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Introduction.

This paper is devoted to the description and analysis of a new method to factor positive

integers. It depends on the use of elliptic curves.

The method is analogous to Pollard's p-1-method [17, Section 4], which attempts

to find a non-trivial divisor of a given integer n>l in the following way. First, one

selects an integer a(modn) and a positive integer k that is divisible by many small prime

powers; for example, k=lcm{l,2,...,b} for a suitable bound 6. Next one calculates

o*(modfi), and one hopes to obtain a non-trivial divisor of n by calculating gcd(a -l,n).

Pollard's p-1-method is usually successful if n has a prime factor p<n for which

p-1 is built up from small prime numbers. Suppose, to be specific, that p-1 divides k,

and that p does not divide a. Then in the multiplicative group (SZ/pZ)* of integers

modulo p the number o* becomes equal to the neutral element l, by Fermat's theorem,

so that p divides gcd(a*-l,n). In many cases one has p=gcd(a*-l,n), and the method

finds a non-trivial divisor of n.

On the other band, if for each prime number p dividing n the number p-1 has a

large prime factor, then Pollard's p-1-method is not likely to be successful within a rea-

sonable time iimit.

The aew method is obtained from Pollard's p-1-method by replacing the multipli-

cative group by the group of points on a random elliptic curve. To find a non-trivial

divisor of an integer n>l, one begins by selecting an elliptic curve E over Z/nZZ, a point

P on E with coordinates in 2Z/n3Z, and an integer k äs above. Using the addition law of
the curve, one next calculates the multiple k-P of P. One now hopes that there is a
prime divisor p of n for which k-P and the neutral element O of the curve become the

same modulo p; if E is given by a homogeneous Weierstrass equation y2z=z3+aa:i2-t-623,
with 0=(0:1:0), then this is equivalent to the j-coordinate of k·P being divisible by p.
Hence, one hopes to find a non-trivial factor of n by calculating the greatest common
divisor of this ί-coordinate wiith n.
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If a single curve E is used, then the properties of this algorithm are exactly the

same äs those of Pollard's p-1-method, with the order p-1 of (2Z/p!Z)* replaced by the

order of the group E(5Z/p5Z) of points of E with coordinates in 7Z/p7L. By a theorem of

Hasse (1934), this order is of the form p+l-tp, where tp is an integer depending on E and

p for which \tp\<2\/p. If, for some prime factor p<n of n, the number p+l-tp is built

up from small primes, then the above algorithm is likely to lead to a non- trivial divisor
of n, and otherwise not.

However, if the algorithm is unsuccessful, then an Option is available that has no

analogue in Pollard's p-1-method; namely, to repeat the algorithm with a different ellip-
tic curve. A different curve will give rise to a new value for tp, so that p-f l-tp has a new

chance of being built up from small primes. This can be repeated until a non-trivial
divisor of n is found.

The analysis of the elliptic curve factorization method that I present in this paper

shows that the performance of the algorithm is largely determined by the density of
numbers built up from small primes in the neighborhood of p+1. If a reasonable conjec-

ture concerning this density is assumed, then the following can be proved (see (2.9) and
(2.10)). Let an integer n>0 that is no prime power and that is not divisible by 2 or 3 be

given. Let also a positive integer g be given. Then, with a suitable choice of parameters,
the elliptic curve method determines with probability at least l-c~3 a non-trivial divisor
of n in time

gK(p)M(n),

where the notation is äs follows: p denotes the least prime divisor of n the function

A':IR>0-*IR>o is such that
/φ)= ̂(2+ »(0)108*108108. fof χ_̂ 00ι

and M(n) denotes an upper bound for the time needed to perform a single addition on an

elliptic curve mod n; one can take M(n)=0((logn)2) or 0(logn(log!ogn)2logloglogn),

depending on which method is employed.

The algorithm can be repeated until the complete prime factorization of n is

obtained. If the same conjecture is true, this takes expected time at most

the worst case occurring if the second largest prime factor of n is not much smaller than

\fn.

There exist other factoring methods that one conjectures to be successful within

the same time limit, such äs the class group method [23] and the quadratic sieve [18l.
Unlike the elliptic curve method, however, none of these has a running time that

depends on the size of the prime factors of n. For a further comparison of the elliptic
curve method with earlier methods, and a discussion of its practical merits I refer to the
end of section 2.

The unproved assumption on which the analysis of the elliptic curve method is
based only concerns the distribution of integers built up from small prime factors. In

particular, it does not refer to elliptic curves. This is mainly due to a result of Deuring

(1941), which gives a formula for the number of elliptic curves Eover a Gnite field F? for

which E(Fg) has a given order. A statement of this result, in the case that q is prime, is

given in section 1. In this section one also finds the other results on elliptic curves over
fioite fields that are needed.

Section 2 is devoted to the factoring algorithm and its analysis. The most natural

way to describe the algorithm would make use of elliptic curves over rings that are no
fields, äs was done in the outline given above. This theory, which one can find in [13,
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Chapter 2], is not äs easily accessible äs the theory over fields. For this reason the
details have been arranged in such a way that no reference to the theory over rings is

necessary. Accordingly, the description of the algorithm given in section 2 does not fol-
low the above outline in detail.

An earlier application of elliptic curves to algorithmic number theory can be

found in [24]. For primality testing algorithms that depend on the use of elliptic curves

I refer to [4, 7, 10].
By IF, we denote a finite field of cardinality q. The group of units of a ring A

with l is denoted by A .

1. Counting elliptic curves.

In this section we assemble all facts about elliptic curves over fields that we need.

Proofs can be found in the book by Silverman [29], if no other reference is given.
We denote by K a field; we shall mainly be interested in the case that K=Wp for

some prime number p. To simplify the exposition we assume throughout this section

that the characteristic of K is not equal to 2 or 3.

(1.1) Elliptic curves. An elliptic curve over K is a pair of elements a,b£K for which
4a +276 7̂ 0. These elements are to be thought of äs the coefficients in the Weierstrass

equation

(1.2) y2=x3+ax+b.

