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Microscopic versus mesoscopic local density of states in one-dimensional localization
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We calculate the probabihty distnbution of the local density of states v m a disoidered one-dimensional
conductor or single mode waveguide, attached at one end to an electron or photon reservoir We show that Uns
distnbution does not display a log-normal tail for small v, but diverges mstead v v m The log normal tail
appears if v is averaged over rapid oscillations on the scale of the wavelength There is no such qualitative
distinction between microscopic and mesoscopic densities of states if the levels aie broadened by melastic
scattermg or absorption, rather than by couplmg to a leservoir
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Locahzation of wave functions by disordei can be seen m
the fluctuations of the density of states, provided the System
is probed on a sufficiently shoit length scale '2 The local
density of states (LDOS) of elections can be piobed usmg
the tunnel lesistance of a pomt contact3 or the Knight shift m
nuclear magnetic lesonance,4 while the LDOS of photons
deteimmes the rate of spontaneous emission fiom an atormc
transition 5 In the photonic case one can study the effects of
localization independently fiom those of inteiactions (Foi
the descuption of one-dimensional mteractmg elections m
terms of Luttmger hquids and the intei play of interaction and
localization see, e g , Ref 6)

For each length scale δ charactenstic foi the resolution of
the piobe, one can mtroduce a conespondmg LDOS vs It is
necessary that δ is less than the localization length, m oidei
to be able to see the effects of localization—the hallmark7

being the appeaiance of loganthmically normal tails
^ exp(—constxln2^) m the probabihty distnbution P(vg)

Much of our present undeistandmg8 of this problem in a
wire geometry builds on the one-dimensional (1D) solution
of Altshulei and Pngodm 9 In the simplest case one has a
smgle-mode wire which is closed at one end and attached at
the othei end to an election reservon The optical analogue is
a single-mode waveguide that can radiale mto fiee space
fiom one end In 1D the localization length equals twice the
mean free path /, which is assumed to be large compared to
the wavelength λ One can then distinguish the micioscopic

LDOS v= vs for δ<Κ, and the mesoscopic LDOS v = νδ for
λ<ί <5<ί/ While v oscillates rapidly on the scale of the wave-

length, v only contams the slowly varymg envelope of these
oscillations Altshulei and Pngodm calculated the distnbu-

tion P (v) and suimised that P (v) would have the satne log-
noimal tails We will demonstiate that this is not the case for
the small- v asymptotics

The calculation of Ref 9 was based on the Berezmskn
diagiam technique,10 which leconstiucts the piobabihty dis-
tubution fiom its moments (An alternative appioach,11 usmg
the method of supeisymmeüy, also pioceeds via the mo-
ments ) An altogethei diffeient scatteiing appioach has been
pioposed by Gaspanan, Chnsten, and Buttikei,12 and moie
lecently by Pustilnik l3 We have puisued this appioach and

anive at a relation between v, v, and reflection coefficients
This allows a direct calculation of the distnbutions We find

that P (v) and P (v) have the same log-normal tail for large

densities, but the asymptotics for small v and v is completely
different The strong fluctuations of v on the scale of the
wavelength lead to a diveigence P(v)v-v~~m for v—>0,

while the distnbution of the envelope vamshes, P( v)^>0 foi

v^>0 This qualitative diffeience between microscopic and
mesoscopic LDOS is a featuie of an open system Both P (v)

and P (v) vanish foi small densities if the wire is closed at
both ends and the levels aie bioadened by melastic scatterers
(for electrons) or absoiption (for photons)

We considei a 1D wne and iclate the microscopic and
mesoscopic LDOS at eneigy E and at a pomt x = 0 to the
leflection amphtudes rR, rL from parts of the wire to the
nght and to the left of this pomt The Hamiltoman is H
= -(h2/2m)d2/dx2+V(x) for noninteractmg electrons (For
photons of a single polanzation we would consider the dif-
ferential operator of the scalai wave equation) We will put
h=l for convemence of notation We Start fiom the relation
between the LDOS and the retarded Green function,

(D

(2)(Ε+ιη-Η)Ο(χ) =

with η a positive infinitesimal We assume weak disordei
(kl^>l, with k = 2TT/\ the wave numbei), so that we can
expand the Gieen function in scatteiing states in a small
mterval aiound x = 0,

(3)

[The function ö(x) = l foi x>0 and 0 foi x<0 ] The coef-
ficients CL and CR aie lelated by the lequnement that the
Gieen function be contmuous at x = 0,cL(i +iL) = cR(l
+ 1 R) Substitution of Eq (3) mto Eq (2) gives a second
iclation between CL and CR , fiom which we deduce

G(0) = · (4)
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with v the velocity Usmg Eq (1) we anive at the key lela
tion between the microscopic LDOS and the leflection coef-
ficients,

In oider to perfoim the local spatial aveiage that gives the

mesoscopic LDOS v, we use that the reflection coefficients
oscillate on the scale of the wavelength If we shift x0

slightly away fiom the ongm to a pomt χ ' , one has rL

—>e2 i k* rL and rR-^e~2lkx rR The product rKrL, however,
does not display these oscillations—only Uns combmation
should be letamed Hence

