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Summary. We investigate spherically-symmetric models
of extended non-thermal radio sources in which
relativistic particles are generated by a compact source
(e.g. pulsar) in the centre (r=0) and then diffuse away,
losing energy by various processes. The main aim is to
calculate the density of relativistic electrons N(E, r, t)
taking account of diffusion coefficients D and energy
loss rates de/dt which may be functions of energy,
position and time. In Section 2 a simple physical picture
is applied to solve problems in which D and de/dt are
arbitrary functions of energy and time, but independent
of position. Special cases of astrophysical interest are
then considered, in particular losses to ionization,
bremsstrahlung, synchrotronradiation, inverse Compton
scattering and uniform adiabatic expansion. Section 3
treats energy and position dependent parameters, but,
for simplicity, the problem is now restricted to steady-

state solutions. N(E, r) is obtained here by a formal
solution of the diffusion-loss equation. Detailed com-
putations of the synchrotron spectra as a function of
radius are made for representative dependences of
D and de/dt on energy and position, and the form of
the spectrum of the integrated emission is calculated.
The integrated spectrum of the Crab Nebula from
radio to X-rays may be explained in terms of continuous
injection of relativistic electrons having a power-law
energy spectrum (ny(Ey)oc Eg 1-32) over the whole range
of energies (10%eV to 10'%eV) into a magnetic field
which decreases as r~'. A more detailed comparison
of the structure of the nebula and other radio sources
with the models will be presented elsewhere.
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1. Introduction

Current ideas on the origin of relativistic particles in
non-thermal radio sources suggest that they may be
injected by a central, compact object (pulsar, galactic
nucleus etc.) into a more extended region. The concept
of sources injecting fast particles into a large volume
also arises in the galactic theory of cosmic rays, in which
the relativistic protons and electrons are envisaged to
be generated by supernovae and then fill the galactic
disk. In this latter work, it is commonly assumed that
the motion of the particles is diffusive (Ginzburg and
Syrovatskii, 1964) in order to account for the high
degree of isotropy of cosmic rays observed at the earth
and the smooth variation of intensity and spectrum of
the galactic radio background. We think it natural,
therefore, to apply diffusion theory to radio sources
and it is with such an application that this paper is
concerned. Diffusion-loss models of the Crab Nebula,
for example (Gratton, 1972; Wilson, 1972), give quite a
good account of the observations. However, these
papers assumed, for simplicity, that the magnetic field
is spatially uniform, the diffusion coefficient independent
of energy and position and that only synchrotron losses
are important. The purpose of the present paper is to
develop solutions for more realistic situations.
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In Section 2 we solve problems in which the diffusion
coefficient D and the rate of energy loss de/dt are
arbitrary functions of energy and time. Some particular
processes of astrophysical interest are then considered,
including losses to ionization, bremsstrahlung, synchro-
tron radiation, inverse Compton scattering and uniform
adiabatic expansion. Section 3 is concerned with
steady-state models with D and dg/dr dependent on
energy and position. In a future communication we plan
to compare these latter models with the size and
spectrum of the X-ray source in the Crab Nebula, so
computations of the spectrum of the synchrotron
emissivity as a function of radius (Section 3.3) as well
as the integrated radiation (Section 3.4) are presented.
The results are also discussed from a physical point of
view.

2. Models with Diffusion Coefficient and Rate
of Energy Loss Arbitrary Functions of Energy and Time,
but Independent of Position

Throughout the paper we shall be mostly concerned
with a.point source of relativistic electrons at r=0,
as extended or multiple sources may often be dealt
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Injecti Electron injected Present ti ; i ini
b';’geif‘s'“ with ‘;‘:";r'g"y“g: electror ime w?uch then comprise N(E, r t) were injected recently
energy E with an energy E, only a little greater than E, others
longer ago with a higher energy, and so on. Thus the
solution for continuous injection is simply
ey tito Tt N(E,r,t)dE

time T —>

Fig. 1. Definition of time and energy parameters '

with by appropriate integration of the point source
solution. This section solves the problem of electrons
being injected continuously, diffusing away from the
source in an infinite, isotropic and homogeneous
medium [diffusion coefficient D(E, 7)] and losing energy
by arbitrary processes [rate of energy loss dE/dz(E, 7)].
The symbol £ denotes the energy of an electron at the
general time 7. The solution is then applied to some
particular modes of energy loss of astrophysical
interest.

To begin with, however, let us neglect the energy losses
and imagine the source to create a burst of ny(E, t,)dE,dt,
electrons in the energy range E=E, to E,+dE, be-
tween times t=t, and t,+dt\(t=t, represents the
moment when the burst of particles under consideration
was injected, t=t the present time and, in cases of
continuous injection, t=t, the instant when the particle
source was switched on. £=E, denotes electron energy
at injection and £=E at the present time, see Fig. 1).
At 7=t the number density of particles at distance r from
the origin is given by the well-known expression
(e.g. Morse and Feshbach, 1953):

ns(EOa tO)dEOdtO
[4x ! D(E, t)dt]3?

r2

| exP{ 4].DE, r)d‘c} - @
To incorporate the energy losses, let f(E, E,, t) represent
the time taken for an electron to decay from energy E,
to E, reaching E at ¢ and let £(E, E,, t, 7) be the energy
of a particle at 7, the particle having been injected with
E, at t, and reaching E at (¢, <t <t). The forms of fand
E are governed by the nature of the energy losses under
consideration and the time evolution of the radio
source. t, may be eliminated from Eq. (1) by expressing
it in terms of the other parameters (cf. Gratton, 1972):

to=t— f(E, Ey, t).
Thus, writing fz=0f/0E
dAN(E, Eq, r, t)dEdE
—ny(Eq, t— f(E, Eq, t))dE, f (E, E, t)dE
= [ . sooDIE(E, Egy 1, 1), 11de}

dN(E,, to, 1, t)dEydty =

2
- €Xp { - " ! } . )
) 4 L—f(E.Eo, t)D [E(E, Ey, t, 7), T]d

Now imagine the spectrum nyEg,to)dEydt, to be
injected continually beginning at t,. Some of the electrons

_ J‘ ns(E09 t_f(E’ EOa t))dEOf/E(E, EO: t)dE
overFo {47'5 j:—f(E. Eo, t)D[E(E, EOa ta t)a T]d,r}3/2

2
- exp { - d } . 3)
4 j‘_f(E- Eo.t)D[E(E,EO’ts ‘E),’L’]dT

Equation (3) represents the general solution of the

problem.

