a DMRG wave function
Very recently Capriotti and Soreflzhave carried out a takes several hours on a workstation. Therefore we separate
GFMC simulation forJ,=0.5]; and have studied the sus- off the construction of the wave function and cast it in a form
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where the configurations can be obtained from each other by L
matrix operations on a vector. So the length of the computa-
tion of the wave function in a configuration scales with the

square of the number of states included in the DMRG wave
function. The remaining sections concern the GFMC simu-

lations and are focused on the correlation functions since we
see them as most significant for the structure of the phases.
We give first a global evaluation of the correlation function

patterns for a wide set of frustration ratios and then focus on
a number of points to see the dependence on the guiding
wave function and to deduce the trends. The paper closes
with a discussion and a comparison with other results in the
literature.

density matrix
selection

FIG. 1. The DMRG procedure with one connecting site.

and separated into two partsiedt andright hand part, con-
nected by ondor more site(s). The wave function is itera-
IIl. HAMILTONIAN tively improved at the left hand side by using a basis for the
The Hamiltonian of the system refers to spins on a squarf9ht hand side and vice versa. By separating off a site from
lattice: the right and including it to the left the wave function is
rewritten in a new basis which is optimized by chosing the
largest eigenvalues of the density matrix. Zipping back and
H=J1(Z.) S-SJ-+J2“2] S-S D forth until convergence to a steady state, a wave function is
! ! reached which is optimal for the given basis.
The S are spins operators and the sum is over pairs of In Fig. 2 we have drawn two possible ways to map the
nearest neigborsi (j) and over pairs of next-nearest neigh- system on a one-dimensional chain. One sees that if we di-
bors[i,j] on a quadratic lattice. Both coupling constadits vide again the chain into a left hand part and a right hand
andJ, are taken as positive. So the two types of interactiongart and a connecting site, quite a few sites of the left hand
frustrate each other. part are nearest or next-nearest neighbors of sites of the right
In order to prepare for the representation of the Hamil-hand part. So the coupling between the two parts of the chain
tonian we express the spin components in spin raising ang not only through the connecting site but also through sites

lowering operators which are relatively far away from each other in the one-
. dimensional path. The operators for the spins on these sites
Q_l(afa L Q of) 4 ez are not as well represented as those of the connecting site,

S-S Z(S' S S SIS @ which is fully represented by the two possible spin states.

We will use thez component representation of the spins andYet the correlations between the interacting_ sites count as
a complete state of the spins will be represented as much for thg energy of the system as those interacting with
the connecting site. One may say that the farther away two
IRY=1S1,Sp, - . . .Sn)s 3 intgrqcting site§ are in the one—dimgnsiona] chain, the poorer
their influence is accounted for. This consideration explains
where thes; are eigenvalues of thg operator. The diagonal in part why open systems can be calculated more accurately
matrix elements of the Hamiltonian are in the representatiofthan closed systems, even in one-dimensional systems.

(3) given by It is an open question which map of the two-dimensional
onto a one-dimensional chain gives the best representation of
<R|H|R>=J12 SiS,-+J2_Z S:S; - (4) the_: ground state of the system. We have restricted our calcu-
an il lations to the two paths shown here. The second choice, the

The off-diagonal elements are between two nearb nfi “meandering” path, was motivated by the fact that it has the
€o iy agonaj €ie e, 'S are betwee 0 nearby co gué,trongest correlated sites most nearby in the chain. Indeed,
rationsR’ andR. HereR' is the same aR except at a pair of

nearest-neighbors sites,[) or next-nearest-neighbor sites for a given dimensiorm of the representation, the “mean-
e = > - " dering” path gives a lower energy than the “straight” path.
[i,j], for which the spinss; and's; are opposite. I'R’ the g* paih g 9y gnt b

L d by the Hamiltonian. Th The DMRG calculations as well as the corresponding
pairis turned over by the Hamiltonian. Then GFMC simulations are carried out for both paths. Although

1 1
(R’|H|R)=EJ1 or (R'|H|R)=§J2, (5

depending on whether a nearest or a next-nearest pair is
flipped.

Ill. DMRG PROCEDURE AND ITS RESULTS

The DMRG procedure approximates the ground-state @ (b)
wave function by searching through various representations
in bases of a given dimensian! In its standard forr? the FIG. 2. Two one-dimensional paths through the system:
system is mapped on a one-dimensional chaee Fig. 1  “straight” (a) and “meandering”(b).
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FIG. 3. The energy as function of the frustration ratio.

