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Search for Two-Scale Localization in Disordered Wires in a Magnetic Field
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A recent paper [A V Kolesnikov and K B Efetov, Phys Rev Lett 83, 3689 (1999)] predicts a
two-scale behavior of wave function decay in disoidered wires in the crossovei regime from preserved
to broken time reversal symmetry We have tesled this piediction by a transmission approach, relymg on
the Borland conjecture that lelates the decay length of the liansmittance to the decay length of the wave
functions Our numencal simulations show no mdication of two scale behavior

PACS numbeis 72 15 Rn 05 60 Gg, 73 20 Fz

In a lemaikable papei [1], Kolesnikov and Efetov have
piedicted that the decay of wave functions m disoidered
wues is chaiactenzed by two locahzation lengths, if time-
leveisal symmetiy is paitially bioken by a weak mag-
netic field Usmg the supersymmetry techmque [2], it
was demonstrated that the fai tail of the wave functions
decays with the length £2 charactenstic foi completely
bioken time-ieversal symmetiy—even if the flux through
a locahzed aiea is much smaller than a flux quantum

At shoiter distances the decay length is ξ\ = ^ ξι It was
suspected that pievious studies by Pichard et al [3] found
smgle-scale decay because of the misguidmg theoretical
expectation of such behavioi This expectation was also the
basis for the Interpretation of the expenments by Khavin,
Geishenson, and Bogdanov [4] on submicron-wide wires

The prediction of Kolesnikov and Efetov calls for a lest
by means of a dedicated expenment or computei Simu-
lation It is the purpose of this work to piovide the lattei
We target the key featuie of the two-scale locahzation phe-
nomenon, which is the doublmg of the asymptotic decay
length at mfinitesimally weak magnetic fields

Our numencal simulations are based on a transmission
appioach We rely on the Borland conjecture [5] (beheved
to be true geneially [6]) that relates the asymptotic de-
cay of the transmittance T with increasing wire length L
to the asymptotic decay of the wave function t//(L) Ac-
coidmg to the Boiland conjecture, the Lyapunov expo-
nent a = — hm£_co ^ L~l InT is identical to the inverse
locahzation length ξ~ι = — lim^ooL""1 In \ψ(1,)\ More-
over, ξ and a aie self-averagmg, meanmg that the statis-
tical fluctuations become smaller and smaller äs L —* °o
Our numencal simulations show that the ciossover from
ξ = ξ\ to ξ = ξ2 does not occui until the flux Φ^ through
a wne segment of length ξι is of the oider of a flux
quantum Φο = h/e For our longest wires (L 5: 150£i),
the crossover according to Ref [1] should have occurred
at Φ^/Φο — exp(-L/8£i) — 10~8 We consider vanous
possible reasons for the disagreement, and suggest that the
quantity considered m Ref [1] is dommated by anoma-
lously locahzed states

Oui first set of lesults is obtamed from the numencal
calculation (by the techmque of recursive Gieen functions

[7]) of the tiansmission matrix t for a two-dimensional
Andei son Hamiltoman with on-site disoi der In umts of the
lattice constant a = l, the width of the wire is W = 13
and the wavelength of the electrons is λ = 5 l, lesulting in
N = 5 piopagating modes thiough the wire The locahza-
tion lengths ξ\ = (N + l)/ and £2 = 2NI aie determmed
by the scahng pai ametei / of quasi-one-dimensional local-
ization theoiy, which diffeis from the transport mean-fiee
path by a coefficient of oidei unity [8] The average of the
transmittance T = ti tt^ in the metallic legime, fitted to
(T) = N (l + L//)" 1, yields / = 65 This gives a local-
ization length ξ\ = 390 for preserved time-ieveisal sym-
metiy (symmetry index β = 1) and a locahzation length
ξϊ = 650 foi broken time-reversal symmetiy (ß = 2)

