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Thermodynamics and quantum criticality in cuprate superconductors
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(Received 3 June 2004; published 31 August 2004)

We will present elementary scaling arguments focused on the thermodynamics in the proximity of the
quantum critical point in the cuprate superconductors. Extending the analysis centered on the Grüneisen
parameter by Rosch, Si, and co-workers to the cuprates, we demonstrate that a combination of specific-heat and
chemical potential measurements can reveal the nature of the zero temperature singularity. From the known
specific-heat data it follows that the effective number of time dimensions has to equal the number of space
dimensions, while we find a total of six scaling laws governing the temperature and density dependence of the
chemical potential, revealing directly the coupling constant scaling dimension.
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The possible existence of quantum phase transitions
(QPT’s) in a variety of condensed matter systems is attract-
ing much interest.1 The cuprate high-Tc superconductors
have played a prominent role in this development since it has
been suspected for a long time2–5 that the state realized at the
doping, where the superconducting transition temperature is
maximalsxoptd, is controlled by a continuous QPT. This sus-
picion is mainly motivated by the observation of the
“wedge” in the dopingsxd temperaturesTd plane set by the
“pseudogap”fTSGsxdg and “coherence”6,7 fTcohsxdg crossover
temperatures, bordering a “quantum-critical”(QC) region
characterized by power-law behaviors. It is believed that this
signals a QPT from a poorly understood “pseudogap” phase
at low dopings to a Fermi liquid at high dopings. Although
direct evidence appeared for the presence of scale invariance
of the quantum dynamics in the QC regime,8 it is unclear if
this “critical state” is truly critical in the sense that it is
characterized by universality and hyperscaling.1 Given that
apparently fermionic degrees of freedom are involved, this
is, from a theoretical point of view, far from obvious because
the fermion signs obscure the analogy with thermal phase
transitions.9 One would like to establish empirically the pres-
ence of scaling laws, revealing universality. Such evidence is
lacking in the cuprates.

Thermodynamics has played a pivotal role in establishing
the nature of the classical critical state. In a recent paper,
Zhu et al.11 showed that the thermodynamic singularity
structure of QPT’s has quite interesting observable conse-
quences. They argued that in the case of a QPT, where
pressure takes the role of a zero-temperature control param-
eter (“coupling constant”r), the Grüneisen parameter(ratio
of thermal expansion and specific heatC) is particularly
revealing with regard to the presence of universality.
This was subsequently applied succesfully to the QPT’s
in several heavy fermion intermetallics.12 Here we will adapt
and extend their scaling analysis to the particular situation
encountered in the cuprate superconductors. The electronic
specific heat of the cuprates is known,13 and using
simple scaling arguments we will argue that its “normal”
appearance(i.e.,C=gT with g constant) in the QC and over-
doped regime has actually a profound consequence: it im-
plies that the effective number of time dimensions associated

with the universality class(z, the dynamical critical expo-
nent) has to be equal to the number of space dimensionssdd.
The quantum sT=0d singularity resides elsewhere: the
chemical potentialm. We find a large set of scaling relations
between its temperature dependence and its density depen-
dence(i.e., the inverse electronic compressibility) while it
also relates directly to the doping dependence of the
pseudogap scaleTSG. The chemical potential can be mea-
sured, in principle, with the required accuracy and such ex-
periments can decide if a genuine quantum phase transition
is taking place in the cuprates.

Thermodynamics is, of course, in the first instance asso-
ciated with temperature. A classical phase transition is driven
by temperature, but this is profoundly different for a quan-
tum phase transition. The QPT is driven by a zero tempera-
ture control parameterr, and the path integral formalism
shows that temperature takes the role of a finite size,1 as the
compactification radius of the imaginary time dimension
Lt=" / skBTd. The essence of the Zhuet al. scaling analysis11

is that one has to determine the dependence of the free en-
ergy relative to variations of the coupling constant to learn
about the quantum singularity. However, standard thermody-
namics associated with variations of temperature gives addi-
tional information of the finite-size scaling variety. Their
combination yields a powerful phenomenological scaling
tool box.