FIG. 4. The stiffnessps as function of the frustration ratio.

the meandering path has to be preferred over the straigﬁfnite'Size extrapolations put the region whetevanishes between

path, we have also investigated the latter, since the path chd:38 and 0.62see Ref. J.
sen leaves its imprints on the resulting correlation pattemcontinuous with small differences in enerav between the
and the paths break the symmetries in different ways. Bot oy

. . ases.
paths h_ave an onentatpnal preference. In open systems the The spin stiffness can be calculated with the DMRG wave
translational symmetry is broken anyway,

, _ =4 anyway, but the meanders,tion for systems which are periodic in at least one

ing path has in addition a staggering in the horizontal direcrection4 For the formula used we refer to the expression

tion. This together with the horizontal nearest-neighbor sitegjiyen in Ref. 7.

appearing in the meandering path gives a preference for hori- The result of the computation is plotted in Fig. 4. One

zontal dimerlike correlations in this path On the other handobserves a substantia' decreas@pfn the frustrated region

the straight path prefers dimers in the vertical direction.ndicating the appearance of a magnetically disordered

Comparing the results of the two choices allows us to drawphase. In contrast to the energy the data do not allow a mean-

further conclusions on the nature of the intermediate state.ingful extrapolation to large widths. The lack of clear finite-
We now give a brief summary of the results of a puresize scaling behavior in the regime of small valuesvéf

DMRG calculation. Extensive details can be found in Ref.prevents us from drawing firm conclusions on the disap-

14. The system consists of strips of widths upNe=8 and  pearence of the stiffness in the middle regime.

of various lengthd.. They are periodic in the small direction ~ For the correlation functions following from the DMRG

and open in the long direction. The periodicity enables us tgvave function we refer to Ref. 14.

study the spin stiffness. We have chosen open boundaries in

the long direction to avoid the errors in the DMRG wave IV. EXTRACTING CONFIGURATIONS

function due to periodic boundaries. Since we have good FROM THE DMRG WAVE FUNCTION

control of the scaling behavior ih, we extrapolate td

— o0 1% the small direction we are restricted\¢=2, 4, 6,

and 8 as odd values are not compatible with the antiferro

magnetic character of the system. For wider system sizes R ) . . )

number of states which has to be taken into account exceed@atrices. The configurations of the right hand part an.d the

the possiblities of the present workstations. Our criterion i eft hand part are denoted By, andR,. Then the density

that the value of the energy not drift anymore appreciablynatrix for the left hand part reads

upon the inclusion of more states. This does not mean that

the wave function is virtually exact, since the energy is a (R|pIRHY=> (R ,R|PHP|R |R,). (6)

rather insensitive probe for the wave function. For instance R,

correlation functions still improve from the inclusion of el
more states. White" has shown that the best way to represent the siate

In Fig. 3 we present the energy as function of the ratiolS to select then eigenstatesa) with the largest eigenvalue

J, 134, for strip widths 4, 6, and 8 together with the best

extrapolation to |r_1f|r)|t§a—W|dth systems. The flgure strongly Z (RIp|R MR/ |a) =\ (Ry| ). 7)
suggests that the infinite system undergoes a first-order phase R

transition around a value 0.6. This can be attributed to the

transition to a columnar ordétines of opposite magnetiza- In practice we do not solve the eigenvalues of the density
tion). It is impossible to deduce more information from suchmatrix in the configuration representation, but in a projection
an energy curve as other phase transitions are likely to ben a smaller basis.

In order to prepare for the use of DMRG wave functions
in a GFMC simulation we analyze the structure of the
MRG process. The central quantities are the partial density
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The first step is the analysis of a set of representations for | |

the wave function in terms of two partaithout a connect- 2 (spsiala)el L (s)=2 (s sla”) T, .
ing site in between Let the left hand part containsites and “ o (13)
the other parN—1 sites. We denote the basis states of the
left hand part by the index and those of the right hand part In fact this relation is the very essence of the DMRG proce-
by a. The eigenstates of the two parts are closely linked andure- The wave function in the larger space is projected onto
related as follows: the eigenstates of the the density matrix of that space. Since
the process of zipping back forth has converged, there is
indeed a fixed relatiorg13). However, when we insert Eq.

1 — - SR
(Rla)=—= > (PR, RNR|a), (13) into Eq.('12) and compare it with Eq.11) we conclude
\/?\—a Ry that the matrixT must be diagonal:
(Rl®)=— 3 (alR)(R R|D) ® Tear =0 o .
= W, R’ FIRAT AT This leads to the recursion relation

It means that for every eigenvalde, there is an eigenstate

for the left hand part and an for the right hand density
matrix. The proof of Eqs(8) follows from insertion in the

<Sl"'S||a,>:§ <Sl"'sl—1|a>A|a,a’(Sl)’ (15)

density matrix eigenvalue equaticn). with

The second step is an expression for the ground-state | |
wave function in terms of these eigenfunctions. Generally we Ao (S)= g (SDVN . (16)
have