In astrophysical applications one is often concerned with

ny(Eq, t— f(E, Eo, t))=KE;'dE, - E, <E*} @
=0 E,>E,|"

The limits to the integral of Eq. (3) may then be evaluated
as follows. The lower limit is obviously E,=E, since
only electrons with E,>E may contribute to N(E,r, t).
We identify 2 cases as far as the upper limit E, is con-
cerned.

Casea:t—t, < f(E,E,1).

This means that none of the electrons injected with the
upper cut-off energy E, have had time to decay to
energy E at time ¢. All the electrons comprising N(E, 7, t)
had an energy E,<E, at injection (the equality is
appropriate to electrons injected at ¢,) such that

t_tl=f(E’ Eu’ t)' (5)
Hence E, may be calculated when f and ¢, are known.
Caseb:t—t,> f(E,E,,1).

The upper limit to E, is now

E,=E,. 6)
In the remainder of Section 2, Eq. (3) is evaluated for
the source function of Eq. (4), some modes of energy
loss of astrophysical interest and, for simplicity, a
constant diffusion coefficient, D,, independent of £ and 7.

Further work on energy dependent diffusion coefficients
is presented in Section 3.

2.1. Rate of Energy Loss Time Independent dE/dr= B(E)

f is now independent of ¢ and given by
dE
=[E — >0. 7
Equation (3) may be simplified by changing the variable
of integration from E, to x where

7'2

T 4D, f(E, Eo)’
Letting

WE )= () 3

9(E, x)= [,

X

)
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we find i)g=1"
KE™7 1
KE™" 1 h(E,x) 1 N(E,r, )= —
N(E’ T, t)_ 47'L'D07' l/_ jxt g(E x) l/— . nDor VE
1
where - [2exp((1—y)br?/4Dyx)e™* —dx
" | Vx "L s
X = m (Case a.) (9) with
P2 = (r*/4Dy(t—t;)) (Casea)
X= -—————— (Caseb) 2
4D, f(E,E,) = (br’/4DyIn(E,/E)) (Caseb)
Note that here for case a the energy spectrum of the
. electrons occE~? for all r, while for case b the effects
2.1.1. B(E)= —bE* (b positive) of the upper cut-off are important.
Thus
fE,E))=(b(1—q) ' [E§*—E'"7] if q=+1 2.1.2. Ionization, Bremsstrahlung, Synchrotron and
=b 'In(E,/E) if gq=1 19 Inverse Compton Losses Simultaneously
D g+1 We neglect the slowly varying logarithmic term in the
1 formula for the ionization losses (Ginzburg and
Equation (8) yields Syrovatskii, 1964) and take
-y 201 _ _rr=a dE
NE,r, = KE Lj;o(l ri—gb q)b) = o = —k—IE—mE?,
4nDor )/ 4DyxE' ™1 T

L e *dx. (11)
Vx
Ofinterest is the case E, = co. If 1 —g >0, case a [Eq. (5)]
is then always obtained, since an electron of infinite
energy takes an infinite time to decay to E and steady-
state is never-achieved. If, however, 1 —g <0 an electron
of infinite energy decays to E in a finite time. A steady-
state solution may thus be obtained after a sufficiently
* long time (¢ — t, > E* ~%/(q— 1)b). x; is then to be calculated
from case b of Eq. (9), by substituting from Eq. (10)
for f(E, o0):
r’(1—q)b

X T apyEt T = (12)

We then use the relation
12 14
fea+ )[ R oy,
r(; 2) U(%,s/z, c) - (13)

which is valid when #2({>0, # ( 11_ ) >0 (Abramowitz
and Stegun, 1965, p. 505). U is the confluent hyper-

geometric function of the second kind. Hence Eq. (11)

becomes
e e (N u(La20) g
1—-q/ \—gq

4nDyr ]/'
as long as y> 1. A special case of Eq. (14) (when g=2 ..
losses appropriate to synchrotron radiation or inverse
Compton scattering) has already been obtained by
Webster (1970) and Gratton (1972).

N(E, r)=

where the first term on the right-hand side represents
the ionization losses, the second bremsstrahlung and
the third losses to synchrotron radiation and inverse
Compton scattering. See Ginzburg and Syrovatskii for
the values of k, I, m. Thus

2 .
Sf(E Ep)= @mk—P)i”
_1[ 2mEy+I1 1 2mE+I
| =iz TP\ Gk
if 4mk> I (Case 1).

[Note that 0<tan™!( )<m/2 in this equation]
and

_ 2mE +l—(12—4mk)1/2)
—(12 _ 1/2 o
J(E, Eq)=(I"—4mk) [ln(z Eq+ 1+ (1> —4mk)'/?
m (2mE+l (e 4mk)1/2)]
2mE + 1+ (> — 4mk)*/?

if dmk <12 (Case 2).
Substitution in (9) yields, for both cases

v 1 k+IE E3\ 1
N(E,r,t)= KEZ fx,( ) (—+l ot 2) e *dx.
4nDor |/ " \Ey) \ k+IE+mE? |)/x
The relation between E, and x may be readily found

from Eq. (8), the value of x; from Eq. (9) and we do not
list these here.

