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Search for Two-Scale Localization in Disordered Wires in a Magnetic Field
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A recent paper [A V Kolesnikov and K B Efetov, Phys Rev Lett 83, 3689 (1999)] predicts a
two-scale behavior of wave function decay 1n disordered wires 1n the crossover regime from preserved
to broken time reversal symmetry We have tested this ptediction by a transmission approach, relying on
the Borland conjecture that telates the decay length of the ttansmuttance to the decay length of the wave
functions Our numerical simulations show no indication of two scale behavior

PACS numbers 72 15 Rn 0560 Gg, 73 20 Fz

In a 1emaikable paper [1], Kolesnikov and Efetov have
piedicted that the decay of wave functions in disoirdered
wites 15 characterized by two localization lengths, 1f time-
1evetsal symmetiy 1s paitially bioken by a weak mag-
netic field Using the supersymmetry techmique [2], 1t
was demonstrated that the far tail of the wave functions
decays with the length &, characteristic fo1r completely
broken time-1eversal symmet1y-—even 1f the flux through
a localized aiea 1s much smaller than a flux quantum
At shotter distances the decay length 1s §; = % &7 It was
suspected that pievious studies by Pichard er al [3] found
single-scale decay because of the misguiding theoretical
expectation of such behavior This expectation was also the
basis for the mterpretation of the experiments by Khavin,
Geishenson, and Bogdanov [4] on submicron-wide wires

The prediction of Kolesnikov and Efetov calls for a test
by means of a dedicated experiment or computer simu-
lation It 1s the purpose of this work to provide the latte:
We target the key featute of the two-scale localization phe-
nomenon, which 1s the doubling of the asymptotic decay
length at infinitesimally weak magnetic fields

Our numerical simulations are based on a transmission
approach We rely on the Borland conjecture [5] (believed
to be true generally [6]) that relates the asymptotic de-
cay of the transmuttance 7 with increasing wire length L
to the asymptotic decay of the wave function (L) Ac-
coiding to the Boiland conjecture, the Lyapunov expo-
nent ¢ = — hmy e % L~1InT 1s 1dentical to the inverse
localization length £ ™! = — limy e L™} In (L)l More-
over, ¢ and « aie self-averaging, meaning that the statis-
tical fluctuations become smaller and smaller as L — o
Our numetical simulations show that the ciossover from
£ = £ to & = & does not occur until the flux @, through
a wne segment of length £; 1s of the oider of a flux
quantum @y = A/e For our longest wires (L = 150¢)),
the crossover according to Ref [1] should have occurred
at @y /g = exp(—L/8&;) = 1078 We consider various
possible reasons for the disagreement, and suggest that the
quantity consitdered m Ref [1] 1s dominated by anoma-
lously localized states

Ou first set of 1esults is obtamned from the numerical
calculation (by the technique of recursive Gieen functions
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[7]) of the tansmission matrix ¢ for a two-dimensional
Andeison Hamiltonian with on-site disorder In umts of the
lattice constant ¢ = 1, the width of the wire 1s W = 13
and the wavelength of the electrons 1s A = 5 1, 1esulting 1n
N = 5 propagating modes thiough the wire The localiza-
tion lengths &; = (N + 1)/ and & = 2N/ aie determined
by the scaling patameter ! of quasi-one-dimensional local-
1zation theory, which differs from the transport mean-fiee
path by a coefficient of order unity [8] The average of the
transmittance 7 = tt #z7 m the metallic 1egime, fitted to
(TY = N(1 + L/I)"!, yields [ = 65 This gives a local-
1zation length &; = 390 for preserved time-ieveisal sym-
met1y (symmetry mdex S = 1) and a localization length
&> = 650 fo1 broken time-reversal symmetiy (8 = 2)

Figuie | shows the ensemble-averaged logarithm of the
transmuttance {InT") as a function of wire length L for vari-
ous values of the magnetic field B (o1 flux &, = W B)
We find a smooth tiansition between the theoretical ex-
pectations for pieserved and broken time-reversal sym-
metty Most mmpoitantly, we find an asymptotic slope
s(B) = lim;—. L™ XInT) that imterpolates smoothly be-
tween the values s = —2/¢; for B=0and s = —2/&
for large B There 1s no indication of a crossover to
the slope s = —2/&; for smaller values of B, even for
very long wires (L = 150£;) According to the theory
of Ref [l1], the crossover should occur at a length L o
given by

Lcross/§1 = Sln(\/—l_z(DO/47Tq>f) + (9(1)» (1)

which 1s well within the range of our simulations (L¢ress =
14¢, for @, = 005®) The absence of two-scale behav-
1or 1n the transmittance of an individual, arbitrarily cho-
sen realization 1s demonstrated n the set of Fig 1, for
P, = % @, The self-averaging property of the Lyapunov
exponent 1s evident

The asymptotic decay length £(B) = —2/s(B) 15 plot-
ted versus magnetic field m Fig 2, together with the weak-
localization cortection 8T = T(B = ®) — T(B) at L =
&1 For both quantities, breaking of time-reversal symme-
ty sets in when @, 1s comparable to @y The transition
from B = 1to B = 2 1s completed for ®; = 100,
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FIG 1 Average logarithmic transmittance (InT’) as a function
of wire length L for the Anderson model with N = 5 piopagat-
g modes The two dashed lines have the slopes piedicted for
pieserved (8 = 1) and broken (8 = 2) time-1eversal symmetry
From bottom to top the data correspond to fluxes ®¢/Dg = 0,
0 0003, 0005, 0 05 (four indistinguishable sohd curves), 05, 1,
25,5, 10, 15, 20, 25, 40, 50, 75, 125 (two mdistinguishable
solid curves) The nset shows InT fo1 an individual realization
with ¢, = %(I)O (solid curve) and the slope of the ensemble-
averaged result (dashed line) The statistical error 1s of the order
of the wiggles of the curves