We denote the elliptic curve (a,6) by £„4, or simply by E. The set of points E(K) of such

an elliptic curve over K is defined by

E(K)={(x:y:z)€lP2(K): y2z=x3+axz2+bz3}.

Here P2(/i) denotes the projective plane over K. It consists of equivalence classes of tri-
ples (z,y,2)e/\TX A'XK", (x, y,z)ĵ  (0,0,0), two triples (x,y,z) and (x',y',zt) being equivalent if

there exists c6K* such that cx=x', cy=y' and cz~z'; the equivalence class containing
(x,y,z) is denoted by (x:y:z).

Let E be an elliptic curve over K. Then E(K) contains exactly one point (x:y:z)
for which 2=0, namely the point (0:1:0); this point is called the zero point of the curve
and denoted by 0. The other points of E(K) are the points (z:y:l), where x,y£K satisfy
(1.2). The set E(K) has the structure of an abelian group; the group law, which is writ-
ten additively, is defiaed äs follows. First, O+P=P+O=P for all P&E(K). Next, let
p=(j1:yj:l)> Q=(z2:yi2:l) be non-zero points. Then P+Q=O if and only if Xi=Xz an<^

y1==-y2. Otherwise, let \€K be determined by ̂ =(yi-yz)/(xi~x2} ̂  P̂ Q an̂  λ=

(3xf+a)/(2y1) if P=Q, and let t̂ -̂X̂ . Then P+Q=R, where Ä=(z3:y3:l) with

73=X2-Zj-a;2 and y3=-\x3-v. Observe that 0 is the zero element of the group, and that

(1.3) liomorphisms and automorphisms. Let E—Eaj and Ε̂ Ε̂ /,ι be elliptic curves over

K. An isomorphism E— >E' (over K) is defined to be an element uEK* for which a— u4 a

and 6— «66. If an isomorphism E—+E' exists then E and E9 are said to be isomorphic;

this is clearly an equivalence relation. Any isomorphism u:E—*E' induces an isomorphism

E(K)-*E'(K) of abelian groups that sende (x:y:z) to (u2x:usy:z); this isomorphism will also

be denoted by u. We shall only be interested in elliptic curves up to isomorphism.

Let E be an elliptic curve over K. An automorphiam of E is an isomorphism

E—* E. The set of automorphisms of E is a subgroup of K*, which is denoted by AutE or
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A\itKE, An easy calculation shows that it can be explicitly described äs follows:

(i) if o=0 and K* has an element p of order 6, then p generates AutE and

#Aut£=6;

(ii) if 6=0 and K* has an element i of order 4, then i generates AutE and #Aut£=4;

(iii) in all other cases Aut£={l,-l} and #Aut£=2.

(1.4) The number of elliptic curves. Let p denote a prime number >3. In the remainder
of this section we restrict to the case K=Wf.

The number of elliptic curves over Wp, äs defined in (1.1), is the number of pairs

(a,6)€IFpXFp with 4a3+27&Vo. Tne number of all pairs (0,6) equals p2, and

4a3+2762=0 if and only if o=-3c2, 6=2c3 for some c€Fp; this element c is uniquely

determined by a, 6 by c=-36/(2a) (if â O). Hence 4a3+2762=0 for exactly p pairs
(a, 6). We conclude that the number of elliptic curves over IFp equals p2-p.

We use this result to count the set

{E: E elliptic curve over Wp}/==F

of isomorphism classes of elliptic curves over IFp. The number of elliptic curves iso-

morphic to a given elliptic curve E is easily seen to be #IFp/#Aut£'=(p-l)/#Aut£'.

Summing this over a set of representatives of the isomorphism classes and dividing by
p- 1 we obtain

.
•̂  #Aut£

We express this by writing

#'{£: E elliptic curve over IFp}/£=% = p.

Here, and in similar expressions below, #'denotes the weighted cardinality, the isomor-
phism class of E being counted with weight (̂ AutE)"1.

Since #Aut£=2 for most E it follows from the above formula that the ordinary
cardinality of the set of isomorphism classes of elliptic curves over IFp is approximately

2p. The prerise number can be derived from (1.3). Using that the existence of p 6IF* äs

in (1.3)(i) is äquivalent to p==lmod6, and the existence of i€IFp äs in (1.3)(ii) to
p=l mod4, one finds that

#{£: E elliptic curve over JFp}/Ŝ  = 2p+6, 2p+2, 2p-f4, 2p

for p=l, 5, 7, 11 mod 12, respectively. We shall have no use for this result in the
sequel.

(1.5) The order of E(Wp). For any elliptic curve E over lFp we have by a theorem of
Hasse

#£(Fp)=p+l-{, with ί€ΖΖ, |ί|<2ν/ρ.

Let, conversely, p be a prime >3 and i an integer satisfying |f|<2\/p. Then the

weighted number of elliptic curves E over IFp with #£(IFp)=p+l-f, up to isomorphism,

is given by a formula that is basically due to Deuring [9; see also l, 30, 25]:

#'{£: £ elliptic curve over lFp) φ £(IFp)=p+l~i}/=iF, = H(t2-4p),

where //(<2-4p) denotes the Kronecker class number of i2-4p, which we now proceed to

define.
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(1.6) Kronecker claae numbere. We begin by recalling the properties of binary quadratic

forms that we need. See [3] for more details and for proofs.