2.2. Rate of Energy Loss Dependent on Both Time and
Energy

As an illustrative example consider
dE of  BE
—=——— k . (16)

dt T 74
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Equation (16) is of astrophysical interest since, when
a=1, it represents losses to uniform adiabatic expansion
and synchrotron radiation simultaneously. 7 is now to be
measured from the explosion instant. If the expansion
conserves magnetic flux (Hoct™?) then a=4, whereas
if the field is maintained constant by some process
a=0. By integrating (16) and taking particle energy E,
at time t— f(E, E,, t)=t, we find

E7't™*—Eg'(t—f)"*=(B/la+a—1)
[e—f)Y o= (1)

By substituting (17) in (3) the solution for the particle
density becomes

KE™? .
N(E, 7, t)= ——if,‘: {(1— 3)
41ID07‘1/7—'E X

= CE
_.(1_ ;i)“‘_/l_;e-xdx, (18)
where
x=(r?/4D, f (E, Eo,. 1)
u=(r2/4D,).

As before the two possibilities for x; are:

Casea t—t;<f(E,E,?)
xl=ut/(t_t1) .
Caseb t—t;> f(E,E,,1)

x;=ut/f(E,E,,1).
Note that if E, = o0, f(E, E,, t) may be written explicitly
f(E, o0, t)=t—[(a+a—1)/(BEt?)+ ' ~=77] ~emah,

3. Models with Diffusion Coefficient and Rate
of Energy Loss Dependent on Energy and Position,
But Not Time

Once the energy losses are a function of r, the method
of Section 2 becomes more difficult to use, because a
burst of particles which were monoenergetic at injection
now have a spread of energies at any later time. The
energy of any particular particle will depend on its
past history and so even electrons at one particular
radius will not be monoenergetic. Here we shall take
the alternative approach of formally solving the differen-
tial equation of diffusion (cf. Syrovatskii, 1959; Webster,
1972). As before the relativistic electrons are generated
by a point source at r=0. Since the diffusion coefficient
and rate of energy loss are now time independent,
E and 7 may be abolished and replaced by E and ¢.

Thus, we take
D(E, r)=D(Ey", (19)

% (E,r)=B(E)r, (20)

where D(E) and B(E) are arbitrary functions and, for
the moment, n and m any real numbers (restrictions on
the ranges of n and m are, however, introduced later).
Such power-law dependences of D and dE/dt on r might,
for example, result from pulsar models in which the
pulsar governs the magnetic field strength and thermal
gas density at a given distance from it (and hence the
variation of synchrotron losses and, perhaps, diffusion
coefficient with radius) as well as accelerating relativistic
electrons in its immediate neighbourhood. In any case,
radial dependences of this form seem sufficiently general
for our purposes.

3.1. Solution of the Diffusion Loss Equation
For a monoenergetic injection spectrum (at energy E,),
the diffusion loss equation for our situation is

ON .. 0 [ dE
E —div[D(E, r)grad N] + E N ' (E,7)

=0(r)o(E — Eo)K(Eo) . ey

In the appendix, this equation is solved for N(E,r)
assuming D and dE/dt have the forms given by Egs. (19)
and (20) and that ON/dt=0 (steady-state). The boundary
conditions are:
i) As r—> o0, N(E,r)—0 and
ii) As r—0, N(E, r) tends to the solution for no energy
losses.
The solution is [Eq. (A9)]:

(m_n+2)—2(n+ 1)/(m—n+2) K(Eo)
I'((n+1)/(m—n+2))4n(n+ 1) |B(E)|

D(E) —(m+3)/(m—n+2)

&2
¥
= oEEEE
subject to the conditions
m—n+2>0, (23)
n+1>0. (24)

The physical significance of Egs. (23) and (24) is discussed
later in Section 3.2.

To find N(E, r) when the injection spectrum is a power
law (K(E,)=KE;?"), Eq. (22) must be integrated over E,,
and this is done in the appendix for the case of

D(E)=D,E”, (25)
B(E)= —bE*, (26)
where p and g are any real numbers and D, and b positive

constants. The result for N(E, r) [Egs. (A15) and (A18)]
depends on the sign of p—g+1:

N(E,r)=

dE

m—n+2
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iyp—q+1<0
(m—n+2)7 20+ D=t DEI(1—y)/(p—g+ 1)
4n(n+ DI (n+1)/(m—n+2)b(g—p—1)
b(g—p—1)]™* 3)/(m—n+2)
[ D, }

N(E,r)=

_(p—g+1)(m+3)
(m—n+2)

blg—p—1r""*? }
exp {_ (m—n+2)?D,EP 1

—y+1—gq

( 1—y n+1
p—q+1’" m—n+2’
blg—p—1)rm"*2
m—n+27PD B ) 27)
i) p—q+1>0
N(E, )
(m_n+2)_2(n+1)/(m—n+2)KF(p_q'l"y+ n+1 )
p—q+1 m—n+2

da(n+ 1) (n+1)/(m—n+2))blp—q+1)

) [wl(m 3)/(m—n+2).E_7+1—4_%
D,

.U(P—q+y n+1 n+1
p—q+1 m—-n+2"" m-n+2’

. b(p_q+1)rm—n+2 )

(m—n+2)>D,EP~9*1)’
where U is the confluent hypergeometric function of
the second kind. Equations (27) and (28) are valid
when y>1 and when conditions (23) and (24) are
satisfied. In the limiting cases of negligible and large
energy losses, (27) and (28) assume simpler forms,
which are also given in the appendix [Egs. (A16), (A17)
and (A19)].

(28

3.2. Effect of the Singularity at the Origin and the Physical
Significance of the Results '

The reader will be aware that when n or m is negative
the diffusion coefficient (Docr”) or energy losses
(dE/dtocr™) become infinite at the origin. It is important
to discuss the physical significance of our results in the

presence of such singularities. In this subsection we -

demonstrate the reasons for restrictions (23) and (24)
and that our solutions are physically meaningful when
these conditions are met.

