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GORAN SUNDHOLM

CONSTRUCTIVE GENERALIZED QUANTIFIERS

The syntactic categorization of ordinary quantifiers in contemporary
(model-theoretic) theories of quantification, namely that of expressions
which combine with predicates to yield complete sentences, is an
inheritance from Frege, whereas the standard notation

(1) Oxe

is borrowed from Peano via Russell (in preference to Frege’s two-
dimensional symbolism). These Founding Fathers of modern logic
operated with interpreted formal languages where each formula had
its fixed meaning. Thus Fregean quantifiers were intended to range
over the universe of ‘all objects’ and hence, since all quantifications
concern the same domain, there was no practical or theoretical need
for Frege to include explicit information concerning the domain of
quantification in the quantifier-notation.

Frege’s notion of a universe of all objects is highly problematic,
though. The ontological category of objects (Gegenstinde) is obtained
via the semantical category of proper names (Eigennamen). An object
is what can serve as the Bedeutung of a proper name. Among the
elements of this all-inclusive universe are certain abstract objects, the
proper names of which are obtained through the use of such second-
level operators as ‘“‘the class of x such that ¢(x)” and the cardinality-
operator “‘the number of x such that ¢(x)’. The predicate, however, is
allowed to take on also the form (1) and this means that the totality of
objects has not been sharply delineated: objects are the referents of
proper names and some of the latter are formed in such a way as to
involve a universal quantification over the universe of objects in an
essential way. The viciousness of this circle of impredicativity gets
acute in, for example, the paradoxes of Russell and Cantor, respec-
tively.!

Owing to these difficulties, one insists that the quantifiers are to
range over a totality whose existence and extension are secured prior
to, and independently of, its service as a domain of quantification.
Thus one might prima facie think that post-Fregean theories of
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quantification would use a notation that explicitly indicates the domain
A of quantification such as

(2) (Qx: A)p
or, in another notation

3) Q(A, (x)¢) (Here (x)¢ indicates that the variable x is
bound in the predicate ¢.)

The syntactic category of such a quantifier is that of an expression
which combines with a saturated expression indicating a set and a
predicate to yield a complete sentence. This we find in Russell who
worked with an interpreted formal language and who chose to use
types, that is, predicational ranges of significance, as quantificational
domains (even though ‘typical ambiguity’ made the use of (1) possible
in certain circumstances). The reversal back to the Fregean syntax (1)
comes about through the abandonment of a central Fregean feature,
namely that the formalism should have one fixed interpretation. After
the separation between syntax and semantics in the 1930s, when
logicians came to adopt a metamathematical attitude in the study of
uninterpreted formal systems, model theoretic semantics reigned
supreme. Then the domain of quantification has no syntactic role, but
belongs to semantics solely. This preference may further have been
enforced by the central role that pure predicate calculus came to
occupy within the metamathematical studies; here there is no ‘in-
tended interpretation’ and all domains of quantification stand on an
equal footing. In view of the impredicative obstacles built into Frege’s
universe it is worthwhile to remark here that even though the syntax is
the Fregean (1), in any particular interpretation the effect of the
demand that the domain of quantification by specifiable independently
of its use as such a domain is, on the level of semantics, to transform
the form (1) into (2).

In the model-theoretic tradition the syntax of the generalized
quantifiers is Fregean. Examples are

4) Most x¢ — most things are ¢
and its binary version
(5) Most x(¢(x), ¥(x)) — most ¢ are ¥,

where in both cases an underlying domain is presupposed in the
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semantics. Thus, considered semantically, the real forms of (4) and (5)
are (even model theoretically)

(6) (Most x: A)e(x) - most A are ¢, or, along the lines of (3),
Most(A, (x)¢)

and

(7 (Most x: A)(¢(x); ¥(x)) — most ¢ in A are ¢, or
Most (A, (x)e, (x)¢).

From a constructive point of view, on the other hand, the use of an
uninterpreted formalism is unnatural and (6) and (7) are also syntac-
tically the proper versions. One can, however, consider quantifiers
that combine with more sets than one, such as

(8) More (A, B) - There are more A than B
and

9) More (A, (x)¢; B, (x)¢¥) — There are more ¢ in A than
there are ¢ in B.