Following Zhu et al.,11 our analysis rests on a
single theoretical assumption. It is assumed that the
QPT is associated with an unstable fixed point at zero
temperature, reached by tuning a single zero temperature
variable y such that r =sy−ycd /yc measures the distance
from the critical point residing atyc. Since temperature
T corresponds withLt it enters the singular part of
the free energy densityFs as a finite size under a scale
transformationx→bx,

Fssr,Td = b−sd+zdFssbyrr,bzTd, s1d

where d is the space dimensionality andz the dynamical
exponent, while hyperscaling is assumed in order to relate
the finite size to the scaling dimensionyr of the coupling
constant(yr =1/n, where n is the correlation length expo-
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nent). Equation (1) is equivalent to the following scaling
forms for the free energy density,11

Fssr,Td = − r0r
sd+zd/yr f̃S T

T0r
z/yr

D ,

=− r0S T

T0
Dsd+zd/z

fS r

sT/T0dyr/z
D , s2d

wherer0 and T0 are nonuniversal constants, whilefsxd and

f̃sxd are universal scaling functions. Since there is no singu-
larity at r =0, T.0, fsx→0d. fs0d+xf8s0d+s1/2dx2f9s0d
+¯ while f̃sxd= f̃s0d+gsxd, where gsxd describes the low
temperature thermodynamics of the phases to the left or right
side of the QPT. When the phase is fully gapped
gsxd,e−1/x while for a massless phasegsxd=cxy0+1 such that
y0 corresponds with its specific heat exponent(y0=1 for a
Fermi liquid, and 2 for a “nodal liquid” characterized by
d-wave-like “Dirac cones”).

We find it convenient to parametrize the exponents
in terms of d,z, and the zero-temperature analog of the
specific heat exponenta, characterizing a thermal phase
transition,

ar = 2 −
d + z

yr
. s3d

In analogy with classical criticality, we expect this
exponent to be a fraction of unity. Following Zhuet al.,
we will consider the specific heatC=−Ts]2F /]T2d and
the quantity hr =s]2F /]r]Td, revealing the dependence
of the entropy on the coupling constant. However, we
will extend the analysis by also including the “coupling
constant susceptibility”xr =]2F /]r2, which is the quantity
that is actually most sensitive to the zero-temperature
singularity.

From the scaling forms Eq.(2) and the above definitions
it follows that the singular parts of various measurable quan-
tities have the following temperature dependence in the
quantum critical statesr =0d:

CcrsT,r = 0d = r0fs0d
sd + zdd

z2 S T

T0
Dd/z

,

hr,crsT,r = 0d = −
r0f8s0d

T0

1 − ar

2 − ar

d + z

z

3 S T

T0
Dfds1−ard−zg/fzs2−ardg

,

xr,crsT,r = 0d = − r0f9s0dS T

T0
D−fsd+zdarg/fzs2−ardg

. s4d

On the other hand, in the massless phase characterized by a
specific heat exponenty0 at low temperatures in the vicinity
of the QPT,

CcrsT → 0,rd =
r0c

T0
y0sy0 + 1dr s2−ardsd−y0zd/sd+zdS T

T0
Dy0

,

hr,crsT → 0,rd = −
r0c

T0

sd − y0zd
d + z

sy0 + 1ds2 − ard

3 r s2−ardsd−y0zd/sd+zd−1S T

T0
Dy0

,

xr,crsT → 0,rd = − r0f̃s0dsd + z− 1ds2 − ardr−ar

− cr0
sd − y0zd

d + z
Fs2 − ardSd − y0z

d + z
D − 1G

3 r s2−ardsd−y0zd/sd+zd−2S T

T0
Dy0+1

. s5d

From the above equations one directly infers the main results
from Zhu et al.11 the “Grüneisen ratio”Gr =hr /C,T−yr/z in
the quantum critical state while in the massless phase it be-
comes exactlysd−y0zd / sy0yrdr−1, i.e., it acquires a universal
amplitude expressed entirely in terms of the exponents. The
significance of the coupling constant susceptibilityxr is im-
mediately clear from Eqs.(4) and(5). Its temperature depen-
dence reveals that it is more singular thanhr, which is in turn
more singular than C. In addition, its temperature-
independent part diverges in the approach to the critical point
with the exponentar, in direct analogy with the divergence
of the specific heat witha in the approach to a thermal phase
transition.