Figuie l shows the ensemble-averaged loganthm of the
transmittance (InT) äs a function of wire length L foi van-
ous values of the magnetic field B (01 flux Φ^ = W£\B)
We find a smooth tiansition between the theoretical ex-
pectations foi pieseived and broken time-reversal sym-
metiy Most impoitantly, we find an asymptotic slope
s(B) = hm£,_=oL~1(ln7} that interpolates smoothly be-
tween the values i = — 2/ξ\ for B = 0 and s = —2/ξ2

for large B There is no mdication of a crossover to
the slope s = —2/^2 for smaller values of B, even for
very long wires (L Ä 150^i) According to the theory
of Ref [1], the crossover should occur at a length LCross
given by

ι = 81η(Λ/Ϊ2Φ0/4τ7Φί) + 0(1), (1)

which is well within the ränge of our simulations (Lcross —
14f i for Φ^ = Ο 05Φο) The absence of two-scale behav-
ior m the transmittance of an mdividual, arbitranly cho-
sen reahzation is demonstrated in the mset of Fig l, foi

Φ^ = 2 Φο The self-aveiagmg property of the Lyapunov
exponent is evident

The asymptotic decay length £(B) = —2/s(B) is plot-
ted vei sus magnetic field in Fig 2, together with the weak-
localization conection 8T = T(B = 00)- τ (B) at L =
ξ ι Foi both quantities, breakmg of time-reversal symrne-
üy sets in when Φ^ is comparable to Φο The transition
from β = l to β = 2 is completed for Φ^ ~ ΙΟΟΦο
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FIG l Average loganthrruc transmittance (ΙηΓ) äs a function
of wire length L for the Anderson model with N = 5 piopagat-
mg modes The two dashed Imes have the slopes piedicted for
pieserved (ß = 1) and broken (ß = 2) time-ieversal symmetry
From bottom to top Ihe data correspond to fluxes Φς/Φο = 0,
0 0005, 0 005, 0 05 (four mdistmguishable solid curves), 0 5, l,
2 5, 5, 10, 15, 20, 25, 40, 50, 75, 125 (two mdistmguishable
solid curves) The mset shows ΙηΓ foi an mdividual reahzation
with Φ^ = ^Φ0 (solid curve) and the slope of the ensemble-
averaged result (dashed hne) The statistical error is of the order
of the wiggles of the curves

Our second set of results is obtamed from a computa-
tionally more efficient model of a disordered wire, consist-
mg of a cham of chaotic cavities (or quantum dots) with
two leads attached on each side This so-caüed "dommo"
model [9] is similar to Efetov's model of a granulated
metal [2] and to the Iida-Weidenmuller-Zuk model of con-
nected slices [10] The length L is now measured m units
of cavities, and the mean-free path / = l The scatter-
mg matnces of each cavity are randomly drawn from an
ensemble (proposed by Zyczkowski and Kus [11]) that m-
terpolates (by means of a parameter <5) between the circu-
lar orthogonal (ß = l, δ = 0) and unitary (ß = 2, δ =

1) ensembles of random-matnx theory The relationship
between δ and Φξ/Φ0 is linear for δ <z l

We increased the number of pi opagatmg modes to N =
50, because it is conceivable that the two-scale locahzation
becomes manifest only in the large ./V hmit, or that only in
this hmit the cntical flux Φ^ for the tiansition from ξ\ to
ξι becomes <3£Φο (In the expenments of Ref [4] N ~
10, so our simulations are in the expenmentally relevant
lange of N ) Because of the much largei value of N, we
restncted ourselves for larger values of the magnetic flux to
L — 25£i, which should be sufficient to observe the local-
ization length ξ2 foi Φ^/Φο ä 10~2 Foi smallei values
of the flux, we increased the wne length to L — 100£i
The data are presented m Fig 3 It is quahtatively simi-
lar to the results for the N = 5 Anderson model Instead
of two-scale behavior, we see only a smgle decay length
which crosses over smoothly fiom ξ\ to £2 with incieasing
δ Agam, the crossover of ξ comcides with the crossover
of the weak-locahzation correction, so there is no anoma-
lously small ciossover flux for the locahzation length