The possible forms are:

(1) combine a domain with one or more domains;

(ii) combine a domain with one or more one- or many-place
predicates;

(1ii) combine two or more domains with one or more one- or

many-place predicates.

Since classical model theoretic semantics has to be ruled out from a
constructive point of view, the meaning of a constructive generalized
quantifier has to be given via either a real or a nominal definition. The
former alternative consists in taking the generalized quantifiers as new
primitives and providing them with direct meaning explanations along
the lines of Heyting’s familiar pattern. The second alternative consists
in giving explicit definitions of the quantifiers using known con-
structive abstractions.

In this note I shall adopt the latter perspective, using the type theory
of Martin-Lof (1975, 1984) as my constructivist framework. Following
Martin-L6f’s current practice the (1984) I-rules are to be reformulated
along the lines of (1975) and I shall not make any difference between
judgmental identity = and definitional equality =. Furthermore, I shall
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use a colon in place of Martin-Lof’s epsilon. In (1986) I have given an
informal presentation of the type theory of Martin-Lo6f (whose initial
section in (1975) also gives sufficient background). Aczel (1980) is
another accessible presentation.

Of crucial importance in my treatment is that (A, (x)¢) does triple
duty in the type theory: it serves as generalized union, existential
quantifier, and set abstraction. An element of the set of elements in A
that have the property ¢ is from a constructivist perspective nothing
but a pair (a, b), where a: A and b is a proof-object for ¢(a), i.e., a
proof that a has the property ¢.

In the type theory, canonical R-element sets M,, r=0,1,2,..., are
present. Here I shall need these sets presented as a family M(r) over
the natural numbers N. Martin-Lof has given an elegant treatment
which unfortunately remains unpublished and here I shall adapt the
M,-sequence offered by Aczel (1980). First put

f(a)= R(a, I(N,0,0), (x, y)(y+ I(N,0,0)): U

for all a: N.
Here U is the universe of small types and + is disjoint sum (rather
than addition on the natural numbers). Then

f(0)=1I(N,0,0): U

and

f(s(a))=f(a)+I(N,0,0): U (a:N).
Finally put

M(a)=R(a, L,(x, y)f(x)): U (a:N);
then

MO)=1:U
M(1)=I(N,0,0): U
M(s(s(a))) = M(s(a))+ I(N,0,0): U (a:N),

as required by Aczel.
Furthermore, I shall use various sorts of mappings between sets.
Consider first the case of injections.
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(100 f:A-B
f is an injection: Prop
(11) f:A-B

f is an injection = (Vx: A)
(Vy: A)YI(B, ap(f, x), ap(f, y)) > I(A, x, y)): PROP

The first of these two rules says that f is an injection is a pro-
position, given that f is a function from A to B and the second says
which proposition it is, given the same presupposition. This is the form
that nominal definitions will take in this note. In the sequel I shall
compress the two rules into one. Surjections are dealt with similarly.

(12) f:A—>B
f is a surjection : Prop
fis a surjection = (Vy: B)(3x: A)I(B, ap(f, x), y).
Finally, bijections are defined
(13) f:A—B
f is a bijection: Prop
f is a bijection = f is an injection & f is a surjection: Prop. 2

The last of our preliminaries deals with finiteness.

(14) A:set
Finite (A):Prop
Finite (A) = (3k:N)(3f: M(k)— A) (f is a bijection):
Prop.

Here we see the use of the family M(k); a set is finite if it is a bijective
image of a k-element set.
(15) A:set
Infinite (A):Prop
Infinite (A) = (3f: N— A)(f is an injection) : Prop.

We are now ready to treat of a number of generalized quantifiers.

(i) Finately many A are ¢.

(16) A:set @(x):Prop(x: A)
FIN(A, (x)¢): Prop
FIN(A, (x)¢)=(3k:N)3f: M(k)— A)(f is an injection &
(Vx:A)p(x) & Fy: M(k)I(A, x, ap(f, y)))): Prop.
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This definition says that the elements of A that have the property are
an injective image of a k-element set for some natural number k.
(Il) Infinitely many A are ¢.
(17) A:set ¢(x):Prop(x: A)
INF(A, (x)¢):Prop
INF(A, (x)¢) = (3f: N— A)(f is an injection &
(Vk: N)g(ap(f, k))): Prop.