Let us now apply the above scaling laws to the specific
context encountered in the cuprates. By restricting ourselves
to thermodynamics we have to assume very little in addition
to Eq. (1): (i) In the cuprates the relevant zero-temperature
direction is the electron density varied by the dopingp.
The reduced coupling constant corresponds, therefore, with
x=sp−pcd /pc. (ii ) Recently, evidence has been accumulating
showing that the overdoped state is a Fermi liquid, charac-
terized byy0=1.6,7,10 (iii ) We rely on the specific heat as
measured by Loram and co-workers.13 Since the supercon-
ductivity appears to hide the critical behavior, the regime of
interest is at high temperature.

Given the assumption that electron density is the
zero temperature control parameter it follows from
elementary thermodynamics that the quantitieshr and xr
relate tom,

hcr,x = U ]Scr

]x
U

m

= − U ]m

]T
U

x
,

xcr,x = U ]2Fcr

]x2 U
m

=
]m

]x
=

1

n2k
, s6d

wherek is just the electronic compressibility andn the total
electron density. Notice that when pressure is the control
parameter,x,]2F /]p2,]V/]p refers to the total compress-
ibility.

Let us now turn to the measured electronic specific heat of
the cuprates.13 In fact, the remarkable property of the mea-
sured specific heat is its uninteresting appearance. In the
overdoped regime it is indistinguishable from the specific
heat of a conventional BCS superconductor. At high tem-
peratures,C=gT with a temperature-independentg as in a
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Fermi liquid, and at the superconducting transition the spe-
cific heat shows a BCS-like anomaly. Upon decreasing dop-
ing, all that happens is that the pseudogap scale manifests
itself quite clearly in the form of a decreasingg, a fact ex-
ploited by Loramet al. to study the doping dependence of
the pseudogap temperatureTPG. AboveTPG g is temperature
independent and connected smoothly with the specific heat
in the overdoped regime, showing no noticeable doping de-
pendence.

It seems to be a reflex to assume that the “metallic” ap-
pearance of theg aboveTPG is just revealing that a Fermi-
liquid state is reestablished at high temperatures, but this is
actually quite unreasonable. Recently, evidence has been ac-
cumulating that on the overdoped side a “coherence” cross-
over occurs: one can identify a temperatureTcoh below which
transport shows Fermi-liquid signatures7,10 while photoemis-
sion reveals that the quasiparticles become underdamped.6

Tcoh emerges at optimal doping and increases with increasing
doping in the overdoped regime. It is no wonder that the
low-temperature specific heat in this Fermi-liquid regime is
conventional, but why is it so that it remains conventional
above Tcoh? Stronger, why is it unaltered at temperatures
greater thanTPG even in the strongly underdoped regime?

Let us reconsider the scaling of the specific heat in the QC
regime, Eq.(4). The remarkable fact is that its temperature
dependence is predicted to be uninteresting. Its temperature
exponent is just given by the ratio of the number of spacesdd
and effective timeszd dimensions. In the quantum critical
regime of the cupratesC,T and this means thatd=z, the
number of space dimensions equals the number of time di-
mensions. At these high temperatures, it seems reasonable to
assume thatd=2, with the implication thatz=2, signaling
diffusion.

There is a nontrivial consistency with the observation
that the specific heat is not sensitive to the crossover
from the quantum critical to the Fermi-liquid regime at
Tcoh. From Eq. (5) it follows that the specific heat in a
massless state knows about the proximity of the QPT via
the factor r s2−ardsd−y0zd/sd+zd, governing the divergence of
the quasiparticle mass. The exponent contains the combina-
tion of the dimensionsd−y0z and whend=z and y0=1
as in the Fermi liquid the exponent vanishes and the specific
heat becomes insensitive to the zero temperature singularity.
The specific heat is expected to be just the same at all
temperatures and dopings as long asT.TPG despite the
fact that other properties demonstrate large scale changes
in the physics.