Consider the diffusion from the point source in the
absence of energy losses and assume a steady-state
exists. If the source generates n, particles per second
and D=D,r", the solution of the diffusion equation
which has N—0 as r— oo is

nsr—(n-i- 1)
4nDy(n+1)’

when n+1>0.

N()= (29)

Since the flux of particles crossing any sphere centred
on the origin is n, we could envisage the electrons
to be generated on the surface of a sphere of radius
ro(ro<r) and find exactly the same solution for N.
Thus, when we take account of the energy losses, we
may imagine the electrons as produced at the surface
of a small sphere surrounding the origin (and hence
avoid any singularities) as long as the flux crossing
the sphere at each energy is the same as that which left
the point source i.e. as long as the particles do not lose
much energy inreaching r,. We have, in fact, automatically
satisfied this condition by demanding that, as r—0,
the solution tends to that for no energy losses. It may
be readily shown that when m—n+2<0, energy losses
at the origin are catastrophic. This is the physical
interpretation of Eq. (23). Problems with m—n+2<0
may, of course, be approached by specifying the inner
boundary condition at r,, (cf. Webster and Longair, 1971);
the solution for N is then a function of r, and we shall
not consider such cases here.

To obtain insight into condition (24), n+ 1 >0, we again
neglect energy losses and begin with the solution for
the particle density dN(r, t) from a burst of ndt, particles
injected between t=t, and t,+dt, (see Fig. 1 for time
definitions)

_ nsdto {_ i__}
dN(r,t)= B(t— to)3/(2 = ¢XP Dy(2— n)Z(t —ty) ’

To avoid divergence of the total number of particles
as r—o0 we assume 2—n>0 when

47 3
— 2 —n)? 3/(2—n)1-'( )
B= 5 5 [Pe—)] s—
The density resulting from steady injection from t=t,
to t=t is therefore,

ngdt re
N(r,t)= [t _ Tst0 { — —}
r0=Ji Bl—t07@ " P\ ™ D 2—n—ty)

n, [Dy(2 =] +1a -

[ @ +mie=m=1p=ugy

B T
where
= 7'2_"
1 Dy2—n)A(t—ty)’
Thus
ns [D (2—")2](1 +n)/(2 —n)
N(r, t)= E 0 r"+1
. (1+n r2n )
2—n’Dy(2—n)(t—t,))’
where I (1+n e ) is an incomplete
2—n’ Dy2—n)(t—t,) P

gamma function. Now as t—o0, u;—0 and if (1+n)/
(2—n)>0 (i.e.—1<n<2) we have
—(n+1)

Ne D= b+ 1)
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05— 0, 0,
10 15 20 25 10 15 20 25 10 15 20 25
log,, v (Hz) log,, V (H2) log,, vV (Hz)
(a) (b) (c)

Fig. 2a—c. Illustrating the effect of changing m when p=0 and n= —0.9. (a) m= —2, (b) m=0, (c) m=2

20 20 r

15

log,, € (arbitrary units)

05 10 15 20 25 5 10 15 20 25 05, 0 3 20 25
log,, v (Hz) log,, v (Hz) log,o V (H2)
(a) (b) (c)

Fig. 3a—c. Illustrating the effect of changing n when p=0 and m=0. (a) n=—0.9, (b) n=0, (c) n=0.9

Figs. 2—S5. Plots of log,, (synchrotron emissivity) vs log,, (frequency) from the models of Section 3. In each graph, three curves are drawn and
marked i, ii and iii. Curve i is the spectrum at r=10'8 cm, Curve ii at 7=3 - 10*® cm and Curve iii at r=10'° cm. The index of the energy spectrum
at injection is y=1.52 and the mode of energy loss synchrotron radiation throughout: The different graphs show the effect of changing the energy
and position dependences of the diffusion coefficient (Doc EPr") and the position dependence of the energy losses (dE/dtoc E*r™). D is always nor-
malised to be 7-210%¢ cm?s™* at E=6-210"'eV and r=3- 10'® cm while H, =3-10™* Gauss at r=3- 10'8 cm. Because of the rapid increase
of the diffusion coefficient with energy in Figs. 4 and 5, the diffusion assumption becomes invalid for v>10'® Hz in these two figures (see text)

identical to Eq. (29), showing a true steady-state is
achieved. On the other hand, if (1+n)/(2—n)<0(n< —1)
we have

_n(=2 L —aeme-n

N(r, t)= B(n+1)(t ty)

when t—t, is large and which diverges as t—t, —>o0.
Thus no steady-state solution is reached. Note also
that naive application of the steady-state solution
Nocr™®*1) implies a divergence in N as r—oo0 when
n<—1. For these reasons, we have restricted our
calculations to —1<n<2 in which range physically
meaningful steady-state results are obtained.

3.3 Discussion of the Synchrotron Spectra for Power-law
Injection

From the expressions for N(E, r) for power-law injection
[Egs. (27) and (28)] we may readily calculate the

synchrotron emissivity (v, r) from the usual formula

&(v, r)=(constant) [§ dEN(E, NH () |5, K s/s(0)dn

’ (30)
where
v.=(3eH  /Anmqyc) (E/mc?)?
(Ginzburg and Syrovatskii, Chapter 2, p. 63). When
computing the synchrotron spectra from (30) we have
assumed that the electron distribution is always isotropic
and the direction of the magnetic field is random when
averaged over unit volume. Figures 2—5 show spectra
for various forms of energy loss and diffusion coefficient.
Each graph is a plot of loge vs log v for 3 different radii:
r=10%cm (Curve i), r=3.10*cm (Curve ii) and
r=10'° cm (Curve iii). As the loss process of greatest
interest is synchrotron, we have taken g=2 and Hocr™?
throughout. We have also assumed y=1.52, but the
curves will be qualitatively similar for larger values
of y. In all cases, the diffusion coefficient has been scaled
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15

10 10

log € (arbitrary units)