Let Δ be a negative integer, Δ=0 or Imod4. A positive definite integral binary

quadratic form of discriminant Δ, briefly a form, is a polynomial F=aX2+bXY+cY2

with a,6,c€2Z, α>0, 62-4ορ=Δ. An isomorphism from a form F=aX^+bXY+ cY2 to a

form F'=a'X2+b'XY+c'Y* is a matrix (° l ) with a,ß,~i,6e%, a6-ßi=l for which

aA'2+6JfK+cF2=a'A''2+6'Ar'r+c'r'2, where ΛΓ<=αΛΓ+£Κ and Ŷ fX+SY. If such an iso-

morphism exists, the forms F and F1 are said to be equivalent; this is indeed an

equivalence relation. An automorphism of a form Fis an isomorphism from Fto F. The

set of automorphisms of a form F is a subgroup of the group SL̂ TL of 2X2-matrices with

integral entries and determinant 1; this subgroup is denoted by AutF. We have:

(i) AutF is cyclic of order 6 if F is equivalent to aX2+aXY+aY* for some positive

integer a; in this case Δ=-3α2;

(ii) AutF is cyclic of order 4 if F is equivalent to aX^+aY2 for some positive integer a;

in this case Δ=-4α2;

(iii) in all other cases AutFis of order 2, and equals {(Q , J, ( Q _i)}·

For fixed Δ, the set of equivalence classes of forms of discriminant Δ is finite. The

Kronecker class number //(Δ) of Δ is defined to be the weighted cardinality of this set,

the equivalence class containing F being counted with weight (̂ AutF)"1:

H(A)=#'{F: F is a form of discriminant Δ}/~

with ~ denoting equivalence and the meaning of #' being äs in (1.4). For example,

//(-3)=1/Ö, //(-4)=l/4, //(-7)=l/2. (Warning: one often finds the Kronecker class
number defined twice äs large.) The existence of the form X2+bXY-((A-b2)/4)}'2, where

ΔΞ=62π^4, shows that //(Δ)>0.

A form F—aX^+bXY+cY2 is called primitive if gcd(a,6,r)=l. We denote by Λ(Δ)

the weighted cardinality of the set of equivalence classes of primitive forms of discrim-

inant Δ, counted with the same weights äs above. It is easy to see that

(1.7) //(Δ) = Σ Λ(Δ/</2),
d

the summation ranging over those positive integers d for which Δ/rf2 is an integer satis-

fying Δ/</2^0 or l mod4. The largest such d is called the conductor f of Δ, and

Δ0=Δ//' it> the fundamental discriminant associated to Δ; the <fs in the above summa-

tion are exactly (he positive divisors of /.

The quadratic character χ: Z>0 — * {Ο,Ι,-l} associated to Δ is defined by

*(/)==a(M)/2mod/, x(/)e{0,l,-l} if / is an odd prime,

χ(2)=0, l, -l for Δ==0π^4, ImodS, 5mod8, respectively,

X(nm)=x(n)x(m) for all n,me2Z>0.

The analytic claes number formula for Α(Δ) is

), Where L(Ä)X)= for « 6<D,
ίπ η=ι η

If χ0 denotes the quadratic character associated to Δ0, one has

Ί/

where / ranges over the primes dividing /. Combining the last two formulas with (1.7)

one finds that
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where φ: 2Z>0-*IR is defined by

/-Γ* , / + 1-2Γ*

/-l ' ' /-l
if / is prime, k>l and χ0(/)=0, l, -l, respectively,

n̂m)=i/!>(n)̂ (m) if n,meZZ>0, gcd(n,m)=l.

We are interested in obtaining upper and lower bounds for //(Δ). It is easily seen that

^̂ (/̂ (//«AC/))2 = 0((loglog/)2)

(see [11, Theorem 328]), where φ denotes the Euler ̂ -function. Further we have

see [20, Kapitel IV, Lemma 8.1]. To obtain a satisfactory lower bound for L(l,x0) we

must sacrifice one value for Δ0. Applying [20, Kapitel IV, section 6, Satz 6.6 and the

argument following section 8, eq. (8.26)] one finds that there exists a positive effectively

computable constant q such that for all z€2Z>i there exists Δ*<-4 with the property

that

L(l,\0)>

(If the generalized Riemann hypothesis is assumed we can replace logz by loglogz, and

there is no need t o exclude an exceptional value Δ* for Δ0.)

(1.8) Proposition. There ezist effectively computable positive conttants r2, c3 auch that

for each z€7L>i there exists Δ*=Δ*(ί)<-4 such that

T̂̂ - < //(A) < c3-x/=Ä"-loĝ |-(logloĝ |)2
logz

for all Δ€Ζ with -ζ<Δ<0, Δ^Ο or l mod 4, except that the left inequality may be

/irf ι/Δ0=Δ*.

Proof. This follows from the inequalities in (l.Ö).

(1.9) Proposition. There ezist effectively computable positive constants c4, cs such that

for each prime number p>3 the following two assertions are valid; for the notation #',
eee(lA).

(a) If S ii a set of integers s with \s-(p+ 1)| <2\/p then

#'{E: Eelliptic curve over Wp, #E(Wp)eS}/̂ f < c

(b) If S is a set of integers s with |a-(p+l)| <\fp then

#'{E: Eelliptic curve over IFp, #E(Wp)eS}/s*Wf > c

Proof. In both (a) and (b), the left band side of the inequality equals

Σ "(ί2-4ρ)
i, p+l-ies

by the formula in (1.5). We apply (1.8) with z=4p. Then (a) follows immediately, with

a suitable constant c4. For (b), we note that |*2-4p|>3p if p+l-<eS. To prove (b), it

thus suffices to show that there are at most two integers i, |f| <\/p, for which the funda-

mental discriminant associated to t2-4p equals Δ*. Let L=(Q(v Δ*), and let t be such an
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integer. Then the zeros a, ä of X^-tX+p belong to the ring of integere A of L. Also,

«ä=p, and by unique prime ideal factorization in A and the fact that Λ*={1,-1}

(because Δ*<-4) this determines a up to conjugation and sign. Hence t=a+ä is deter-
mined up to sign, äs required. This proves (1.9).

(1.10) Modular curves. We are interested in estimating the weighted number of elliptic
curves E over Wp for which #E(Wp) is divisible by a given prime number /. For this pur-

pose we need some facts about the modular curves X(l) and ΛΊ(/). For proofs we refer to

[28, 12, 13].

Let p be a prime number, p>3, and / a prime number different from p. We con-

sider pairs (E, P) consisting of an elliptic curve E over Wp and a point P€E(Wp) of order /.