We extract and store th& matrices for all divisions from the
o construction of the DMRG wave function. With the recur-
(R,R|®)Y=2 (R|a)(R,|B)(ap|D), (99  sion relation(15) we can calculate the left hand part of the
apB wave function in any configuration.
The second combination concerns the contraction of the
middle site with the right hand part. This leads to the recur-
sion relation

while due to Eqs(8) we find

(aBl9)= 3, (alR)(BIR)(R R |) B B
o <5|"'SN|CY>=2 Bla_,:/(sl)<3|+1"'SN|a'> (17)
:\/)\—a; <E|Rr><Rr|;>:5a,ﬁ\/)\—a- (10 :

with

Thus we can represent the ground state as B L(s)=¢' ()N 1. (18)
_ This allows us to calculate recursively the right hand part of

(Ri,R|®)= ; LR a)(R @ - (11 the wave function for any configuration from tBematrices.
Thus theA andB matrices are the essential ingredients of the

This representation is used for calculating the wave functiorffalculation of the wave function. From Egd.8) and (16)
in a configurationR. As in the proces of constructing the follows that they are related as

DMRG wave function the density matrices are diagonalized 1 —

all the time it is easy to make a table of thieeigenvalues.’, Bu o ()= VNN "A, 4 (9). (19)

for each divisionl. The corresponding eigenfunctions, how- The value of the wave function is obtained as the product of

ever, cannot be storeoo many configurationsand so the matrices acting on a vector. Thus the calculational effort

next step is to find an algorithm for these functions. 5 . . ) .
) . : . scales withm<. Using relation(19) one reconfirms by direct
As intermediary we consider a representation of the wave . A .
. . . . : calculation that the wave function is indeed independent of
function with one sites; separating the spins;---s,_; on

. . . the divisionl.

the left hand side frons,. ;- --Sy on the right hand side. When the simulation is in the configuratid® all the
Using the same basis as in E41) we have — :
(Ri|a); and the(R, | @)y are calculated and stored, with the
purpose of calculating the wave functions more efficiently
(S1-+8-1,5,S 141" - -SN|P) = > (s1-+ ~S|_1|a>¢|a (8D for the configurationd®}’ which are connected t® by the

aa’ ' Hamiltonian and which are candidates for a move. The struc-
ture of these nearby statesks=s;- - “Sj,t S|t Sy (1,

X(Sy+1---Snla’). 12
(81 nla’) (12 >1,). So we have that foR’ the representation
We compare this representation in two ways with Ek).
First we combine the middle site with the left hand part. This / _ 2 —
; ) . R'|®)= VANASy -8+ -S S 4+1°°°S
leads tom states which can be expressed as linear combina- (R'|®) Z, atS1 P I1|0‘>< I+ 1 Nl @)
tions of the states of the enlarged segment (20
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holds. Now we see the advantage of having the wave func- TABLE I. For each degree of frustration the imaginary time
tion stored for all the divisions. The second factor in E2f))  intervale, the energy of the guiding stafgurc, and the energy of
is already tabulated; the first factor involves a number ofthe GFMC statéEgeyc are listed.

matrix multiplications equal to the distance in the chain of

the two spind; andl, until one reaches a tabulated function. Straight Meander
One can use the tables for a certain number of moves bufe € Eowre Ecrmc Eowre Ecrme
after a while it starts to pay off to make a fresh list. 00 03 -61.30 —62.33(8) —61.84 —62.54(4)
In summary we have the following three steps in the proy1 g0 -57.96 —-58.53 —59.25(2)
cedure. 02 004 —5475 -56.08(11) -—55.48 —56.22(4)

(i) The ground-state wave function is constructed as |nd|-0.3 002 5175 —5317(4) —5250 —53.38(3)

cated in the previous section. 0.02 —49.00 -5051(8) —-49.92 —50.60(5)

- . . . 0.4
(ii) From this ground-state wave function the eigenvalue o 314 _4668 —a7 76(6) —47.78 —48.34(4)

[ - | | .
N, ar!d thg mgtncessa’a,(s) andB, ..(s) are derlved a8 06 0015 -45.41 4603 —46.40(3)
described in this section. They are stored for use inthe simys ;715 _45.67 _ 4560 —46.00(2)
lattion. . o _ 08 002 -—49.16 ~49.13 —49.60(9)

(iii) For a given configuratiomR tables of inner products 09 002 5361 _5370 -54.52(2)
(Ri|a); and(R,|a)y_, are constructed and stored. 10 002 -5846 -59.71(9) -58.64 —59.80(8)

The first two steps have to be carried out only once; the
last one has to be performed regularly in the simulation pro-
cess.

reveals. But ladders are clearly also present in the GFMC
results shown in the pictures.