15F

5 10 15 20 25 3 10
log,oV (Hz)
(a)

log,o v (H2)
(b) (c)

20 25 25

log,o V (H2)

Fig. 4a—c. Illustrating the effect of chaﬁging m when p=2 and n=—0.9. (a) m= —2, (b) m=0, (c) m=2

101

log,, € (arbitrary units)

10 15 20 25 3 10

15 20 25 10 15 20 25
log,, v (H2) log,,V (H2) log,oV (H2)
(a) (b) (c)

Fig. 5Sa—c. Illustrating the effect of changing n when p=2 and m=0. (a) n= —0.9, (b) n=0, (c) n=0.9

tobe 7.2x 10?6 cm? s~ at r=3-10'% cm and E=6-10"!
eV and the component of magnetic field perpendicular
to the line of sight H , =3-10~* Gauss at the same radius
[these values are appropriate to models of the Crab
Nebula, see Wilson (1972)]. In Figs. 2 and 3, models
with p=0 (diffusion coefficient independent of energy)
are illustrated, while in Figs. 4 and 5, p=2 (diffusion
coefficient oc E2) is assumed. Figures 2 and 4 illustrate
the effect of changing m (the exponent in the radial
dependence of dE/dt) and Figs. 3 and 5 the effect of
changing n (the exponent of radius in the expression
for D). We discuss each figure in turn.
1. Figure 2. g=2, p=0, n=—0.9, m= —2 (a), m=0 (b),
m=2 (c).
At low energies where losses are unimportant,
N(E,r)ocr%'E~132 [Eq. (A16)]. For m=—2 and
m=0 the emissivity also decreases with increasing
radius (eocc NH?*1/2) but when m=2 the increasing
field strength to larger radii dominates the decreasing
density and the emissivity increases. Since the average
" magnetic field between r=0 and r=3 - 10*® cm progres-
sively decreases in the sequence m= —2, 0, +2, the fre-
quency where the spectrum begins to steepen (v,) for
Curves (i) and (ii) increases from Fig. 2a to 2b to 2c.
Beyound r=3-10'® cm, the trend of field strengths is
reversed so for Curve (iii) v, is quite similar for all 3 curves.
This is because the reduced rate of energy loss in the lower

field at large (small) radii tends to compensate the
increased rate in the higher field at small (large) radii.
These arguments explain the progressive “opening out”
of the high frequency curves as one goes from Fig.2a
to 2c.

2. Figure 3. g=2, p=0, m=0, n=—0.9 (a), n=0.0 (b),
n=0.9 (c).

Since the magnetic field is now constant we have, at low
frequencies, eoc N(E, r)ocr~®+*DE~1-52 The differences
in the high frequency spectra between the three figures
may be accounted for as follows. The average diffusion
coefficient between r=0 and r=3-10'® cm progressively
decreases in the sequence n=—0.9, 0, +0.9 and so v,
for Curves (i) and (ii) decreases as n increases (a large
diffusion coefficient implies fast diffusion, so that at any
given radius the electrons are predominantly young
and v, correspondingly high). Beyond r=3-10'8 cm,
this trend of the diffusion coefficient is reversed and
arguments analogous to those used in connection with
Fig. 2 account for the progressive “closing up” of the
three curves at high frequencies as one goes from
Fig. 3a to 3c.

3. Figure 4. g=2, p=2, n=—09, m= -2 (a), m=0 (b),
m=2 (c) and Fig.5. g=2, p=2, m=0, n=-0.9 (a),
n=0 (b), n=0.9 (c).

Figures 4 and 5 differ from Figs. 2 and 3 by including an
energy dependent diffusion coefficient (DocE?). The
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A (arbitrary units)

5 10 5 10
E(arbitrary units) E(arbitrary units)

(a) (b)
Fig. 6a and b. Plots of A= [E (D(E)/B(E))dE versus energy E. When
m=n=0, A represents the mean square distance from the origin of
electrons (energy E), which were injected with energy E,. (a) p=0,
g=2, so A=(Dy/b)(1/E—1/E,). Curves are given for Eq= o0 (dotted)
and for two other values of E,. (b) p=2, g=2, so A=(D,/b) (E,—E).
The two straight lines represent the behaviour for different values of E,,

most important difference which results is that it is now
the low frequency spectra which are most affected by
the synchrotron losses. Such an effect arises since, at
any given radius, the high energy electrons are, on
average, now much younger than low energy ones.
Thus, in spite of the faster rate of energy loss at high
energies, the low-energy electrons are affected more
strongly by the losses. In these models, the size of the
source increases with increasing frequency at low
frequencies. Such an “inverted” situation will arise
whenever p>1 (for g=2). When p=1, the faster rate of
diffusion of the high energy electrons just compensates
for their faster rate of energy loss and the spectra are
power laws of index a= —v/2 over the whole frequency
range.

The effect of variation of parameters m and n in Figs. 4
and 5 may be understood by arguments analogous to
those used for Figs. 2 and 3.

Next we add a word of warning about Figs. 4 and 5.
Because of the rapid increase of diffusion coefficient
with energy, the corresponding mean free path (1) of
the electrons (1~3D/c) is 10'® cm at E=2.510'2¢V.
At higher energies, therefore, most electrons are not
scattered before they reach the radii at which we have
calculated the emissivity. Under these circumstances,
the diffusion assumption is invalid (the motion cor-
responds more closely to free streaming), the electron
density cannot be calculated using Eq. (28) and the
synchrotron spectra will be incorrect for v>10'° Hz.
As Figs. 4 and 5 are intended only to give physical
expression to Eq. (28) we have not corrected them for
this effect.