Two such pairs (E, P) and (Ε',Ρ1) are said to be equivalent over Wp if there exists an iso-

morphism u: E—+E' over JFp that maps P to P' (see (1.3)). We denote the set of

equivalence classes by Zj(/)(lFp)· If, in the definition just given, u is allowed to be in the

algebraic closure Fp of Fp rather than Fp (so that a map E(Wp)-+E'(W£) rather than

E(Wp)—>-E'(lFp) is induced), we obtain the definition of equivalence over Wp. The set of

classes of this equivalence relation is denoted by yj(/)(Fp). There is an obvious surjec-

We can estimate the cardinality of Fj(/)(IFp) by using the following properties of

the modular curve Χ\(ΐ):

(i) -X"i(0 's a complete non-singular irreducible curve defined over IFp;

(ii) the genus of X̂ l) equals 0 for 1=2 or 3, and l +JL (/-l )(/-!!) for />5;

(iii) the set Kj(/)(IFp) can in a natural way be considered äs a subset of the set

Xi(t}(JFp) of points of X̂ l) defined over IFp;

(iv) the cardinality of the complement of Y1([)(lFp) in Jfi(f)(IFp) is bounded from above

by the number of cuaps of X\(l), which equals 2 for 1=2 and l-l for />2.

If C is a complete non-singular irreducible curve of genus g over Wp then by Weil's ine-

quality [2] the cardinality of the set C"(Fp) of points of C over IFp satisfies

|#C(Fp)-(p+l)| < 2(/ν̂ .

Applying this to C=Xl(l) we find, using the above properties:

(1.11) #r,(/)(IF,) = p+0(/Vp"),

the constant implied by the O-symbol being absolute and effectively computable.

With p and / äs above, suppose now in addition that p^lmod/, and let a primi-
tive /-th root of unity <;£lFp be chosen. We consider triples (E,P,Q) consisting of an ellip-

tic curve E over Fp and two points P, Q€E(TFp) of order / satisfying e/(F, Q)=i, where e\
denotes the Weil pairing [29, Chapter III, section 8], Equivalence of two such triples
(E,P,Q] and (E'̂ P'jQ') over Fp (or over lFp) is defined äs before; the only difference is that

« should not only map P to P' but Q to Q' äs well. The sets of equivalence classes over

Fp aiid Fp are denoted by Z(l)(Wp) and y(/)(Fp), respectively. There is an obvious surjec-
tivemap Z(/)(FpH r(/)(Fp).

The modular curve X(l) has the following properties:

(i) X(l) is a complete non-singular irreducible curve defined over Fp;

(ii) the genus of X(t) equals 0 for 1=2, and l+-L(/2-l)(/-6) for />3;

(iii) the set F(/)(Fp) can in a natural way be considered äs a subset of the set X(l)(W )
of points of X(() defined over Fp;
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(iv) the cardinality of the complement of Y(l)(Wp) in X(l)(Wp) is bounded from above

by the number of cusps of X([), which is 3 for /=2 and (/2-l)/2 for />2.

Applying Weil's inequality cited above to C=X(l) we find from these properties that

(1.12) #Y(t)(W„) = P+0(l3̂ ),

the O-constant again being absolute and effectively computable.

(1.13) Lemma. Lei p, l be primee, p>3,

(a) Lei E be an elliptic curve over Wp and P£E(Wp) 6e α point of order l. Denote by AEP

the subgroup of all u€Autjp E that send P to P. Then the number of element» of ZJWF )

that map to the class of (E,P) in ̂(̂ (Fp) equaU #AEP.

(b) Suppose that p==l modl, and let a primitive l-th root of unity ς EFp be choeen. Lei E

be an elliptic curve over Wp and P,Q€E(Wp) pointe of order l eatiefying e,(P,Q)=f.

Denote by AEPq the tubgroup AEPT\AEQ of AutjpE. Then the number of elementt of

Z(l)(Wp) that map to the das» of (E,P,Q) in Y([)(Wp) eqvale

Remark. The numbers ή^ΑΕΡ and $AEP q in the lemma equal 2 for 1=2 and l for />2

provided that ̂ Aut^- E=2, which for given p is true in all but 0(1) cases.

Proof of (1.13). (a) Let E be given by a, 6, and let P=(x:y:l). If E', P1 is another such

pair, given by a', b1, x1, y', then (E,P) and (Ε',Ρ1) give rise to the same element of

y,(/)(Fp) if and only if (o', b', x1, y>-(«V «'*, «\ «3y) for some «6Fj; and to the same

element of ZJ/̂ Fp) if aQd on'v >f « ca° De taken in IF*. It follows that the number of

elements of ̂ (̂ (Fp) mapping to the class of (E, P) equals index[BEp:CEp], where the

subgroups BEP, CEP of W*p are defined by

BEiP— {«eÜy {«4o, u66, «2z, «3y}ClFp},

CEP = {«€F*: (u4a, u66, u2z, u3y)=(t/e, v66, v2z, v3y) for some v€W'p}.

To count BEP, we notice that for «eff^ we have «4o€Fp if and only if (u4a)l>=u*a, so if
and only if (up~1)4a=a; and similarly with u66, ti2x, «V, hence the map sending u to ιΑ1

maps BEP onto the group AEP of all u 6 Autp E sending Pto itself. The kernel is F* so

From the defmition of CEP it is easy to see that CEP is generated by F* and ÄpP so

#CEP

and

äs required.

This proves (a). The proof of (b) is entirely similar, and left to the reader. This
proves (1.13).

(1.14) Proposition. Lei p, l be primea, p>3, Iĵ p. Then the number

#'{£: £ elliptic curve over Fp,

equals

—i— p+ 0(l\fp) if p̂

~ — p + O(l\fp) if p̂
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Here #' i» äs in (1.4), and the O-conttantt are absolute, and effectively computable.

Remark. Comparing (1.14) with the result of (1.4) we see that, for fixed /, the probabil-
ity that a "rändern" elliptic curve E over Wp satisfies î E(Wp}̂ Ouiodl tends to !/(/-!)

and l/(f-l] if p tends to infinity over the primes with ρφΐιηοάΐ and p=lmodl, respec-
tively. In particular, #E(Wp) is even with probability approximately 2/3; this can also

be deduced from the observation that #E(Wp) is even if and only if X3+aX+b has a zero

in IFp, where E is given by α, ό. Α proposition similar to the above one, but with

different constants, can be proved for the case in which / is not prime.

