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Microscopic versus mesoscopic local density of states in one-dimensional localization
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We calculate the probability distribution of the local density of states v 1n a disordered one-dimenstonal
conductor or single mode waveguide, attached at one end to an electron or photon reservoir We show that this
distribution does not display a log-normal tail for small », but diverges mstead  » > The log normal tail
appears 1f v 1s averaged over rapid oscillations on the scale of the wavelength There 1s no such qualitative
distinction between microscopic and mesoscopic densities of states if the levels ate broadened by inelastic
scattering or absorption, rather than by coupling to a 1eservoir
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Localization of wave functions by disorder can be seen m
the fluctuations of the density of states, provided the system
1s probed on a sufficiently shoit length scale 2 The local
density of states (LDOS) of elections can be probed using
the tunnel 1esistance of a pomt contact® or the Knight shift in
nuclear magnetic 1esonance,* while the LDOS of photons
detetmuines the rate of spontaneous emission flom an atomic
transition > In the photonic case one can study the effects of
localization independently fiom those of mteractions (Fot
the description of one-dimensional mteracting elections 1n
terms of Luttmger liquids and the mte1play of interaction and
localization see, e g, Ref 6)

For each length scale & charactetstic for the resolution of
the probe, one can mntroduce a contesponding LDOS v Itis
necessary that & 1s less than the localization length, 1n oider
to be able to see the effects of localization—the hallmark’
being the appeaiance of logarithmically normal tails
o exp(—constX In’vy) m the probability distribution P(v )

Much of our present understanding® of this problem m a
wire geometry builds on the one-dimensional (1D) solution
of Altshuler and Prigodin ® In the simplest case one has a
single-mode wire which 1s closed at one end and attached at
the othe1 end to an election reservon The optical analogue 1s
a single-mode waveguide that can radiate mto fiee space
fiom one end In 1D the localization length equals twice the
mean free path /, which 1s assumed to be large compared to
the wavelength A One can then distinguish the mictoscopic

LDOS v=wv, for §<\, and the mesoscopic LDOS v= v for
A€ 6<€[ While v oscillates rapidly on the scale of the wave-

length, v only contains the slowly varying envelope of these
oscillations Altshuler and Prigodin calculated the distiibu-

tion P(v) and smrused that P(») would have the same log-
noimal tails We will demonstiate that this 1s not the case for
the small-v asymptotics

The calculation of Ref 9 was based on the Berezinsku
dragiam technique,'® which reconstiucts the probability dis-
tribution from 1ts moments (An alternative approach,'! using
the method of supeisymmetiy, also proceeds via the mo-
ments ) An altogether different scatteting appioach has been
proposed by Gaspaitan, Chusten, and Buttike,'* and mote
1ecently by Pustinik '* We have pursued this appioach and
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artive at a relation between v, v, and reflection coefficients
This allows a direct calculation of the distributions We find

that P(v) and P(v) have the same log-normal tail for large

densities, but the asymptotics for small » and ¥ 1s completely
different The strong fluctuations of » on the scale of the
wavelength lead to a diveigence P(»)ocv™ 2 for v—0,

while the distribution of the envelope vanishes, P(¥)— 0 fol

v—0 This qualitative difference between microscopic and
mesoscopic LDOS 1s a featuie of an open system Both P(v)
and P(v) vanish for small densities if the wire 1s closed at
both ends and the levels aie bioadened by inelastic scatterers
(for electrons) or absoiption (for photons)

We consider a ID wne and telate the microscopic and
mesoscopic LDOS at eneigy E and at a pomnt x=0 to the
1eflection amplitudes rp, r; from parts of the wire to the
right and to the left of this point The Hamiltonian 1s H
= —(#%12m)3*/ dx*+ V(x) for noninteracting electrons (For
photons of a single polarization we would consider the dif-
ferential operator of the scalar wave equation ) We will put
fi=1 for convemence of notation We start fiom the relation
between the LDOS and the retarded Green function,

v=—7"'1mG(0), 1)