The difference between the spectra for cases with
p—q+1<0 on the one hand (e.g. Figs. 2 and 3) and
p—q+1>0 on the other (e.g. Figs. 4 and 5) may be
further clarified by considering the dependence of the
parameter /1=j§ol—;% dE on energy E, when the dif-
fusion coefficient and rate of energy loss do not depend

on radius (m=n=0). It may be easily seen that A then
represents the mean square distance from the origin
of a particle with energy E, the particle having been
injected with energy Eq(E,> E). Graphs of A versus E
are shown in Fig. 6. In Fig. 6a we have taken p=0,
g=2 and in Fig. 6b p=2, g=2. Electrons are injected at
A=0 and E=E, and move to smaller energy and
larger A. Trajectories are shown in each graph for two
different values of E, and, in addition, for E,=o0 in
Fig. 6a. When p=0, g=2 (Fig. 6a), there are very few
electrons above an energy E=D,/bi (dotted curve).
This sharp cut-off explains the exponential decay of the
synchrotron emissivities at high frequencies in Figs. 2
and 3. However, no such sharp cut-off occurs when
p=2, g=2 (Fig. 6b); for any given 4, all values of E are
permitted and the synchrotron spectra (Figs. 4 and 5)
are much smoother.

3.4. The Integrated Spectrum
i) Preamble

Many observations of radio sources determine only the
integrated emission and not the distribution of bright-
ness. It is, therefore, important to determine the shape
of the integrated spectrum in our models. Because these
apply to infinite space, we cannot, strictly speaking,
take account of the source boundary correctly. However,
if we envisage a spherical radio source of radius R,
with the particles being generated at the centre, an
approximate solution may be obtained by applying the
equation inside the source and assuming no emission
from outside it. In the regime where energy losses are
large, the result will be an excellent approximation, since
no electrons of these energies can reach the boundary,
whose effects are, therefore, negligible. In the other
domain, where particles can reach the boundary before
losing much energy, the solution will depend on the
nature of the boundary condition at r=R. The extreme
possibilities are a perfectly absorbing and a perfectly
reflecting boundary and we may expect our solution to
correspond more closely to the former, since the pre-
dominant motion of the particles is, after all, towards
larger radii.

The models allow for variation of energy losses with
radius (dE/dtocr™). When the losses are synchrotron,
the corresponding variation of magnetic field must be
taken into account when calculating the synchrotron
spectra. Since this type of loss is our main interest, we
give the derivation of the integrated spectrum for
Hocr™? (cf. Section 3.3). Cases in which the dependence
of H on r is not directly related to m (such as inverse
Compton, ionisation or bremsstrahlung losses) may be
dealt with by an analogous procedure.

ii) Calculation

We shall make the “monochromatic” approximation
i.e. an electron of energy E radiates a power of

P=(2¢/3) (e*/moc®) H1(r) (E/mqc?)? (1)
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at a frequency v where with
v=(0.29 x 3eH ,(r)E?)/(4nm3c®). (32) _(—g+1)
2

The procedure is to calculate first the radiation emitted
in a spherical shell of radius r and thickness dr, which is
I, dvdr=(constant) - r2 ™4y 2N(E, r)drdv .

From the whole source

I,dv=(constant) v'/2dv(§ r* *™*N(E, r)dr, (33)
where R is the radius of the source. We must now
substitute for N(E,r) from Eq. (27) or (28) depending
on the sign of p—q+1.

a)p—q+1<0.

Substituting (27) in (33) and changing from variables E
and r to v and z where
z=[blg—p—Dr"~"*2)/[(m—n+2) DyE?~* 1]

one has

Ivdv=(constant) . vl/z(_)""z —q—(p—q+1)(m+3)/(m—n+2))

. {3—(m/4) (=y—q—(p—q+1) (m+3)/(m—n+2)}
m—n+2+m/4)(p—q+1)
+1/2(—y+2—qg—(p—q+1)(m+3)/[(m—n+2).(37)
b)p—q+1>0.
We must now substitute Eq. (28) for N(E, r), but find
exactly the same frequency dependence for I dv as the
case p—q+1<0 [see Egs. (36) and (37)]. When the
energy losses are negligible, the condition for con-

vergence of the integral is, again, Eq. (35). When the
losses are large, however, the integration has the form

(&2~ 1U(ay, ¢, 2)dz

= (@I (ay —dI(d—c+1))/(T'(a)l(a; —c+1)

p—qtl {—y—g— —(p— -
.v-m/4{z(m_”+2+(m/4)(p_q+1))} (=7-g—12/m—((p=a+ 1) (m+ 3)/(m—n+2)))
3-m/4(—y—q—((p—q+1)(m+3)/[(m—n+2))
. I:)OZ m—n+2+(m/4)(p—q+1)

where
Zo=b(q—p"" I)Rm—n+2+(m/4)(p—q+ l)v—(p—q+ 1)/2
(m—n+2)?>Dy AP 9!
a=(1-7)/(p—q+1),
c=1+m+1)/(m—n+2),

b

and 4 is a constant. The integral may be simply evaluated
in the two extreme cases of no energy losses and strong
energy losses.

Losses negligible.

This means z< 1 throughout the source so we may use
the small argument expansion for U:

Ulao, ¢, 2)~(I'(c—1)z' ~9/I'(ao)

The resulting integral converges at its lower limit if

3—(m4) (=y—g—(p—g-+1) (m+3)/m—n-+2)
m—n+2+(m/4)(p—q+1)

_(n+1)
(m—n+2)

z<1.

>0 (35)

in which case
Idvocy™0=1*ni2gy (36)

as we would expect from the energy spectra for small
losses [Eq. (A16)].

Losses large.