We first give an overall assessment of the correlation
function pattern and then analyze some values of the ratio

We now come to the crux of this study: the simulations ofJ>/J;. In the first series we have used the guiding wave
the system with the GFMC method, using the DMRG wavefunction on the basis of the meandering path, Fig),2be-
functions to guide the importance sampling. We use the fixegause it gives a better energy than the straight ogtipriThe
node technique introduced by Ceperley and Afdeadapted number of basis states im=75, which is small enough to
to the lattice by ten Haaf van Bemmel and co-work&t8 carry out simulations with reasonable speed and large
and augmented by stochastic reconfiguration by Sotellaenough that trends begin to manifest themselves. Measure-
The procedure is comprehensively and lucidly described bynents of a number of correlation functions are made in con-
Sorella and Capriottl to which we refer for details. We use junction with stochastic reconfiguratioisee Ref. 1Y The
a continuous “time” e and an improvedmixed) estimatot®  details of these calculations are given in Table I. Note that
for the correlation functions. While the estimates for the enthe DMRG guiding wave function gives a better energy for
ergy are “exact” in a correct simulation, independent of thethe meandering path than for the straight path for values of
guiding wave function, the mixed estimator for the correla-J;/J; up to 0.6. From 0.7 on, this difference is virtually
tion functions is limited by the quality of the guiding wave absent. This undoubtly has to do with the change to the co-
function. All the simulations have been carried out for a 10lumnar state which can equally well be realized by both
% 10 lattice with open boundaries. Standardly we have 600@aths. The value ok has been chosen as a compromise:
walkers and we run the simulations for abouf Teasure- independent measurements require a largaut the minus
ments. These measuring points are not fully independent argign problem requires one to apply often stochastic recon-
the variance is determined by chopping up the simulationdiguration, i.e., a smalk. One sees that in the heavily frus-
into 50—100 groups. Since various MC runs are independentiated region thee must be taken as small. In fact more
they could be carried out simultaneously on a cluster of comdetailed calculations fod,=0.3J; andJ,=0.5J; were car-
puters. ried out withe=0.01.

Open boundary conditions have the disadvantage of In Figs. 6 and 7 we have plotted a sequence of visualiza-
boundary effects, which make it more difficult to distinguish tions of the correlations. From top to bottofrig-zag they
between spontaneous and induced breaking of the translgive correlations for the values df/J;. In order to high-
tional symmetry. On the other hand, for open boundarieslight the differences a distinction is made between correla-
dimers, plaquettes, or any other interruption of the translations which are above averagsolid lineg and below aver-
tional symmetry have a natural reference frame. The correage (dashed lings All nearest-neighbor spin correlations
lations are not only influenced by the boundaries of the sysshown are negative. In all the pictures one sees the influence
tem; also the guiding DMRG wave function leaves itsof the boundaries on the spin correlations. Only 1/4 of the
imprint on the results. This is mainly due to the fact that welattice has been pictured; the other segments follow by sym-
have only mixed estimators for the correlation functions,metry. The upper right corner, which corresponds to the cen-
which show a mix of the guiding wave function and the trueter of the lattice, is the most significant for the behavior of
wave function. The improved estimator, used in these picthe bulk. The overall trend is that spatial variations in the
tures, corrects for this effect to linear order in the deviation.correlation functions occur in growing size wifh /J;. On
The ladderlike structure in the DMRG path is reflected in athe side of lowd, /J, (Neel phasgone sees dimer patterns in
ladderlike pattern in the correlations as an inspection of théhe horizontal direction; they turn over to vertical dimers
correlations in the DMRG wave functiorfeot shown here  (aroundJ,=0.7J;) and rapidly disappear in the columnar

V. RESULTS FOR GFMC SIMULATIONS WITH SR
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TABLE Il. Interpolation (a) and extrapolatior{b) estimates of  show no spatial variation other than that of the antiferromag-

the energy per site of a 3010 lattice. net. We have two ways of estimating the energy of a 10
X 10 lattice. The first method is based on finite-size interpo-
@ lation. From DMRG calculatiort§ we have an exact value
L €o(LXL) for a 4% 4 lattice, an accurate value for the<® lattice, and
4 —0.5740 a good value for the 88 lattice. There is also the very
6 —0.6031 accurate calculation of Sanddifor an infinitely large lattice,
8 —0.6188 yielding the value oky= —0.669 4375). Theleading finite-
10 ~0.629(1) size correction goes asl1/Including also a 1/? term we
0 —0.669437(5) have esimated the value for ax2Q0 lattice as 0.629) and
(b) inc_orporated_ this valug in Table(#). We stregs Fhat this is
No. states  Trunc. error e, (DMRG) eo (GFMC) an mterpol_anonfor which the value of Sandvik is the most
important Input.
32 21.2<10°° —0.6084 —0.6192(1) The second method is less well founded and uses the ex-
75 12.0<10°°  —0.6184 —0.6254(5) perience that DMRG energy estimates can be improved con-
100 10.5¢10°°  —0.6201 —0.625(2) siderably byextrapolatingto zero truncation error. When
128 8.710°° —0.6214 —0.6269(6) plotted as function of this truncation error the energy is often
150 9.6<10°° —0.6231 —0.6277(5) remarkably linear. In Table (b) we give for a series of bases
2N 0 —0.631(3) m=32, 75, 100, 128, and 150, the values of the truncation