The injective image of N lies within ¢; thus infinitely many A are ¢.

(IIT) Countably many A are.

(18) A:set ¢(x):Prop(x: A)
COUNT(A, (x)¢): Prop
COUNT(A, (x)¢) = (3f: N—> A)(f is an injection &
(Vx: A)(@(x) © (Fk:N)I(A, x, ap(f, k)))): Prop.

(IV) Uncountably many A are.
(19) A:set ¢(x):Prop(x: A)
Uc(A, (x)¢):Prop
Uc(A, (x)¢)=(3f:0— A)(f is an injection &
(Va:o)e(ap(f, a))): Prop.
Here o is the constructive second number class, cf. Martin-Lof (1984,
p- 84).

(V) There are more A than B.

(20) A:set B:set
More (A, B):Prop
More (A, B)=(Vg: B— A)(3x: A)(Vy:B)
—I(A, x, ap(g, y)).>

No mapping from B to A is onto; hence there are more A than B.

(VI) There are at least as many ¢ in A as ¢ in B.
A:set o@(x):Prop(x: A) B:set u(x):Prop(x:B)
At least (A, (x)¢; B, (x)¢): Prop,
At least (A, (x)¢; B, (x)¢)
=3f:Ex:B)Y(x)—> (Zx: A)e(x))
(Vz:%(B, (x)))(Vw:2(B, (x)¥))
(I(A, p(ap(f, 2), p(ap(f, w))) = I(B, p(z), p(w)))): Prop.

One might here prefer another definition using a function f: B— A
which is one-one on such Bs as are ¢ and which takes s into ¢s. Def.
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(21) seems weaker in that it is not clear how to define constructively a
function in B— A with the desired properties given a function in
3(B, (x)¥)— 3(A, (x)¢) when the ¢ and ¢ are undecidable.

(VII) Almost all A are ¢.

For finite A it is not obvious that a uniform definition exists. (Compare
the cases where A has 11, 98 and 2048 members!). Thus I prefer to
work under the presupposition that A is infinite in which case “Almost
all A are ¢” means the same as “All but finitely many A are ¢”’. This
thén provides the key to the uniform definition.

(22) A:Set ¢(x):Prop(x: A) a:Infinite(A)
Almost all (A, (x)¢):Prop
Almost all (A, (x)¢)=3k:N)3f: M(k)— A)(f is an in-
jection & (Vx: A)(p(x) & (Vy: M(k))
1 I(A, y, ap(f, x)))).

(What is defined is really “all but finitely many a are ¢” and this

quantifier is uniformly meaningful and true for finite A, whence no use

is made of the proof-object a.) -
Finally I wish to treat of the most interesting case, namely

(VIII) Most A are ¢.

which quantifier will be taken in its mathematical sense of ‘“More than
half of the A are ¢”. (Its natural language meaning seems more
‘statistical’ in nature.) Thus in order to make sense of this I need to
impose Finite (A) as a presupposition.

(23) A:set ¢(x):Prop(x:set) a:Finite(A)
Most (A, (x)¢): Prop.

The second definitional clause takes some preparation. First we define
some primitive recursive functions (whose definitions can all be given
in the type theory using the recursor R), namely the signum and the
remainder, and integral part, upon division by 2.

sg(0)=1 rem (0/2) =0
sg(s(a))=0 lrem (5(a)/2) = sg(rem(a/2))

[0/2]=0
[S(a)/2]=[a/2]+ rem(a/2)
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Now we give the outstanding clauses still under the same presup-
positions as before.

(23) Most (A, (x)¢) =(3k:N)
(k=[p(a)2]+1& 3f: M(k)—> A)
(f is an injection & (Vy: M(k)¢(ap(f, y)))):Prop.