The loganthmic average (ΙηΓ) is the expenmentally
relevant quantity smce it is representative for a smgle
reahzation (see Fig l, mset) The average transmittance
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FIG 2 Asymptotic decay length (solid circles) and weak-
locahzation correction ST (open circles) äs a function of flux
for the N = 5 Anderson model The statistical error is of the
order of the size of the circles
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FIG 3 Same quantities äs in Figs l and 2, but now for the
N = 50 dommo model In the upper panel, the magnetic flux
parameter δ = 0, 0 0001, 0 0002, 0 0005, 0 001, 0 002, 0 005,
001, 002, 005, and 0 l In the mset, δ = 0, 000001, and
00001 (mdistmguishable curves)
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FIG 4 Loganthm of the aveiage transmittance 1π{Γ) äs a
function of wire length L toi the N = 5 Andeison model at
vanous values of the magnetic field (solid curves, from bottom
to top, Φξ/Φο = 0, 5, 25, 50, 125) The dashed curves aie the
theoretical prediction of Refs [13,14] foi zeio and laige mag-
netic field

(T) itself is not repräsentative, because it is dommated
by rare occurrences of anomalously locahzed states [12]
Smce Kolesnikov and Efetov [1] studied the average
of wave functions themselves, lather than the average
of loganthms of wave functions, it is conceivable that
their fmdings are the lesult of such rare occurrences
For completely broken or fully preserved time-reveisal
symmetiy the aveiage transmittance is given by [13]

= -1/2ξβ - \\TiLfξβ + 0(1) (2)

The order l terms are also known [13,14] and contnbute
sigmficantly for L S 30£i (This is the numencally ac-
cessible ränge, because anomalously locahzed states be-
come exponentially rare with mcreasmg wire length) We
have plotted the füll expressions m Fig 4 (dashed curves),
together with the numencal data for the N = 5 Ander-
son model Agam we find a smooth ciossover between
preseived and broken time-reversal symmetry There is
no transition with mcreasmg wire length to a behavior
mdicative of completely broken time-reversal symmetry,
even though the flux Φξ is much larger than required
[according to Eq (1)] to observe this crossover for the
wave functions

In conclusion, we have piesented a numencal search
for the two-scale localization phenomenon predicted by
Kolesnikov and Efetov [1], with a negative result The
asymptotic decay length of the transmittance is found to
be given by ξι and not by ξι, äs long äs the flux through
a localization aiea is small compaied to the flux quantum
How can one reconcile this numencal findmg with the re-
sult of the supersymmetry theory? We give three pos-
sibilities (i) One might abandon the Borland conjecture

and peimit the asymptotic decay length of the transmit-
tance (Lyapunov exponent) to differ fiom the asymptotic
decay length of the wave function (localization length)
Smce the Borland conjecture has been the comeistone of
localization theory for moie than thiee decades, this seems
a too drastic solution (n) One could argue that the wires m
the Simulation are too nanow or too short—although they
are m the expenmentally relevant ränge of N and L, äs well
äs m the ränge of apphcabihty of the theoiy of Ref [1]
(in) One could attnbute the two-scale localization phe-
nomenon to anomalously locahzed states that are almost
fully tiansmitted but become exponentially lare with m-
creasmg length and are irrelevant for a typical wire This
seems to be the most hkely solution The decay due to
anomalously locahzed states is solely due to their expo-
nentially decreasmg fiaction among all states, and is not
directly related to the localization length For the hrmt-
mg cases of fully pieseived or totally bioken time-reversal
symmetry, the decay is by a factor of 4 slower than the
localization length, but a two-scale behavior for partially
bioken time-reversal symmetry is conceivable

A discussion with P G Silvestrov motivated us to look
into this pioblem We acknowledge helpful correspon-
dence with A V Kolesnikov and support by the Dutch
Science Foundation NWO/FOM
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