error and the corresponding DMRG energy per site together
with the extrapolation on the basis of linear behadfoXote
phase. This is again support for the fact that the columnathat the two estimates are compatible. In Tab({b)llve have
phase is separated from the intermediate state by a first-ordatso listed the values of the GFMC simulations for the cor-
phase transition. responding values ah. They do agree quite well with these
In order to eliminate the influence of the guiding wave estimates, in particular with the one based on finite-size scal-
function we scrutinize some of values &f/J; in more de- ing. We point out that one would have to go very far in the
tail by inspecting how the results depend on the size of th&umber of states in the DMRG calculation to obtain an ac-
basis in the DMRG wave function and on the choice of thecuracy that is easily obtained with GFMC simulations. Thus
DMRG path. Since we are mostly interested in the behaviothe combination of GFMC and DMRG techniques does re-
of the infinite lattice, we discuss mainly the behavior of theally better than the individual components. One might won-
correlations in and around the central plaquette. So we studger why there is still a drift to lower energy values in the
a sequence of DMRG wave functions for=32, 75, 100, GFMC simulations(which is also present in the tables to
128, and 15(00) and carry out for each of them extensive comg. The reason is that the DMRG wave function is
GFMC simulations. First we look to the cadg=0, which is  strictly zero outside a certain domain of configurations, be-
easy because it is nonfrustratédnd we know that it must cause the truncation of the basis involves also the elimination
be Neel ordered and therefore it serves as a check on thef certain combinations of conserved quantities of the con-
calculations. Then we takd,=0.3J; which is the most dif-  stituing parts. The domain of the wave function grows with
ficult case since it is likely to be close to a phase transitionthe size of the basis.
Finally we inspect],=0.5J; where we are fairly sure that Turning now to the correlations it seems that they are
some dimerlike phase is realized. homogeneous in the center of the lattice Jo+ 0. However,
a closer inspection reveals small differences. In Table Il we
list the asymmetries in the horizontal and vertical directions
A 3,=0 of the spin correlations in and around the central plaquette as
For the unfrustrated Heisenberg model we have several function of the number of states. If we number the spins on
checkpoints for our calculations. We can find to a high de+the lattice asS, ,, with 1<n,m=10, the central plaquette has
gree of accuracy the ground-state energy and we are sure ththe coordinate$5,5), (5,6), (6,5, and(6,6). We then define
the Neel phase is homogeneous, i.e., that the correlationthe asymmetry parametess, andA, as

TABLE lll. Values for the asymmetry in the center fdg=0. As discussed in the text the error in the
improved estimator values is of the order of 0.02, which means thahfed28 and higher the values are
statistically indistinguishable from zero.

No. states Ay Ay
m DMRG GFMC Improved DMRG GFMC Improved
32 0.14373 0.09981 0.056 —0.00060 0.00078 0.00216
75 0.07291 0.05668 0.040 0.00081 0.00601 0.01121
100 0.06432 0.04255 0.031 0.00030 0.00173 0.00316
128 0.05619 0.03734 0.018 0.00091 —0.00040 —0.00173

150 0.05044 0.03612 0.022 0.00079 0.00261 0.00442
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TABLE IV. Energies and asymmetries for the cdse=0.3J, as function of the number of basis states
Here d is the truncation error. The asymmetriggandA, for the GFMC simulations are calculated with the
improved estimator. The guiding wave function is obtained from the meandering(lpath Fig. 2. The
statistical error imMA, andA, is of the order of 0.02.

No. states DMRG GFMC
m 5+10° Ebvre Ay Ay Ecrmc Ay Ay
32 19.0 —51.609 0.27784 0.00295 —52.81(43) 0.363 —0.009
75 10.6 —52.581 0.15462 0.00616 —53.29(05) 0.207 0.011
100 9.4 —52.707 0.14709 0.00943 —53.32(33) 0.145 0.009
128 10.6 —52.821 0.13042 0.00577 —54.01(04) 0.254 0.063
150 10.4 —52.888 0.12564 0.00737 —54.10(12) 0.236 0.103
1 straight path since this will certainly show no dimers as will
szz<34,5' S5t Su6 S5t Se5-Sr51 Se6n Sr0) become clear from the following cases.