In this definition a is the proof-object that Finite (A). Thus p(a): N is
the cardinal of A and [p(a)/2]+1 is the size of the least possible
majority in A.4

It remains to discuss some interesting points concerning these
definitions and (VIII) in particular. In this context it is worthwhile to
recall the treatment offered in my (1986, Section 7) of another
quantificational worry, namely the so-called donkey-sentences studied
by Geach.

Thus, within the type-theory, a typical donkey-sentence, such as

*) All men who own a donkey beat it,
is analysed as
(24) Vz:(2x:Man)(3y:Donkey)Own(x, y)Beat(p(z), p(q(z))).

Here one makes use of a 3-representation of the set of men who own a
donkey. Martin-Lof independently suggested the more straightforward

(25) (Vx:Man)((IIz : (3y : Donkey)Own(x, y))Beat(x, p(z)))
Here the hanging “IIz” expresses the implication in

(**) Every man is such that if he owns a donkey, then he beats
it.

(*) and (**) are provably equivalent in the type theory (cf. Martin-Lof
(1984, p. 48) but they are not synonymous, that is, they are not equal
as propositions. Consideration of “Most” gives a ground on which to
base a decision as to which treatment is preferable. The donkey-
sentence “most men who own a donkey beat it” has to be analysed as
“most donkey-owners beat their donkeys” rather than as ‘“most men
are such that if they own a donkey they beat it” since the latter can be
true even though no man who owns a donkey beats it. Consider a case
with four donkey-owners only, all kind and caring. Then, for any man
m (except the four kind ones), it is false that he owns a donkey and
vacuously true that if m owns a donkey, then he beats it. So in this
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case most men are such that if they own a donkey, then they beat it.
Hence

(26) (Most z:(2x:Man)(3y:Donkey)
Own(x, y)) Beat(p(z), p(q(z))

is the right analysis. The situation corresponds with the well-known
non-reducibility of the binary most to the unary most in the model-
theoretic case.

From the above discussion we see that the use of the %(A, B)-
representation of the set of As such that B is needed to take care of
the anaphora in the donkey-sentences. The use of the subset-type
{x:A|P(x)true} from Nordstrom et al. (1986), where the proof-
objects are thrown away, is not suitable here; the proof-objects are
needed in that we explicitly have to point to the donkey that con-
stitutes (part of) the proof-object that a given donkey-owner owns a
donkey.

All of the above nominal definitions are wuniform in the
quantificational domain A. Thus in the case of the donkey-sentences
we quantify over a set of the form 3(A, B) and we use a presup-
position of the form a: Finite (%(A, B)). What gets counted by the
bijection in the definition of Finite (3(A, B)) is not elements of A (that
happen to satisfy further conditions), but ordered pairs of a fairly
complex structure. A donkey-owner is thus an ordered pair (a, b),
where a is a man and b is a proof-object that he owns a donkey, i.e., b
is an ordered pair (c, d) where c is a donkey and d is a proof-object
that a owns c. Hence, there are two ways in which the cardinal of
(2x:Man)(3y:Donkey)Own(x, y) can differ from that of the subset

type
{x:Man|(3y:Donkey)Own(x, y) true}.

First, there might be many proof-objects d that a owns c. Here it
seems reasonable that there is only one canonical proof-object in
analogy with recursive realizability. Secondly, a man who owns two
donkeys is counted twice in the 3(A, B)-version, but not in the case of
{x: A| B(x)true}. This, perhaps is not always natural, but it is not
preposterous. Think, e.g., of car-owners in fiscal contexts. Fiscally, a
man who possesses two cars is counted as two car-owners.

The alternative in this last case is to use what one may call

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



12 GORAN SUNDHOLM

Nordstrom, B., K. Petterson, and J. Smith: 1986, An Introduction to Martin-Lof’s Type
Theory, Dept. of Computer Science, Chalmers University of Technology, Go6then-
borg.

Sundholm, Géran: 1986, ‘Proof Theory and Meaning’, in D. Gabbay and F. Guenthner
(eds.), Handbook of Philosophical Logic, D. Reidel, Dordrecht.

Filosofisch Instituut
Rijksuniversiteit Leiden
Postbus 9515

2300 RA Leiden

The Netherlands

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