In this regime, few electrons reach the edge and the
upper limit of the integral may be put equal to oo.
Convergence at this upper limit is assured by the ex-
ponential term and at the lower one when Eq. (35) is
satisfied. We then find a power law in frequency
I,ocvidv

e *U(ay, ¢, z)dz , (34)

if 0<Rd<Ra,, Zc<Rd+1 (38) (Erdelyi et al., 1953,
p. 285), where

g 3= mA) (=y—g—(p—g+1) (m+3)/m—n+2)
h m—n+2+(m/4) (p—q+1)
a;=((p—g+y/(p—q+1)+(n+1)/(m—n+2)

and ¢ and z have the same meanings as in Eq. (34).
Thus Eq. (38) become

p—q+y n+1

p—q+1 m—n+2

S 3—m/4)(—=y—q—(p—q+1)(m+3)[(m—n+2))
m—n+2+(m/4) (p—q+1)

n+1
~ m—n+2
under which conditions we have a spectrum of the form
of Eq. (37).

iii) Physical Discussion

The integral spectrum for no energy losses [Eq. (36)]
depends only on y, the index of the injected energy
spectrum and p the exponent of energy in the diffusion
coefficient (p determines the variation with energy of the

.leakage time from the source). For large losses, the

spectral index is more complicated [Eq. (37)] but if the
magnetic field is uniform (m=0) we find

Idvocy\"1*2-912

For the rest of this section, we take g=2 (appropriate to
synchrotron losses) and then have

Iocy™Y2,

Thus, if p=m=0the spectrum shows a change of spectral
index of 0.5 [from —(y—1)/2 to —y/2], a very well-
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known result. The reason for the integrated spectrum
being independent of n and p in the high energy loss
regime when m=0 is quite simple. As long as the
electrons lose most of their energy inside the source,
their exact spatial distribution is unimportant for the
integrated spectrum. However, when the magnetic
field varies with r (m=+0), the integrated spectrum also
depends on m, n and p. Thus, in models with m=+0, the
change of spectral index between low and high frequency
regimes is not, in general, equal to 0.5. In particular, if
i (m—n+2) <1,

m(p—q+1)
and bearing in mind Eq. (23), eq. (37) becomes
(m—n+2) 2[ 12 4(m+3)

(p—g+1) m! m m

or a— —1 when the second term is neglected. Such o
could be achieved, for example, by taking m~ —2 (i.e.
Hocr™!) and n~0. It is interesting that the spectral
index of the integrated X-ray emission from the Crab
Nebula is —1.1 to —1.2 (Peterson and Jacobson, 1970)
while at radio frequencies it is —0.26 (Baldwin, 1971).
This spectrum could be explained by taking y=1.52
over the whole range of injected energies, p=0 for
electrons radiating radiofrequencies, m~ —2 and n~0.
The ad hoc postulate of a steeper injection spectrum at
X-ray energies than at radio energies (Wilson, 1972;
Rees and Gunn, 1974) is thereby rendered unnecessary
and instead a simple power law injection spectrum
from E=10% eV to 10** eV taken. We defer a more
detailed comparison of our models with the observa-
tions to a later date.
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Appendix

We first consider the case of a monoenergetic injection
spectrum and then integrate the result to obtain the
solution appropriate to a power law injection spectrum,
Monoenergetic Injection Spectrum.

The diffusion-loss equation for our situation is

ON . 0 [ dE ]
. div[D(E, r)grad N] + E N T (E,7)

(A1)
=(r)0(E — Eo)K(E,) .
Except at r=0
ON . 0. dE
P div[D(E, r)gradN] + % [N T (E, r)] =0. (A2)

We shall first solve (A2), then match the solution to
appropriate boundary conditions at r=0 and r=o00 to
obtain the solution of (A1). We search for a steady-state
solution, express D and dE/dt by Egs. (19) and (20) and

our differential equation becomes

DE) o[ .,0N\ & ~
_ :Z)E("“W)MJ”ﬁ(NB(E)):O.

To solve (A3) first change variables to y and 4 from N
and E:

y=N(E, r)B(E)
D(E)

l=.‘.goEE—)— dE

(A3)

and then transform the equation using the Laplace
operator (¥exp(—qA)dA obtaining

L2 012, g5 im0y
2% " o +r"(qy —y(A=0))=0,
where

y=[gyexp(—qA)dA.
For r+0, N(Eo, 1)—0.. y(1=0)—0.

After a further variable change to » and z:

v=r(n+1)/2y 5 .
— . ,r(m—n+2)/2
z l/& (m—n+2)

we find

220" +20' — {2 +((n+ 1)/ (m—n+2)*}v=0, (A4)

where v’=@.
0z
This is the modified Bessel’s equation. Solutions are

Iigs 1)/(m—n+ 2)(2) and K(n+ 1)/m—n+ 2)(2)
(e.g. Abramowitz and Stegun, 1965).

) 1)/(m-n+2)(z) and I 4 1)/(m—n+2)(z)

are linearly independent except when (n+1)/(m—n+2)
is an integer, while I, 1)/m—n+2)(2) and K1 1/m=n+2)(2)
are linearly independent for all (n+1)/(m—n+2).

To simplify matters we now assume m—n+2>0 (A5)
and n+1>0 (A6). To choose the appropriate solution,
we appeal to boundary conditions atr=0and r= 0

i) As r— o0, we require N—0 implying

v=AK 4+ 1)/(m—n+2)(z) s

where A is independent of z.
ii) As r—0, we assume N tends to the solution for no
energy losses. This is because electrons at the origin
have just been created there and have lost no energy.
The steady-state solution for no energy losses is
K(Eg))(E—~Ep) r™** 1

4nD(E) (n+1)

or in terms of v, g and z
_ K(Ey) [m—n+2) _]_—]_("+1}/(m—n+2)
dn(n+1) 2 V4

. Z—(n+ 1)/(m—n+2) .

(A7)

N(E,r)=

(A8)
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Expanding (A7) for small z and equating to (A8) we may
find A and thus the final solution for v. All that remains

Diffusion of Cosmic Rays in Non-thermal Radio Sources 11
and
B(E)= —bE?, (A13)

is to convert from variables v, g and z back to N, E and r.
The conversion from g to A is effected by using the fact
that the inverse Laplace Transformation of

2“1/2‘1,;— lev(zal/qu/Z)

is equal to

A2 bexp(—a/20)W, _ 115 (/)

where W is a Whitaker function (Erdelyi et al., 1954,
p- 283). Alternatively the solution may be expressed in

terms of the confluent hypergeometric function of the
second kind since

Wi 1720/ 2) =exp(—0/22) (/)12 *
U 4+v—p, 14+2v,a/h).