Our second set of results 1s obtained from a computa-
tionally more efficient model of a disordered wire, consist-
ing of a cham of chaotic cavities (or quantum dots) with
two leads attached on each side This so-called “domino”
model [9] 1s similar to Efetov’s model of a granulated
metal [2] and to the Iida-Weidenmuller-Zuk model of con-
nected slices [10] The length L 1s now measured m units
of cavities, and the mean-free path [ = 1 The scatter-
mg matrices of each cavity are randomly drawn from an
ensemble (proposed by Zyczkowski and Ku§ [11]) that in-
terpolates (by means of a parameter &) between the circu-
lar orthogonal (8 = 1, 6 = 0) and unitary (8 = 2, § =
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FIG 2 Asymptotic decay length (solid circles) and weak-
localization correction 8T (open circles) as a function of flux
for the N = 5 Anderson model The statistical error 1s of the
order of the size of the circles
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1) ensembles of random-matix theory The relationship
between & and ®; /Py 1s linear for 6 < |

We increased the number of piopagating modes to N =
50, because 1t 1s conceivable that the two-scale localization
becomes manifest only in the large N limit, or that only in
this limit the critical flux ®, for the transition from & to
& becomes <Py (In the experiments of Ref [4] N =
10, so our simulations are 1n the experimentally relevant
range of N ) Because of the much larger value of N, we
restricted ourselves for larger values of the magnetic flux to
L = 25£, which should be sufficient to observe the local-
1zation length &, for @/ Py = 1072 For smaller values
of the flux, we increased the wue length to L == 100£,
The data are presented in Fig 3 It 15 qualitatively simu-
lar to the results for the N = 5 Anderson model Instead
of two-scale behavior, we see only a single decay length
which crosses over smoothly fiom &) to &, with incieasing
& Again, the crossover of ¢ comncides with the crossover
of the weak-localization correction, so there 1s no anoma-
lously small crossover flux for the localization length

The logarithmic average (InT) 1s the expetimentally
relevant quantity since 1t 15 representative for a single
realization (see Fig 1, inset) The average transmuttance
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FIG 3 Same quantines as m Figs 1 and 2, but now for the

N = 50 domino model In the upper panel, the magnetic flux
parameter 6 = 0, 0 0001, 0 0002, 0 0005, 0 001, 0002, 0 005,
001, 002, 005, and 01 In the inset, § = 0, 000001, and
0 0001 (indistinguishable curves)
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FIG 4 Logarithm of the aveiage transmittance In{7") as a
function of wire length L fo1 the N = 5 Andeison model at
vartous values of the magnetic field (solid curves, from bottom
to top, ®,/ Py = 0, 5, 25, 50, 125) The dashed curves ate the
theoretical prediction of Refs [13,14] for zero and laige mag-
netic field

(T itself 1s not representative, because it 1s dominated
by rare occurrences of anomalously localized states [12]
Since Kolesnikov and Efetov [1] studied the average
of wave functions themselves, rather than the average
of logarithms of wave functions, 1t 1s conceivable that
their findings are the 1esult of such rare occurrences
For completely broken or fully preserved time-reveisal
symmet1y the avelage transmittance is given by [13]

IT) = ~L/2€s ~ 3IL/ég + O(1) ()

The order | terms are also known [13,14] and contiibute
significantly for L =< 30&; (This 1s the numerically ac-
cessible range, because anomalously localized states be-
come exponentially rare with increasing wire length ) We
have plotted the full expressions in Fig 4 (dashed curves),
together with the numerical data for the N = 5 Ander-
son model Again we find a smooth ciossover between
preserved and broken time-reversal symmetry There 1s
no transition with creasing wire length to a behavior
mdicative of completely broken time-reversal symmetry,
even though the flux ®; 15 much larger than required
[according to Eq (1)] to observe this crossover for the
wave functions

In conclusion, we have piesented a numerical search
for the two-scale localization phenomenon predicted by
Kolesnikov and Efetov [1], with a negative result The
asymptotic decay length of the transmittance 1s found to
be given by &1 and not by &>, as long as the flux through
a localization atea 1s small compated to the flux quantum
How can one reconcile this numerical finding with the re-
sult of the supersymmetry theory? We give three pos-
sibilities (1) One might abandon the Borland conjecture

and peirmit the asymptotic decay length of the transmut-
tance (Lyapunov exponent) to differ fiom the asymptotic
decay length of the wave function (localization length)
Since the Borland conjecture has been the cornerstone of
localization theory for moie than thiee decades, this seems
a too drastic solution (11) One could argue that the wires in
the simulation are too naitow or too short—although they
are 1n the experimentally relevant range of N and L, as well
as 1n the range of applicability of the theory of Ref [1]
(11) One could attiibute the two-scale localization phe-
nomenon to anomalously localized states that are almost
fully trtansmitted but become exponentially rare with n-
creasing length and are urelevant for a typical wire This
seems to be the most likely solution The decay due to
anomalously localized states 1s solely due to thewr expo-
nentially decreasing ftaction among all states, and 1s not
dwrectly related to the localization length For the limit-
ing cases of fully preserved or totally bioken time-reversal
symmetry, the decay 1s by a factor of 4 slower than the
localization length, but a two-scale behavior for partially
bioken time-reversal symmetry 1s concervable

A discussion with P G Silvestrov motivated us to look
mto this problem We acknowledge helpful correspon-
dence with A V Kolesnikov and support by the Dutch
Science Foundation NWO/FOM
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