Proo/o/(1.14). Write Yv Ζγ for ΪΊίΟΟΡ,), ̂(OOFp)· If pslmod/let an element ς €IF* of
order / be chosen, and write Y, Z for Y([)(Wp), Z(t)(Wp).

Lei W be the set of isomorphism classes of elliptic curves E over IF. with

#E(IFp)==Omod/. For each such E, the group E(Wp)[l\={P€E(Wp): IP=O} has order /or

/2 (see [29, Chapter III, Corollary 6.4]) and if the order is /2 then ps=lmod/ (ibidem,

Corollary 8.1.1). We write W=Wi\JW2 (disjoint), with W, consisting of the classes of

those £for which #E(Wp) [/]=/'; so W2=0 unless p=lmod/.

The map Zl-̂  W mapping the class of (E, P) to the class of E is clearly surjective.

Two pairs (E, P), (Ε,Ρ1) with the same E represent the same element of Zl if and only if

P and P' belong to the same orbit of Autjj· E; also, the size of the orbit is exactly

index[AulF E : ΑΕΡ\=#Α.\ιΙψ· E/#AEP with AEP denoting the stabilizer of P in AutF E

(äs in (1.13)(a)). Fixing E with #E(Wp)[l\=l> and summing over the orbits of P we

obtain

Dividing by ̂ Autjp E and summing over isomorphism classes of E we obtain

ΣΙΓΤ— = ('- WWi + (/2- Ww*
#Λε,ρ

with #' äs in (1.4) and the summation ranging over Zv By lemma (1.13)(a) the left band

sum equals exactly #Ylt and with (1.11) we now find

(/- i)-#'Wi + (i2- i)-#'w2

If ρφ\ mod/, th^n this simply means that

and the required result follows upon division by / - 1.

Let, for the rest of the proof, the hypotheses be äs in (1.13)(b). Then we study in
a similar way the map Z— » W2 that sends the class of (E,P,Q) to the class of E. For each

E with #£'dFp)[/]=/2 there are /(/2-l) pairs of points P, Q€E(Wp)[t\ with e,(

Hence we have, for such an E:

Σ π-- - '(/2-D
(P,Q) TTAE,P,Q

where the sum is over AutF Sorbits of pairs of points P, Q äs above and AEPn is äs in

(1.13)(b). In the same way äs before this leads to

ΣΧΓ — = l(f-ww*
Z TTAE,P,Q
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and (1.13)(b) and (1.12) now imply that

/(/M)-#W2 = i

Hence

which is the required result.

This proves(l.H).

(1.15) Proposition. There ezista α positive effectively computable conetant c6 such that

for all pairs of primes p, l with p>3 we have

#'{E: E elliptic curve over Wp, #E(Wp) φ Omod/}/^ > c6p.

Proof. By (1.14) and (1.4), the left hand side is (ŷ y-)p+ 0(l\fp) if ρψΰ, imod/ and

( Γ ~ )ρ+0(Λ/ρ) if p==l mod/. The coefficient at p is at least 1/3, so if /<c7\/p for

a suitable positive constant c7 then the proposition is correct.

Applying (1.9)(a) to the set S={«€ZZ: |*-(p+l)|<2\/p", i=0mod/}, which has
cardinality (̂ (Ι + χ/ρΓ1), we find that the proposition is also valid if p>c and

/>c9(logp)(loglogp)2 for suitable positive constants c8, cg.

In the remaining cases we have p<c8 or cö(logp)(loglogp)2>c7Vp, i.e. p is

bounded. But for fixed p the proposition is obvious, since by Deuring's formula (see
(1.5)) and //(Δ)>0 (see (1.6)) there are elliptic curves EI, £% over Fp with

and / is not a divisor of at least one of p, p+1.

This proves (1.15).

(1.16) Proposition. There is a positive effectively computable conetant c10 such that for

every prime number p>3 the follou'ing two assertions are valid.

(a) If S is a set of integer» s with \s - (p+ 1 ) | < \fp, then the number of triples (a,ar,y)eiF3

for which

4e3+2762 ̂  0,

where b=y2-z3-ax, is at least c]0(#5- 2)ps/2/logp.

(b) /// i» any prime number, then the number of triplee (o,z,y)€IF3 for which

4α3+2762 Q>

where b=y2~z3-ax, it at least c10p3.

Proof. (a) The number to be estimated equals the number of quadruples (a,b,x,y)€W*

for which £a6 is an elliptic curve over Fp with (x:y:l)€Eab(Wp) and #Eal>(Wp)F-s'. Each

elliptic curve E over Fp is isomorphic to Ea6 for exactly (p- l)/#AutE pairs (o,6)eiF2

(see (1.4)), and each £a6 gives rise to exactly #E„ib(Wp) - l points (z:y:l). Therefore the
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number to be estimated equals

(p

the sum ranging over the elliptic curves E over JFf> u p to isomorphism, for which

#E(FP)€S. Applying Hasse's theorem (see (1.5)) and (1.9)(b) we find that this is at least

äs required.
(b) This is proved in the same way, with (1.15) instead of (1.9)(b).

This proves(l.lÖ).

2. The factoring algorithm.

We call a divisor d of a positive integer n non-trivial if l<rf<n. In this section we

describe and analyze an algorithm to find a non-trivial divisor of a positive integer.

(2.1) Elliptic curves modulo n. Let n be a positive integer. Consider the set of all triples
(x,y,z)€(2i/n2Z)3 for which z,y,z generate the unit ideal of TL/nTL. The group of units

(TL/nTL)* acts on this set by u(z,y,z)=(ux,uy,vz). The orbits under this action are the

points of the projective plane over Ti/nTi. The orbit of (z,y,z) is denoted by (x:y:z), and
the set of all orbits by P2(Z/nZZ).