(E+in—H)G(x)=8(x), @)

with # a positive infinitesimal We assume weak disorder
(k> 1, with k=2m/N the wave numbe1), so that we can
expand the Gieen function n scattering states m a small
mterval atound x=0,

G(x)=cL(e—1kt+’Lezkx) 0(_x)+CR(ezk,\+’Re—zk\) 0(/\?)
®3)
[The function 8(x)=1 for x>0 and O for x<0 ] The coef-
fictents ¢; and cyp aie 1elated by the requuement that the
Gieen function be continuous at 1=0,c; (1+i;)=cg(l
+1%) Substitutton of Eq (3) mto Eq (2) gives a second
telation between c¢; and ¢, fiom which we deduce

:(1+1L)(1+1R)

w(l—1gr)

(4)
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with v the velocity Usmg Eq (1) we ariive at the key 1ela
tion between the microscopic LDOS and the 1eflection coef-
ficients,

V=(7Tv)_1Re(l+rL)(1—rRrL)~l(1+rR) (5)

In order to perfoum the local spatial aveiage that gives the

mesoscopic LDOS v, we use that the reflection coefficients
oscillate on the scale of the wavelength If we shift x,

shightly away fiom the otigm to a point x', one has r;

' _ '
—e?™*p and rg—e %' rp The product rgr; , however,

does not display these oscillations—only this combination
should be retained Hence

v=(mv) 'Re(1+rgr )(1—rgry) ! 6)

In what follows we will measure » and v m umts of v,
=(mv) "L, which 1s the macroscopic density of states and

the ensemble average of v, v

Let us now demonstrate the power of the two simple 1e
lations (5) and (6) We take the wne open at the left end and
study the density at a distance L from this opening At the
1ght end the wite 1s assumed to be closed, giving 11se to a
1eflection coefficient rp=exp(i¢pg) with umformly distitb-
uted phase ¢ m the mterval (0,27) The reflection coeffi-
cient r; =R exp(1¢h;) 1s parametiized thiough the uniformly
distuibuted phase ¢; and the reflection probability R m the
mterval (0,1) The assumption of a random scattering phase
15 justified because we assumed A</ '* The ratio u=(1
+R)(1—R)™! has the probability distubutton®

e sl © ze —224s
Jr(25)7? de———5, (7
\/;(Zs)yzj‘arcosh u (COShZ—M)I/2 ( )

with s=L/l and [ the mean free path fo1 backscattering The
mesoscopic LDOS (6) can be wiitten m terms of the vair
ables u and ¢= ¢, + ¢p,

v=(u—yu*—1cos ¢)7! ®)

Averaging fi1st over ¢ we find

p(u)=

vV = p(u)

Popen(¥) = d ,
open(V) 77\/5 . u\/;:;

The subsequent ntegration with Eq (7) yields

a=1(F+7) )

;— 3/26 —s/4

2\[7s

The distribution function (10) 1s the celebiated 1esult of
Altshuler and Prigodmn ® It displays log-noimal tails for both
laige and small values of v Indeed, the two tails ate linked
by the functional relation®

Popen( 77) = (10)

L.
exp —Is—ln v

P(1/D)=1*P(V) (11)

This ielation follows duectly fiom Eq (9) and hence 1e
qunes only a uniformly distitbuted phase ¢, tegaidless of the
distribution function p(u) of the 1eflection probability As we
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will now show, such a 1elation does not hold, 1in general, for
the microscopic LDOS v, and the asymptotics of its distii-
button function for small and laige values of » can be en-
tirely different

The calculation 1s facilitated by the fact that » 15 1elated to

v by

v=2vcos*(ppl2) 1f |rg|=1 (12)

Moreover, v 1s statistically independent of ¢y because the

Jatter entets ¥ only 1 combination with ¢; , which itself 1s
uniformly disttibuted The distuibution of the micioscopic
LDOS hence follows duectly from Eq (10),

v e Ly lnz(V/Zt))