To further stress this point, let us consider what happens
in the pseudogap regimeT,TPG. The measured specific
heat shows that in between the superconductingTc and
TPGC,T2 and thermodynamically it can be viewed as a
“nodal liquid” characterized byy0=2. Insisting thatd=z
it follows from Eq. (5) that C, r−s2−ard/2T2. From
Eq. (2) it follows immediately that the pseudogap scale
TPG, rz/yr =r s2−ard/2; it just means thatC,T2/TSG which is
consistent with experiment. Notice that this would fail when
dÞz.

Becausear is expected to be small,TPG is expected to be
weakly sublinear inx when d=z. In a recent paper,14 the
behavior of TPG for small x has been determined in 123

samples where the superconductivity has been surpressed by
Zn doping.TPG turns out to be indeed weakly sublinear inx,
suggesting thatar is in the range 0.2–0.3, i.e., a reasonable
value for a strongly interacting unstable fixed point.

Up to this point we have presented the case that if a
QPT is present at optimal doping, the quantum singularity
is largely hidden from the specific heat for specific reasons
(d=z, the Fermi liquid). To establish the presence of this
singularity one has to look elsewhere and the remedy is ob-
vious: the thermodynamic potential. Assumingd=z one finds
an interesting collection of scaling behaviors for]m /]T and
the inverse compressibilityxx.

Omitting nonuniversal factors and including the specific
heat for completeness, these become in the quantum-critical
regime,

Ccr , T,
]m

]Tcr
, − T−ar/s2−ard, xcr,x , − T−2ar/s2−ard.

s7d

Hence, by measuring the temperature dependences
of the chemical potential and the compressibility in
the high-temperaturequantum critical regime one obtains
directly the “quantum alpha” characterizing the nature of
the quantum singularity. Notice that the incompressibility
should be precisely twice as singular as the temperature
derivative ofm.

The Fermi-liquid regimesy0=1d is not particularly reveal-
ing,

CFL,cr , T,
]m

]TFL,cr
= 0, xFL,cr,x , x−ar . s8d

The critical part of]m /]T vanishes because the prefactor
containsd−y0z as does the temperature-dependent part ofxn.
Only the temperature-independent part of the inverse com-
pressibility reveals directly the quantum singularity.

In the pseudogap regimesy0=2d this changes drastically.
Parametrizing matters in terms of the pseudogap scale
TPGsnd,xs2−ard/2,

CPG,cr ,
T2

TSGsxd
,

]m

]TSG,cr
=

CSG,cr

x
,

xPG,cr,x , Ax−ar − B
CSG,crT

x2 . s9d

The second and third lines reflect the workings of the “gen-
eralized Grueneisen parameters” as realized by Zhuet al.11

]m /]T is clearly “one order more singular” inn than the
specific heat, but the temperature-dependent part of the in-
compressibility is actually “twice as singular.”

To summarize, using elementary power-counting argu-
ments, we have discovered an emperical strategy that should
make it possible to decide if the “quantum criticality” of the
cuprates has to do with universality. We have found that the
temperature and density dependences of the chemical poten-
tial in the various regimes should obeysix scaling laws,
which are all governed by a single fundamental scaling di-
mensionsard. As an input, we have used the specific heat
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data to argue that the effective number of spacesdd and time
szd dimensions characterizing the critical state have to be the
same.

We are not aware of chemical potential and electronic
compressibility measurements of the cuprates having the re-
quired accuracy. However, this does not appear to represent a
problem of principle. In the experimental literature one finds
a variety of methods to measure these quantities;15,16a prime
example is the vibrating Kelvin probe method that allows for
high accuracy measurements of the chemical potential which
was Rietveldet al. used by van der Marel some time ago to
determine the density dependence of the superconducting
Tc.

17 We suggest using these experimental methods to estab-

lish once and for all the presence or absence of a genuine
quantum phase transition in the cuprates.

We notice that our scaling relations might also be put to
the test in the context of the metal-insulator transition in the
two-dimensional electron gas. Using various ingenious
techniques,18,19 the electronic compressibility has been mea-
sured in the proximity of this quantum phase transition and it
would be highly interesting to focus on the temperature de-
pendence of the chemical potential. In a future publication
we will address this problem in more detail.

We acknowledge helpful discussions with J.M.J. van
Leeuwen, J.W. Loram, D. van der Marel, A. Rosch, S. Sach-
dev, and J.L. Tallon.
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