B. J2=O.3]1

This case is the most difficult to analyze since it is ex-
pected to be close to a continuous phase transition from the
1 Néel state to a dimerlike state. As is knoftrthe DMRG
Ayzz<55,4' S551 Se.4-Se51 Ss.6° Ss,71 Se.67 S6.7) structure of the wave function is not very adequate to cope
with the long-range correlation in the spins typical for a criti-
1 cal point. In Table IV we have presented the same data as in
—§<55,5~ Ss6t Se5Se6- 2D Table 1l but now forJ,=0.3. There is no pattern in the
energy as function of the truncation eriérThe decrease of
So A, is the average value of the correlations on the fourthe energy as a function of the size of the basisn the
horizontal bonds which are connected to the central plaguet®MRG wave functions is not saturated. The GFMC simula-
minus the average of the values on the two horizontal bondions lead to a notably lower energy and they hardly show a
in the plaquette. SimilarihA, corresponds to the vertical di- leveling off as a function of the basis of the guiding wave
rection. The values for the asymmetry in Table Ill in the function. All these points are indicators that the DMRG
vertical direction are so small that they have no significancewave function is rather far from convergence and that more
Note that the anticipated decrease Ay is slow in the accurate data would require a much larger basis. As far as the
DMRG method and therefore also slow in the mixed estimastaggering in the correlations is concerned the valuedfor
tor of the GFMC simulations. The improved estimator, how-are significant, also because the simulation results generally
ever, is truely an improvement. So one sees that all observatcrease the values. Those by are not small enough to be
small deviations from the homogeneous state will disappeatonsidered as noise. Given the fact that most authors locate
with the increase of the number of states in the basis of théhe phase transition at higher valu@s=0.4J, we would
DMRG wave function.(In general the accuracy of the cor- expect bothA’s to vanish. So either the dimerlike state is
relations is determined by that of the GFMC simulations. Werealized for values as low ak=0.3]; or dimer formation
get as variance a number of the order 0.01, implying twicealready starts in the ¢ state.
that value for the improved estimatpihe vanishing ofA, To get more insight into the nature of the ground state we
and A, also proves that finite-size effects are small in thehave also carried out the same set of simulations on the
center of the 1810 lattice. From these data we may con- straight path(@) in Fig. 2. This guiding wave function shows
clude that the GFMC simulations can make up for the errorsirtually no formation of dimers in any direction as can be
in the DMRG wave function for a relative low number of observed from Table V. In spite of the fact that the trends
basis states. We have not carried out a similar series for thiadicated in the table have not come to convergence one may

1
3 (Ss5 S65+ Ss.6° 6,60

TABLE V. Comparison of the energies and the values for the asymmetry in the center for the DMRG
wave function based on the firgéstraighy path (a) in Fig. 2 and the associated GFMC simulatiab;

= 03]1
No.states DMRG GFMC
m 5%10° Ebvre Ay Ay Ecrmc Ay Ay
32 30.0 —50.672 0.00032 0.01657 —52.15(11) 0.061 0.047
75 18.9 —-51.733  —0.00295 0.00426 —53.21(10) —0.030 0.036
100 19.9 —52.066 0.00349 0.00492 —53.84(72) 0.061 0.079
128 24.6 —52.302 0.00139 0.00791 —53.50(19) 0.079 0.027

150 25.7 —52.455 0.00222 0.00780 —53.52(10) 0.022 0.065
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TABLE VI. Energies and asymmetries fdg=0.5J, with guiding wave function based on the meander-
ing path(b) in Fig. 2.

No. states DMRG GFMC

m 6%10° Ebvre Ay Ay Ecrvc A, Ay

32 11.8 —47.116 0.43245 0.14667 —47.55(29) 0.295 0.065
75 17.4 —47.771 0.38954 0.13059 —48.22(04) 0.339 0.070
100 12.4 —47.924 0.39364 0.07877 —48.37(22) 0.310 0.110
128 8.4 —48.014 0.37317 0.08246 —48.32(05) 0.336 0.139
150 8.3 —48.088 0.35819 0.07983 —48.33(12) 0.324 0.112
200 7.6 —48.153 0.34590 0.09973 —48.43(05) 0.272 0.094