P = exp| - —
OPeH(V) m\2ms JoNI—¢ p( 4s

(13)

where we substituted 7= cos’(¢x/2) The asymptotic behav-
101 18

exp(3s/4) =
Popen( v)= ——ZET—V 2 p<e™s, (14a)
2 2exp( — 5/4)
- -32 —5 g <z
Popen( V)= D v e <Rr<ked,
(14b)
expf — s/4—1n*(v/2)/4s
Popen( V) = p[ ( ) ] , v@e’ (140)

a2V v/2)

In the second and thud region this 1s similat to the behavior
Of P gpenl v) m Eq (10) In the 1egion of the smallest densi-

ties, however, Pguen(v) 1s not log-normal like Pgpen( v) but
diverges oy~ 2

The different tais arise fiom two qualitatively different
mechanisms that produce small values of v and v For the
mesoscopic LDOS this 1equires 1emoteness of E from the
ergenvalues of wave functions localized within a localization

length aiound x, As a consequence, P(¥) 1s mtimately
linked to the distribution function of 1esonance widths *
Small values of the mucroscopic LDOS v aie attamned at
nodes of the wave function which solves the wave equation
with open bounday conditions, imndependent of the eneigy
The nodes aie completely determmed by the small-scale
stiucture of the wave function, which is a 1eal standing wave
« cos(kx+a) with 1andom phase « 8 [we tecogmze the
square of this wave amplitude m Eq (12) ] The resulting
v~ 12 divergence of the probability distubution has the same
otigm as 1 the Poiter-Thomas distitbution for chaotic wave
functions ¢

The two distibutions for the open wiie ate plotted 1 Fig
1, together with the 1esult of a numetical simulation m which
the Gieen function inside the wire 1s calculated 1ecuisively !
The comparison of theory and numetics 1s free of any adjust-
able parametet—the velocity was taken fiom the dispeision
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0 001 002 003 004
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FIG 1 Distributions of the nucroscopic local density of states
(LDOS) v and the mesoscopic LDOS v for the open wire at a
distance L=2[ from the opening [Both are measured 1 units of
therr mean vo=(mv) ! ] Sohd curves are given by Eqs (10) and
(13) The data ponts result from a numencal simulation for a wire
of length 10! with no adjustable parameter The iset shows the
geometry of the open wire (not to scale)

relation, and the mean free path was obtamed fiom the dis-
orde1 stiength withim the Boin approximmation

We now show that this qualitative difference between the
micioscopic and mesoscopic LDOS 1s absent m a closed
wiue If the wue 1s decoupled fiom the 1eseivon we need
another soutce of level bioadening to 1egulatize the & func-
tions 1 the LDOS Following Ref 9, we will retam a finite
imaginaty pait 7 of the eneigy, corresponding to spatially
umform absoiption (for photons) o1 melastic scattering (for
elections), with rate 2  Equations (5) and (6) still hold pro
vided #<E The 1eflection coefficients can be wiitten as
rr .=VRg 'R L, wheie ¢ and ¢, ate uniformly distirb-
uted phases 1f the attenuation length v/(2 7)>(IN*)'3,% and
Rz ,R; are mdependent reflection probabilities In an mnfi-
nitely long wue they have the same distiibution®

w

w=4nllv

p(R)= ———exp[ ~w(1-R) "],

we
(1-R)
(15)
After elimination of the phases the distiibution of the me-
soscopic LDOS takes agam the form (9), wheie « now stands
for the combmation u=(1+RzR;)(1 —RgR;)™ 1 Equation
(15) wmplies for u the distitbution

p(u)=w2(1-—%)e_“’(“_l)l{o(w\/u§—l) (16)

The 1esulting distitbution function of the mesoscopic LDOS
18

25732 rs gy

w" v
P V)= e~ DR (w\u?—1
closed( ) 77_\/—2— . \/l:l_ [ O( )

+ JuZ = 1K (w i’ = 1)], (17)

with a defined m Eq (9) It vanishes for small densities as

Poosed( ) =270 v 2exp(— w/v), v<w  (18)
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FIG 2 Same as i Fig 1 but for the closed wire with dimen-
sionless absorption rate w=1/6 Sold curves are given by Egs (17)
and (19) The data points result from a numerical simulation for a
wire of length 55/, with the LDOS computed halfway 1n the wire