For α,6€Ζ/ηΖ2 we consider the cubic curve /£=£Jet defined over TLjnTL by the

equation

The »et of points E(TLj nTL) of such a curve over "Z/nTi is defined by

If 6(4a3+2762)6E(ZZ/nZ)* then E is called an elliptic curve over Z/nZZ, and in this case

the set E(7Z/n7i) has a natural abelian group law; it is defined by formulae that are

more general than those in (1.1), cf. [4].

The most convenient way to formulate the factoring algorithm to be presented in

this section would make use of the group structure just mentioned. We shall avoid this,

because the literature on elliptic curves over rings is not easily accessible. We shall only

need the group structure in the case that n is prime (see (1.1)). For general n we shall

work with a partially defined "pseudo-addition" on a subset of E(7Lf nTL), cf. [10].

We denote the point (0:1:0) of ]P2(Z/n7i) by 0, and we let the subset V„ of

P2(Z/n2Z) consist of the "finite" points together with 0:

V„={(x:y:l):x,yE(Z/n7i)}(J{0}.

For P&Vn and a prime p dividing n we denote by Pp the point of P2(IF_) obtained by

redudng the coordinates of P modulo p. Observe that Pp=0f if and only if P— O.

(2.2) Addition. We describe an algorithm that given n62>1, o€/Z/nSZ and P,Q€V„,
either calculates a non-trivial divisor d of n, or determines a point /?6 Vn with the follow-

ing property: if p is any prime dividing n for which there exists 6€IFp such that

for ä=(amodp),

Qp€E,b(Wp),
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then Rp=Pp+Qp in the group Ê W,).

If P=O put R=Q and stop. If P̂ O, Q=0 put ß=P and stop. In the remain-

ing case P̂ 4O, Qĵ O, let P=(x1:y1:l) and Q=(z->:y2:l). Use the Euclidean algorithm to

calculate gcd(z1-z2,n). If this gcd is not l or n, call it d and stop. If gcd(zi-z2,n)=l
then the Euclidean algorithm also gives (zj-â )"1; in this case put

and stop. Finally assume that gcdizj-a^n^n, so that ̂ 1=22· Calculate gcd(y1+y2,n).
If it is not l or n, call it d and stop. If it is n (so that y\=-ŷ }, put R=0 and stop. If
gcd(y!+y2,n)=l, put

and stop. (Notice that in this last case one actually has y\=y^ and P=Q.\ This finishes
the description of the algorithm.

The correctness of the algorithm is an immediate consequence of the formulae
given in (1.1).

If the algorithm determines a point R with the stated property we shall denote it
by P+Q, and the partial binary Operation on Vn defined in this way shall be called addi-
tion. If there exists b£TL/n7L such that

6(4a3+2762)e(2Z/n2Z)*,

then P+Q, if defined, actually equals the sum of P and Q in the group Ea^7Lln1L\ but

we shall not need this. The only property of addition that we do need is formulated at
the beginning of (2.2).

(2.3) Multiplication. By repeated addition one readily derives from (2.2) an algorithm
that accomplishes the following. Given Α;€2Ζ>0, η€2!>1) α€Ζί/ηΖΖ and P€V it either

calculates a non-trivial divisor d of n, or determines a point R£V„ with the following
property: if p is any prime dividing n for which there exists 66F such that

for ä=(amodp),

then Rp=k-Pp in the group EVttl(JFf).

If this algorithm determines a point R with the stated property we shall denote it
by kP. We call the partial Operation defined in this way multiplic ation.

The number of additions that one has to perform in this algorithm is at most the
length of the addition chain that is used, see [14, Section 4.6.3]. One can, for example,

use an addition chain that is derived from the binary representation of k, which has
length O(logA). Whether or not kP is defined may depend on the addition chain that is
used (if n is composite). It can be proved that if kP is defined for each of two addition
chains, then the two outcomes are the same. Since we do not need this fact we omit the
proof.

If A; is given äs k=klk2 for certain positive integere klt k̂ , one can calculate kP by
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Suppose now that k is given äs a product

where r ranges over a certain finite set of positive integere and each e(r) is a positive

integer. Applying the above repeatedly we see that in order to multiply a point P by k
it suffices to perform e(r) multiplications by r for each r. We shall assume in the sequel
that the multiplications by r are performed with r in increaeing order.

(2.4) Factoring with one curve. Let n, v, w^7L>l and β, χ, yGTL/nTZ be given. We

describe an algorithm that attempts to find a non-trivial divisor rfof n.

For each integer r>2, denote by e(r) the largest integer m with rm<t)+2\/tH-l,

and put

r=2

Let P—(x:y:l)€ V„. Attempt to calculate kP by the method just explained. If this

attempt fails then a non-trivial divisor of n is found, and the algorithm halts, with d

equal to this divisor. If kP is calculated successfully then the algorithm halts äs well,
with the message that it has failed to find a non-trivial divisor of n. This finishes the

description of the algorithm.
In (2.6) below we give a sufficient condition for the algorithm to be successful.

The choice of a, x, y determines the elliptic curve that one uses. The number v may be

thought of äs an upper bound for the divisor d that one is trying to find, although it is

by no means guaranteed that indeed rf<v. The parameter w essentially measures the
time that is spent on the algorithm (see (2.9)); the probability of success increases with
w.

(2.5) Factoring with »everal curve». Let n, v, w, A€Z>1 be given. We describe a proba-

bilistic algorithm that attempts to find a non-trivial divisor d of n.
(*) Draw three elenients a, x, ytTL/nTL at random, and apply algorithm (2.4) to

n, v, w, a, x, y. If this results in a non-trivial divisor of n, halt, with d equal to this divi-
sor. In the other case, go back to (*), except if algorithm (2.4) has already been applied
h times; in this case, report failure and halt.

The number v should again be thought of äs an upper bound for the divisor that
one is trying to find. The parameter w is basically the time that one is willing to spend
on a single curve. and h is the number of curves that one tries. For the success probabil-
ity of the algorithm, äs a function of u; and A, see (2.8). The optimal choice of u; and h
is discussed in (2.9).

(2.8) Proposition. Let n, v, w^Z>1 and a, x, ytZ/ηΉ, be ae in (2.4), put b=y2-x3-ax

€ZZ/n/2 and P=(x:y:l)̂ V„ (see (2.1)). Suppose that n ha» prime diviaor» p and q satis-

fying the following conditions.