draw a few conclusions from comparison of the two sets oftlude that indeed in the ground state of f3e= 0.5]; system,
simulations. The overal impression is that the meanderinghe correlations of the spins are not translation invariant but
guiding wave function represents a ground state of a differshow a staggering. However, these results neither confirm
ent symmetry as compared to the straight path guiding wavéhe picture that the dimer state is the lowést suggested by
function. The meandering wave function prefers dimers inKotov et al®) nor support the scenario that the plaquette state
the horizontal direction and the straight wave function leadss the ground statéas concluded by Capriotti and Soré)la
to some dimerization in the vertical direction. The differenceWe comment on these discrepancies further in the discus-
also shows up in the energy; it is not only large on thesion.
DMRG level but it also persists at the GFMC level. We see Again it is worthwhile to compare these results with a
similar trends in the next case. simulation on the basis of the straight p&hin Fig. 2. Here
it is manifest that the straight path prefers to have dimers in
C. 3.=0.5] the vertical direction(Table VII). Again the impression is
T2 that the straight path leads to a different symmetry as com-
By any estimate this value of the next-nearest-neighbopared to the meandering path. It is not only the different
coupling leads to a dimerlike state if it exists at all. No ac-preference in the main direction of the dimers, also the sec-
curate data are available on the energy of th& 10 system ondary dimerization in the perpendicular direction, notably
to compare to our results. In Table VI we list the data for ain the meandering case, is not present in the straight case.
set of DMRG wave functions with bases=32, 75, 100, The fairly large difference in energy on the DMRG level
128, 150, and 200. The DMRG values of the enefgith becomes quite small on the GFMC level.
the exception of the value fan=32) can be extrapolated to
zero truncation error with the limiting valug,= —48.41),
which corresponds very well with the level in GFMC values VI- DISCUSSION
for larger sizes of the basis. This indicates again that GFMC We have presented a method to employ the DMRG wave
simulations can make up for the shortcomings of the DMRGfunctions as guiding wave functions for a GFMC simulation
wave function. One would indeed have to enlarge the basisf the ground state. Generally the combination is much better
to mof the order of 1000 in order to achieve the value of thethan the two individual methods. The GFMC simulations
energy of the simulations which use DMRG guiding waveconsiderably improve the DMRG wave function. In the in-
functions with a basis of the order of 100. termediate regime the properties of the GFMC simulations
The staggering in the correlations expressed by the quardepend on the guiding wave function as the results for two
tities A, for the horizontal direction and, for the vertical  different DMRG guiding wave functions show.
direction has values that are significant. If one looks to the The method has been used to observe spin correlations in
contributions of the DMRG wave function and the GFMC the frustrated Heisenberg model on a square lattice. In this
simulations separately, one observes that the overall valualiscussion we focus on the intermediate region where the
do agree quite well, with the tendency that the GFMC simu-model is most frustrated and which is thiece de reistance
lations lower the staggerring in the horizontal direction andof the present research. We see patterns of strongly corre-
slightly increase it in the vertical direction. So we may con-lated nearest-neighbor spins, to be called dimers. To indicate

TABLE VII. Same as Table VI but now for the “straight” path, Fig(&.

No. states DMRG GFMC
m 5%10° Ebmre Ay Ay Ecrmc Ay Ay
32 69.4 —45.756 0.00172 0.24701 —47.45(08) 0.074 0.185
75 26.2 —46.718 0.00171 0.34950 —47.81(25) —0.025 0.302
100 21.2 —46.993 0.00063 0.33131 —48.16(06) —0.003 0.350
128 24.6 —47.231 —0.00029 0.32994  —48.31(08) 0.013 0.291

150 25.7 —47.379 0.00215 0.32458 —48.33(06) —0.026 0.257
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FIG. 5. The correlation pattern for the nearest spins Jor
=0.5];: (a) according to Kotowet al. (Ref. 9, a dimer pattern in
which the strength of the correlation is indicatéd) according to @@
Capriotti and Sorell@Ref. 5, a plaquette state; arid) according to L sl wiah ke Gl
this paper, an intermediate pattern in which the translational invari- '
ance is broken in both directions but with unequal strength. The -

values indicated are those based on the meandering path and the
improved estimator. o
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around the central square of theX00 lattice for the case B bk
J,=0.5];. In Fig. 5c) we have given the values of the cen- o -0.5
tral square extrapolated to an infinite lattice.
The values are based on the improved estimator and it is @@y e
interesting to see the trends. The horizontal strong correla- . e . . Y SN SED '1',
i i
i i (1] n n T T 1] n n 1 ?
o0 00,0 o—ee—?eTe ! i
e PR e el e femom; e e o wn e o nn o nn o e wnaen o n o o nn o e
6—6-0 0-0!0 ¢—o-0 0610 : |
; Con ' i ; Lol (1] am 1] nn (1] an 1] n
00 0010 G—0-0—0-010 ? 'E'
b 1 i N y L ! y [1] 1] 1] un ¥ 1) un ] " r
(9_9"'?_?" OO0 (:)_Q"<J \:> G H © 04 1 035 1

FIG. 7. The continuation of Fig. 6; the relative correlation
strengths on 1810 lattice.J,=0.5,...,1.0 in steps of 0.1.
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i . tion of —0.42 is the result of the DMRG value 0.44 and
I i A i LI 4 ! 640 the GFMC value—0.43, while the weak bone-0.15 is the

result of the DMRG value—0.09 and the GFMC value
—0.12. Thus the GFMC weakens the order paramBtgr
associated with the staggering. For the vertical direction
there is hardly a change from the DMRG to GFMC value.
One has to go to the next decimal to see the difference. The
strong bond equals 0.368 and is coming from the DMRG
value —0.375 and the GFMC value 0.371, while the im-
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proved weak bond of-0.271 is the resulting value of
—0.275 for the DMRG method and-0.273 for GFMC
simulations.