This should be compared with the known distribution’

172
20 —3/2 1 -1
P osea( V) = v v explo—zo(v+v™ )] (19)

of the mucioscopic LDOS In contiast to the open wue, both

distitbutions vanish for »,7—0 This 1s llustiated 1n Fig 2,
which compates the analytical predictions to numerical data
obtamed by diagonalization of a Hamiltonian The compati-
son 1s again fiee of any adjustable parametes

We note in passing that the asymptotic behavior (18) dif-
fers from the asymptotic behavio

Piosed( ) # §(mw) 203 exp( — mw/16v),  (20)

given 1 Ref 9 for w<€1 There the distiibution function was
teconstructed from the leading asymptotics of the moments

lim,,_,o{?"y=w@!""n'/(2n—1) This would be a vald p1o-

cedute 1f the distribution depends only on the product wv 1n
the limut w— 0, which 1t does not The subleading terms of

the moments have to be included for <« Indeed, our dis-
tribution function has the same leading asymptotics of the
moments, but has a different functional form This illustrates
the potential pitfalls of the 1estoration proceduie which are
cucumvented by our direct method

In conclusion, we have given exact tesults for the distrt
butions of the local densities of states m one-dimensional
localization, contiasting the muctoscopic length scale (below
the wavelength) and mesoscopic length scale (between the
wavelength and the mean fiee path) Contialy to expecta
tions 1n the literature, the log-noimal asymptotics at small
densities applies only to the mesoscopic LDOS v, while the
distiibution of the micioscopic LDOS v diverges o v~ 2 for
vr—0 This 1s of physical significance because many of the
local probes act on atomic degiees of fieedom and hence

measuie v 1ather than v The stiong length scale dependence
of the LDOS disappeats 1f the elections {01 photons) ate
scattered melastically (o1 absoibed) befote 1eaching the 1es-
etvon Both P(v) and P(%) then have an exponential cutoff
at small densities
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It 1s an mteresting open problem whether the qualitative

distinction between v and ¥ 1n an open wire cariies over to
the quasi-one-dimensional geometry with N>1 modes An
analytic theory could build on the multichannel generaliza-
tion of Eq (5),

v=ReTiM (L +7)(L—rgry) " (1 +7g) 1)

Now r; and 7 are NXN 1eflection matiices and the matrix
M, =2(mA) " Y(v,v,,) " Psin(q, ry)sin(g, ry) contams
the weights of the N scattering states with transversal mo-
mentum q,, and longitudinal velocity v, at the transversal
position ry on the cross section of the wire (area A)

Our approach can be generalized to a number of different
situations One example 1s the LDOS 1nside a disordered ring
penetrated by a magnetic flux 2 Ow approach maps this
problem onto the problem of reflection and transmission
(with amplitude 7z=1¢; =¢ for ®=0) from the opposite ends
of a finite disordered segment The microscopic LDOS 1s
then gwven by wv=(zv) 'Re[(1+r )(1+1g)—1*](1
—21 cos 2mD/Dy+12—rprg)” !, with the flux quantum @,
=hc/e Another example 1s the LDOS 1n a wire coupled to a
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superconductor at one end *' The expiesstons for ¥ and v 1n
terms of the reflection matiices fiom two independent parts
of the wire, derived 1n this paper, can be directly generalized
to mnclude Andreev 1eflection at the wnterface

Fially, with our approach one can nvestigate the relation
of wave-function decay to the decay of transmission pi1ob-
abilittes These are known to be identical mn one dimension
Although 1dentity 1s widely assumed 1n quasi-one-dimension,
1t has come under debate 1ecently > By cutting the wire at
two pomnts instead of one, we can study the correlator
p(x,y)={v(x) In W(y)/(x)), which selects the localization
center at x and then captures the decay of the wave function
from x to y %3 In one dimension we now can average over
random teflection phases and indeed obtamn p(x,y)=InT,
where T 1s the transmussion probability fiom x to y The
condittons for a sumilar relation 1n quasi-one-dumenston are
not known
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