In what follows we will measure v and v in units of v0

= (Trv)~l, which is the macroscopic density of states and
the ensemble average of v, v

Let us now demonstrate the powei of the two simple ιέ
lations (5) and (6) We take the wne open at the left end and
study the density at a distance L from this openmg At the
nght end the wne is assumed to be closed, givmg iise to a
leflection coefficient rß = exp(z</>R) with unifoimly distnb-
uted phase φκ in the mterval (0,2π) The reflection coeffi-
cient rL= V^exp(i0L) is paiametnzed thiough the unifoimly
distnbuted phase φι and the reflection piobabihty R m the
mterval (0,1) The assumption of a random scattenng phase
is justified because we assumed λ<§/ I4 The ratio u = (\
+ R)(l-R)~1 has the probability distnbution15

,-ϊ/4

dz-
ze

7Γ(2ί) Jarcosh u (C0shz~u) 1/2' (7)

v=(u- V«2- l cos φ)

Averagmg fiist ovei φ we find

with s = L/l and / the mean free path foi backscattenng The
mesoscopic LDOS (6) can be wntten m terms of the van
ables u and φ=

(8)

(9)

(10)

~-3/2

du
p ( u )

The subsequent Integration with Eq (7) yields

open( v) -exp -—In2!'
4s

The distnbution function (10) is the celebiated lesult of
Altshulei and Pngodm9 It displays log-noimal tails foi both

laige and small values of v Indeed, the two tails aie linked
by the functional lelation8

P ( l / v ) = v ^ P ( v ) (11)

This lelation follows dnectly fiom Eq (9) and hence te
qunes only a unifoimly distnbuted phase φ, legaidless of the
distnbution function p ( u ) of the leflection piobabihty As we

will now show, such a lelation does not hold, m geneial, foi
the microscopic LDOS v, and the asymptotics of its distn-
bution function foi small and laige values of v can be en-
tirely different

The calculation is facilitated by the fact that v is lelated to

v by

rf \rR\ = : (12)

Moieovei, v is statistically mdependent of φκ because the

latter enteis v only m combmation with <pL, which itself is
umformly distnbuted The distnbution of the micioscopic
LDOS hence follows duectly from Eq (10),

^open( V) =
l dt l \TLZ(vl2t)\

exp 4s r
(13)

where we substituted i = cos (φκ/2) The asymptotic behav-
101 is

exp(3s/4)
-1/2

openV (14a)

P t ^ 2mexP(-^4) _3/2 .
P ( T>] = v p

°Penl ; smir3'2 '

fopen(") =
exp[-s/4-ln2(iV2)/4i]

(14b)

1 (14c)

In the second and tlmd region this is similai to the behavior

of Popen(v) m Eq (10) In the legion of the smallest densi-

ties, however, ·ΡορεηΟ) is not log-normal hke /Όρ^ν) but
diveiges <*ν~

υ2

The different tails anse fiom two quahtatively different

mechamsms that pioduce small values of v and v Foi the
mesoscopic LDOS this lequires lemoteness of E fiom the
eigenvalues of wave functions localized withm a localization

length aiound x0 As a consequence, P (v) is intimately
linked to the distnbution function of lesonance widths2

Small values of the micioscopic LDOS v aie attamed at
nodes of the wave function which solves the wave equation
with open boundaiy conditions, mdependent of the eneigy
The nodes aie completely determmed by the small-scale
stiucture of the wave function, which is a leal Standing wave
<χ cos(fcc+a) with landom phase a 8 [We lecognize the
square of this wave amplitude m Eq (12) ] The lesultmg
v"112 diveigence of the piobabihty distnbution has the same
ongm äs in the Poiter-Thomas distnbution foi chaotic wave
functions lö

The two distiibutions foi the open wue aie plotted in Fig
l, togethei with the lesult of a numeiical Simulation in which
the Gieen function inside the wire is calculated lecuisively n

The compaiison of theoiy and numeiics is fiee of any adjust-
able paiametei—the velocity was taken fiom the dispeision

121101-2
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FIG l Distnbutions of the microscopic local density of states

(LDOS) v and the mesoscopic LDOS v for the open wire at a
distance L = 2l from the openmg [Both are measured m umts of
their mean ν0 = (πυ)~ι ] Solid curves are given by Eqs (10) and
(13) The data pomts result from a numencal Simulation for a wire
of length 10/ with no adjustable parameter The inset shows the
geometry of the open wire (not to scale)

relation, and the mean free path was obtained fiom the dis-
ordei stiength withm the Bot n approximation