(i) p<v;

(ii) 6(4ö3+2762)̂ 0 for ä-=(amodp), 6=(6modp);

(iii) each prime number r dividing fiEy^Wp) satisfies r<w;

(iv) 6(4ä3+2762)=̂ 0/{>r a=(amodc/), 6=(6modg);

(v) #£äj(IF?) i» not divisible by the largest prime number dividing the order of Pp (see

(2.1)).
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Then algorithm (2.4) it eucceeeful in finding a non-trivial divieor of n.

Remark. Note that conditions (ii) and (iv) imply that Eyj(Wp) and Eä j(F?) have a group

structure. Also, PpJ^Of in Ev̂ Wf), so the largest prime number referred to in (v) does

exist. Clearly (v) implies that

Proof. From p<v and Hasse's inequality (see (1.5)) it follows that #£ffj{lF_)<t;+2\/tH-l,

so for each prime number r the exponent of r in ftEyjßFp) is at most the number e(r)

defined in (2.4). The same is then true for the exponent of r in the order ω of P

Denote by / the largest prime number dividing ω, and by m the exponent of / in ω· so

l<m<e(l). Put

r=2

then £o^)moda> and &of=0modw, so

k0Pp^Op, k0lP„=Op in the group i

From (iii) we see that /<«0, so k$ and ÄQ/ are divisors of the number k appearing in (2.4).

Moreover, if kP is successfuliy calculated by the algorithm, then kQP and Î IP are calcu-

lated along the way. Hence to prove (2.6) it suffices to show that k̂ P and k̂ lP cannot

both be defined. To do this, we use the observation made at the end of (2.1), äs follows
If k0lPeV„ exists, then ψ0ΙΡ)ρ=Ι%1·Ρρ=Ορ in the group Ê W,,) and therefore

yP=0 in Vn; but then Ι̂ Ι·Ρ=*(ί0ΙΡ)9=·Ο9 in the group ÊIF,),' so by (v) we have

£0p?=0? äs well. Therefore, if k0P £V„ is also defined, we must have k0P=0 and hence

k0Pp—Op, contradicting what we proved above.

This proves (2.6).

(2.7) Proposition. There ezistt a positive, effectively computable constant cn with the

follou'ing property. Let n, v, w£TL>l be euch that n has at leaat two distinct prime divi-

sors >3, and such that the smallest prime diviaor p of n for which p>3 satisfiee p<v.

Put ~

u = #{ί€Ζζ: \s - (fH-l)|<\/p, and each prime dividing β is <u?}.

Then the number N of triples (a,x,y)€(2Z/n2L)3 for which algorithm (2.4) eucceeds in
finding a non-trivial divisor of n satisfies

N cu u - 2

n3 iogp 2[\/p]+l '

Remark. The proposition asserts that the probability that a random triple (α χ υ) is suc-

cessful, which is N/n3, is not much less than the probability that a random integer in

the interval (p+l-v/p, p+l + Vp) has all its prime divisors <w; the latter probability is

ti/(2|Vp]+l). From the proof and the remark made just before (1.8) it will be clear that

under the assumption of the generalized Riemann hypothesis the proposition is also valid

with the strenger inequality

N cn u

„3 loglogp 2[\/pj+l

Proof. Let g be a prime divisor >3 of n that is different from p. For each positive

integer «, let T, be the set of triples (α,ζ,η)̂ ρ with the property that
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4α3+27/?2 τ^Ο,

where β=η2-ζΆ-αξ. For (α,ξ,η)€Τ,, let the largest prime divisor of the order of the

point (£:»?:1) in the group Eaß(Wp) be denoted by Ιαςη, and let f/ailj be the set of triples

4a'3+27ßß ̂  0,

#Ea<ß<(Fg) is not divisible by /of,,

where β'=ηβ-ξβ-α'ζ'. With this notation, Proposition (2.6) implies that

">Σ Σ Σ 0

where * ranges over the set of positive integere built up from primes <tr and

vatnaW= {(e,*,y)e(2Z;/n2Z)3: (amodp, zmodp, ymodp)=(a,£,i/),

(amodg, zmodg, j/mod?)=(a',£',t;f)}.

Clearly each Va(na,(V has cardinality n3/(pg)3, and by (1.16Xb) we have

Hence we obtain

N

the sum ranging over the positive integers s built up from primes <u>. Restricting the

sum to the integers a that also satisfy \» - (p+l)|<\/p, and applying (1.16)(a), one finds

that

4 ^ Ci2o(« - 2)p-1/2/logP,
n

and the proposition follows.

This proves (2.7).

We now suppose that the random number generator that is used in algorithm (2.5) to

draw the triple (a,z,y)€(ZZ/n/Z)3 gives each triple with equal probability, and that the
successive calls to the random number generator are independent.

(2.8) Corollary. There exista an effectively computable constant Cj2>l with the follow-

ing property. Let n, υ€Ζ2>1 be euch that n hat at least two distinct prime divisore >3,
and auch that the amallest prime divisor p of n for which p>3 eatiafies p<v. Let further

tt'CiZ» be tuch that the number u defined by

u — =^{«£2: \e - (p+l)\<Vp, and each prime dividing e is <w}

tatisfiet u>3, and let f(w)=u/(2[\/p]+l) denote the probability that a random integer in

the interval (p+l-\/p, p+l + vp) has all ita prime factore <w. Then for any A€Z2>i the

avccea» probability of algorithm (2.5) on input n, v, w, h ie at leaat l - cj*̂ 10̂ 1081'.

Proof. By Proposition (2.7) and the assumptions made just before the corollary, the
failure probability of the algorithm equals (l - TV/n3)*, where

Cu " ~ 2
n3 logp 2[Vp]+l ~ Slogt;

It follows that

n \* <-(l - — ) <
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This proves (2.8).