In our case

p n+1 i+ n+1

“2m-n+2 "7 T 2m—n+2)
rm—n+2

0C=(m—n+2)2

and since 1+v—pu=0, the final solution becomes

(m_n+2)—2(n+ 1)/(m—n+2) K(EO)
1 B
r("—+—) ann+y BB
m—n+2

- [JE,D(E)/B(E)dE] ~(m* 3)m=n+2) (A9)

N(E,r)=

ymn +2
exP{ T m—nt2yp ;goD(E)/B(E)dE} '
Putting m=n=0 in Eq. (A9) yields
K(E,) 1

N(E,r)= {4n[E D(E)/B(E)dE}*" | B(E)|

(A10)

exp] ~ s
P\ " 4[E D(EY/B(EME

which has been found by Syrovatskii (1959).

Power-law Injection Spectrum

We now take K(E))=KE;,” E;<E,<E,
=0 Ey<E; or E,>E,.

The solution for the electron density is, from (A9):

(m_n+2)—2(n+1)/(m—n+2) 1

N(E,r)= .
A
B KE [ [£,D(E)/B(EME] -+ 9/=n+2 (A1)

rm—n+2
' e"p{ T m—n+ 27, D(E)/B(E)dE} dE, -
If E<E,, E3"=E, but if E>E,, E¥"=E. For E>E,,

N(E,r)=0 and when E<E_, we must put E;"™*=E,. Let
us now substitute

D(E)=D,E?,

(A12)

where b is a positive number, in Eq. (A11). We assume
E>E, and take E§"™**= c0.

Thus:

(m_n+2)—2(n+ 1)/(m—n+2) K

n+1 ) 4

‘ [b(q —p— 1)}(m+ 3)/(m—n+2)
D,

_(p—g+1)m+3)
. E (m—n+2)

N(E,r)=

E p—q+1)y—(m+3)/(m—n+2)
reofu-{3 )
J£Eo { E
b(q—p— l)rm—n+2

. — E,.

AR T e
By changing the integration variable, we may obtain a
form related to the confluent hypergeometric function
of the second kind. The substitution necessary depends
on the sign of p—q—+1.
i) p—q+1<0.

B Eo)p—q+1}—1
Lett= {1 — (-E—

whence the integral becomes

1—y _1 y—1 n+1
j’io(t_l)p—q+1 tp—q+1 m—n+2

blg—p—1)rm—n+2;
. eXP{_ (m(iln-iZ)z)DoEP—q+1}dt‘
Now
I(@U(a, c, 2)=e*[Pe " (t—1)*" 1t 1dt
for #a>0 and #£z>0 (Abramowitz and Stegun, 1965,

p- 505).
Thus the solution for N(E,r) is

(m_n+2)—2(n+1)/(m—n+2)KI-v( 1—y )

(A14)

N(E.r)= n+1 poats
b(q—p— 1)](m-0.-3)/(m—n+2)
e
__y+1_q_(p—q+ 1)(m+3)

E (m—n+2)

. b(q_p_l)rm—n+2 }
e"p{ (m—n+ 22D EP 171

1—y n+1 b(@g—p—1)rm—"*2
(p—q+1’ m—n+2 (m—n+2)2D0EP“‘“)(A15)
as long as n+1>0
m—n+2>0
and y>1.

Putting m=n=p=0, Eq. (A15) reduces to Eq. (14).
Of interest are the forms of Eq. (A15) for small and large
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energy losses. In the former case

blg—p—1rm—"*2
(m—n+2)?D,E? 1"
and we have

1<1

KE™"
4n(n+1)DyEPr"*1

as expected. For large energy losses

blg—p—1)rm"+2

N(E,n=

(A16)

1
(m—n+2)>DyEP~1*1 >
one finds:
n+1 -1
N(E,r)=(m—n+2)_2 "“"+2+qu“]
_n+tl oyl
b(q_p_l)r—rﬁz p—q+1
e

xr( )
p—q+1
47zDo(n+1)F( n+l )

m—n+2

(p—q+1)m+3)
(m—n+2)

(m—n+2)(y—1)
. r (p—q+1) .exp{_

(ii) p—q+1>0.
For this case we substitute
t=1-{1—(Ey/EP "1}

and an integral of similar form to Eq. (A14) results. The
solution for the electron density is then

N(E, 7

—2y+2—q—

blg—p—1rm"*?
(m—n+2)2D,EP~9%1[" (A17)

(m_n+2)—2<n+1)/(m—n+2)KF(P—Q+v n+1 )
= p—q+1 m—n+2
n+1 )
trtr 0 (5 Mo+
) IMI_) (m+3)/(m—n+2)
D,
.E_“l_“_%)
(p—q+y n+1 n+1
U , ,
p—q+1 m—n+2 m—n+2
b(p_q+1)rm—n+2
(m—n+ 27D, E7 11 (A18)

as long as:
n+1>0
m—n+2>0
y>1.

For small energy losses Eq. (A18) becomes Eq. (A16)
while when the losses are large the electron density is

p=a+ty _
(m—n+2)2("“’“)Kr(p q:’+mn:i2)

4 )\———|D

mn+1) (m—n+2) 0

. [b(P—¢1+1)]~($:ZH) r_(”"'l)‘—(m_'(':_z;(fl_)q-'-y}E-q (A19)
. DO .

It is interesting that Eq. (A19) shows a power-law in
energy, of slope = —g, i.e. the shape of the spectrum
when the losses are large is governed by the nature of
the energy losses and not the original injected spectrum.
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