Before we comment on this result we discuss the influ-
ence of the choice of the guiding wave function. We note
that for both pointsl,=0.3J; andJ,=0.5J; the two choices
for the DMRG wave function give different results. First of
all the main staggering is for the meandering pdhof Fig.

2 in the horizontal direction, while the straight pa# of
Fig. 2 prefers the dimers in the vertical direction. There is
not much difference in the values of the strong and weak

=
)

| |
correlations. Second, the straight path shows no appreciable
FIG. 6. The relative correlation strengths on a<li® lattice. Al Staggering in the other direction, so one may wonder whether
other nearest neighbor correlations can be obtained by reflecting€ observed effect for the meandering path is real. In our
these pictures in the two dashed lines. The DMRG guiding stat@pinion this difference has to do with the effect that the
follows the meandering sequence of Figh)2 More explanationis DMRG wave function “locks in” on a certain symmetry.
given in the text. Reading zig zag from top left to bottom right, the The straight path yields a ground state which is truly dimer-
values forJ, areJ,=0, ...,0.5 in steps of 0.1. like in the sense that it is translational invariant in the direc-
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tion perpendicular to the dimers. The meandering path lockfattice and one would find automatically the same answer.
in on a different ground state which holds the middle be-They conclude that in the absence of an orientational order
tween a dimerlike and a plaquettelike state. The GFMQparameter and with the presence of the translational order
simulations cannot overcome this difference in symmetryparameter the state must be plaquettelike. A scenario that
likely because the two lowest states with different symmetryreconciles this and our findings could be that starting from a
are virtually orthogonal. On the DMRG level there is a largefully symmetric trial function the system first breaks symme-

difference in energy between the two states, favoring thdy in @ plaguettelike state and that using the plaquettelike

meandering path strongly: on the GFMC level this differencestate as the trial wave function_ a secondary breaking of the

has become very small. With this observation in mind weSYmmetry of the type that we find takes place.

compare our result with other findings. Finally we comment on the fact that we find dimerization
already for values as low as=0.3]; at least for the mean-

The results of the series expansidriSare shown in Fig. . g )
5(a). Their correlations organize themselves in spin laddersd€ring path. As we have mentioned earlier the results as a

The correlations on the rungs of the ladder ar6.45+0.5 function of the number of states have not sufficiently con-
verged to make a firm conclusion, the more so since there is

which compares well with our strongest horizontal correla- ;
tion and this holds also for the weak horizontal correlation® 'arge difference between the DMRG and GFMC tech-

(—0.12 vs —0.15). The most noticeble difference is the MAUes- Still it could be an indication that the phase transition
value of our weak correlation in the vertical direction from the Nel state to the dimer state takes place for lower

H _ 7
(—0.27 vs—0.36) while the strong correlation{0.37 vs  V&lues than the estimated=0.38);.
~0.36) agrees. There is no real conflict between our result 1hUS many questions are left over, among others how the

and theirs since the symmetry they find is fixed by the stat@rder parameters behave as function of the frustation ratio in
the intermediate region. We feel that the combination of the

around which the series expansion is made. So our claim i d hni . d 100l to i X
only that our state with different symmetry is the lower one.DMRG. an GF.MC techniques is a good tool to investigate
these issues since they demonstratieoculosthe correla-

In fact in the paper of Singtet al,'? it is noted that the " . . .
susceptibility to a staggering operator in the perpendiculafions in the intermediate state.
direction (our A,) becomes very large in the dimer state for
J,=0.5J; which we take as an indication of the nearby
lower state. The analytical calculations in Refs. 8 and 9, The authors are indebted to Steve White for making his
however, do not support the existence of the state we find.software available. One of U#.S.L. du C. de J.gratefully

Neither do we find support for the plaquette state found inacknowledges the hospitality of Steve for a stay at Irvine of
Ref. 5, which we have sketched in Figbh The evidence of 3 months, where the basis of this work was laid. The authors
this investigation is based on the boundedness of the suscelpave also benefited from illuminating discussions with Subir
tibility for the operator which breaks the orientational sym- Sachdev and Jan Zaanen. The authors want to acknowledge
metry and the divergence of the susceptibility for the ordetthe efficient help of Michael Patra with the simulations on
parameter breaking translational invarian@erresponding the cluster of PC’s of the Instituut-Lorentz. M.S.L. du C. de
to A,). They have not separately investigated the values of. was supported by the Foundation for Fundamental Re-
A, andA, since their ground state has the symmetry of thesearch in Matte(FOM).
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