(2.9) Efficiency. Let Λ/(η) denote an upper bound for the tinae, measured in bit opera-

tions, that is needed to perform a single addition äs in algorithm (2.2). One can take

M(n)=0((iogn)2) if one uses the ordinary Euclidean algorithm [14, Exercise 4.5.2.30], and
M(n)=(9((logn)(loglogri)2(logloglogn)) if one uses a faster version [26].

With this notation, the time required by algorithm (2.4) is O(w(\ogv)M(n))· this
follows from the fact that the number k appearing in (2.4) satisfies logJt=O(«iogt;).

The time spent on the factoring algorithm (2.5) is at most h times äs large so
O(hw(\ogv)M(n)). (This does not count the time that the random number generator may
need; it is called at most A times.) Corollary (2.8) shows that in order to have a reason-

able chance of success, one should choose the number A of the same order of magnitude
äs (\ogv)/f(w). Hence, to minimize the estimated running time, the number w should be
chosen such that w/f(w) is minimal.

At this point we need an unproved conjecture. For a real number x>e, define

L(x) = e^iogiiogiogi

A theorem of Canfield, Erdös and Pomerance [ö, Corollary to Theorem 3.1] implies the
following. Let α be a positive real number. Then the probability that a random positive

integer «<x has all its prime factors <L(xf is L(x)~l̂ 2â ~°(l\ for z-+oo. The conjecture

that we need is that the same result is valid if t is a random integer in the interval

(χ-\-\-\ίχ, x+ 1+v/z). Putting z=p we see that the conjecture implies that

for

for any fixed positive a, with /äs in (2.8).

With w=L(p}a, the conjecture would imply that

w/f(w) = ί,(ρ)ΐ/(2ο}+«»-κ»(ι) for p-+00>

which suggests that for the optimal choice of w we have

A slight practical problem with this choice of w is that p, the least prime factor >3 of n

is not known beforehand. One can solve tbis problem by replacing p by v in the above

formula for u;, and performing algorithm (2.5) for a suitable increasing sequence of values

for v. Notice that the factors logv in the running time estimate are L(v)0̂ 1̂

These arguments lead to the following conjectural running time estimate for the

elliptic curve factoring algorithm.

(2.10) Conjecture. There is a function /f:IR>0-*lR>0 with

such that the following aseertion is true. Let n€Z>1 be an integer that is not a prime

power and that is not divisible by 2 or 3, and let g be any positive integer. Then algo-
rithm (2.5), when applied with euitable values for v, w, h, can be uted to find, with proba-
bility at least l - e~9, a non-trivial divisor of n within time

gK(p)M(n),

where p denotes the least prime divisor of n and where A/(n)=O((logn)2) or
0((logn)(loglogn)2(logloglogn)) i» äs m (2.9).

It may be possible to replace the conditions on n in this conjecture by the simpler condi-
tion that n be composite; but in any case integere that are divisible by 2 or 3, or that are
perfect powers, are easy to recognize directly.
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It is not guaranteed that the divisor found by algorithm (2.5) is the smallest
prime divisor of n, although in practical circumstances this will often be the case.

The algorithm may be repeated on the divisors that are found, untii the complete
prime factorization of n is obtained. The estimate for the running time will then also
contain terms gK̂ Mfa) corresponding to the other prime divisors p' of n, with the

exception of the largest one. In all cases one may expect the total Factoring time to be

at most L(n)l+0̂  for n—*oo, with L äs in (2.9). The worst case occurs if the second larg-
est prime divisor of n is not much smaller than Ν/Π, so that n is the product of some

small primes and two large primes that are of the same order of magnitude.

(2.11) Compariton to other methods. We just mentioned that the elliptic curve factoring

method may be expected to factor any integer completely in time at most L(n)1+0̂ l

Several other factoring methods have been proposed for which, conjecturally, the run-

ning time in given by the same formula, such äs the class group method [23] and the

quadratic sieve [18]; see also the discussion in [8]. For these other methods the running
time is basically independent of the size of the prime factors of n, whereas the elliptic

curve method is substantially faster if the second largest prime factor of n is much

smaller than \/n.

The storage requirement of the elliptic curve factoring method is only O(logn).
This is also true for the class group method [23], but all other known factoring algo-

rithms of conjectured speed L(n)l+0̂ ' have a storage requirement that is a positive power
of L(n).

(2.12) Number» built up from emall prime factors. The elliptic curve method is particu-
larly efficient in discovering small prime divisors of a number n. This means that it can

be used for a purpose different from factoring, namely for recognizing numbers that are
built up from prime factors below a certain bound. Several factoring methods, such äs
the continued fraction method, the random squares method of Dixon and the class group
method of Seysen (see [18, 27]), need an efficient subroutine for performing this task.

The analysis of these methods such äs given in [18] assumes that the Pollard />-method
or the Pollard-Strassen method is used for this purpose. Using the elliptic curve method
instead improves the theoretical performance of these factoring algorithms. It should be
noted that for a rigorous analysis of the elliptic curve method, when applied in this way,
much less is needed than the conjecture stated in (2.9); namely, it suffices to have an
average form of a weaker statement, and this appears to be within reach of the present
techniques of analytic number theory (Pomerance [19]).

Several practical primality tests depend on large completely factored divisors of
certain integere related to the number being tested, see [21, 31]. The elliptic curve

method can be used to search for such divisors. It is likely that this will improve the
performat»ce of these primality testing algorithms.

(2.13) Practical performance. The version of the elliptic curve method described in this
paper was designed for simplicity of exposition and ease of analysis. In an actual imple-
mentation one might prefer to make several modifications, such äs using a different
model for elliptic curves, selecting the parameters in a different way, or adding a routine,
äs in Pollard's original p-1-method, that enables one to use curves Ea j for which

#£"Tj(Fp) is allowed to have one prime factor that is somewhat larger (cf. (2.6)(iii)). For

a discussion of these and other points, see [16, 5, 7].

It turns out that, with these modifications, the elliptic curve method is one of the
fastest integer factorization methods that is currently used in practice. The quadratic
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sieve algorithm still seems to perform better on integere that are built up from two
prime numbers of the same order of magnitude; such integere are of interest in cryptog-
raphy [22].
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