We now show that this qualitative dtfference between the
micioscopic and mesoscopic LDOS is absent in a closed
wne If the wne is decoupled fiom the teseivon we need
another souice of level bioadenmg to legulanze the δ func-
tions m the LDOS Followmg Ref 9, we will retam a fimte
imagmaiy pait 77 of the eneigy, coiTesponding to spatially
uniform absoiption (foi photons) 01 melastic scattenng (foi
elections), with rate 2 η Equations (5) and (6) still hold pio
vided η<Ε The leflection coefficients can be wntten äs
rR L= -JRR Le"^R L, wheie φκ and <$>L aie unifoimly distnb-
uted phases if the attenuation length υ/(2η)>(1\2)ιη,18 and
RR, RL are mdependent reflection probabilities In an mfi-
nitely long wne they have the same distiibution 19

Ρ(Α) = ·
ωε"

) = 4ηΙ/ν

(15)

After elimination of the phases the distiibution of the me-
soscopic LDOS takes agam the foim (9), wheie u now Stands
foi the combmation u = (l + RRRi)(i-RRRL)~l Equation
(15) imphes foi u the distiibution

The lesulting distiibution function of the mesoscopic LDOS
is

ciosedV ε-ω("~ι\ιιΚ0(ω^ιι2-ί]

(17)

with a defined m Eq (9) It vamshes foi small densities äs

(18)

FIG 2 Same äs in Fig l but for the closed wire with dimen-
sionless absorption rate ω= 1/6 Solid curves are given by Eqs (17)
and (19) The data pomts result from a numencal Simulation for a
wire of length 551, with the LDOS computed halfway in the wire

This should be compared with the known distnbution9

(19)

of the micioscopic LDOS In contiast to the open wne, both

distnbutions vamsh foi ν,ν^Ο This is ülustiated m Fig 2,
which compaies the analytical piedictions to numencal data
obtained by diagonahzaüon of a Hamiltoman The compaii-
son is agam fiee of any adjustable paiametei

We note m passing that the asymptotic behavioi (18) dif-
feis from the asymptotic behavioi

(20)

given m Ref 9 foi ω<§ l There the distiibution function was
leconstructed from the leadmg asymptotics of the moments

Ιιταω_>0(νη) = ωι~"ηΊ(2η-1) This would be a valid pio-

cedme if the distnbution depends only on the product ων m
the hmit ω^Ο, which it does not The subleading terms of

the moments have to be mcluded for v& ω Indeed, our dis-
tnbuüon function has the same leadmg asymptotics of the
moments, but has a diffeient functional foi m This illustrates
the potential pitfalls of the lestoration procedme which are
cncumvented by oui direct method

In conclusion, we have given exact lesults foi the distri
butions of the local densities of states in one-dimensional
locahzation, contiasüng the micioscopic length scale (below
the wavelength) and mesoscopic length scale (between the
wavelength and the mean fiee path) Contiaiy to expecta
tions in the hteiature, the log-noimal asymptotics at small

densities applies only to the mesoscopic LDOS v, while the
distiibution of the micioscopic LDOS v diveiges ^v~m foi
v~>0 This is of physical sigmficance because many of the
local piobes act on atomic degiees of fieedom and hence

measuie v lathei than v The stiong length scale dependence
of the LDOS disappeais if the elections (01 photons) aie
scatteied inelastically (01 absoibed) befoie leaching the les-

eivou Both P (v) and P (v) then have an exponential cutoff
at small densities
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It is an interestmg open problem whethei the qualitative

distmction between v and v in an open wire canies over to
the quasi-one-dimensional geometry with N> l modes An
analytic theory could build on the multichannel generaliza-
tion of Eq (5),

(21)

Now rL and rR are NX N leflection matuces and the matnx

Mnm = 2(TTA)-l(vnvm)~msm(qLn r0)sm(qm r0) contams
the weights of the W scattenng states with tiansveisal mo-
mentum q„ and longitudmal velocity vn at the transversal
Position r0 on the cross section of the wire (area A)

Our approach can be generahzed to a number of different
situations One example is the LDOS inside a disoideied ring
penetrated by a magnetic flux 20 Om approach maps this
problem onto the problem of reflection and transmission
(with amphtude tR = tL=t foi Φ = 0) from the opposite ends
of a finite disordered segment The microscopic LDOS is
then given by v = (-7rv)~lRe[(l+rL)(i+i R)-t2](l
-2tcos2TT<i>/<i>0+t2-rLrR)'~l, with the flux quantum Φ0

= hcle Another example is the LDOS in a wire coupled to a

superconductor at one end 21 The expiessions for v and v in
teims of the reflection matuces fiom two mdependent parts
of the wire, denved in this paper, can be directly generahzed
to mclude Andreev leflection at the inteiface

Fmally, with our approach one can mvestigate the relation
of wave-function decay to the decay of transmission piob-
abihties These are known to be identical in one dimension
Although identity is widely assumed m quasi-one-dimension,
it has come under debate lecently22 By cutting the wire at
two points mstead of one, we can study the correlatoi

p(x,y) = (v(x) In v(y)lv(x)}, which selects the localization
center at χ and then captures the decay of the wave function
from χ to y 23 In one dimension we now can average over
random leflection phases and indeed obtam p(x,y) = \
where T is the transmission piobability fiom χ to y The
conditions foi a similar relation in quasi-one-dimension are
not known
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