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We extend the existing quasiclassical theory for the superconducting proximity effect in a chaotic quantum
dot, to include a time-reversal-symmetry breaking magnetic field. Random-matrix theory �RMT� breaks down
once the Ehrenfest time �E becomes longer than the mean time �D between Andreev reflections. As a conse-
quence, the critical field at which the excitation gap closes drops below the RMT prediction as �E /�D is
increased. Our quasiclassical results are supported by comparison with a fully quantum mechanical simulation
of a stroboscopic model �the Andreev kicked rotator�.
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I. INTRODUCTION

When a quantum dot is coupled to a superconductor via a
point contact, the conversion of electron to hole excitations
by Andreev reflection governs the low-energy spectrum. The
density of states of such an Andreev billiard was calculated
using random-matrix theory �RMT�.1 If the classical dynam-
ics in the isolated quantum dot is chaotic, a gap opens up in
the spectrum. The excitation gap Egap is of the order of the
Thouless energy � /�D, with �D the average time between
Andreev reflections. Although chaoticity of the dynamics is
essential for the gap to open, the size of the gap in RMT is
independent of the Lyapunov exponent � of the chaotic dy-
namics.

If the size L of the quantum dot is much larger than the
Fermi wavelength �F, a competing timescale �E
��−1ln�L /�F� appears, the Ehrenfest time, which causes the
breakdown of RMT.2 The gap becomes dependent on the
Lyapunov exponent and for �E��D, vanishes as Egap
�� /�E. The Ehrenfest time dependence of the gap has been
investigated in several works.3–9 For a recent review, see Ref.
10.

A magnetic field breaks time-reversal symmetry, thereby
reducing Egap. At a critical field Bc the gap closes. This was
calculated using RMT in Ref. 11, but the effect of a finite
Ehrenfest time was not studied before. Here we extend the
zero-field theory of Silvestrov et al.5 to nonzero magnetic
field. It is a quasiclassical theory, which relates the excitation
spectrum to the classical dynamics in the billiard. The entire
phase space is divided into two parts, depending on the time
T between Andreev reflections. Times T��E are quantized
by identifying the adiabatic invariant, while times T��E are
quantized by an effective RMT with �E-dependent param-
eters.

There exists an alternative approach to quantization of the
Andreev billiard, due to Vavilov and Larkin,6 which might
also be extended to nonzero magnetic field. In zero magnetic
field the two models have been shown to give similar
results,10 so we restrict ourselves here to the approach of
Ref. 5.

The outline of the paper is as follows. We start by describ-
ing the adiabatic levels in Sec. II followed by the effective

RMT in Sec. III. In Sec. IV we compare our quasiclassical
theory with fully quantum mechanical computer simulations.
We conclude in Sec. V.

II. ADIABATIC QUANTIZATION

We generalize the theory of adiabatic quantization of the
Andreev billiard of Ref. 5 to include the effect of a magnetic
field. An example of the geometry of such a billiard is
sketched in Fig. 1. The normal metal lies in the x−y plane
and the boundary with the superconductor �NS boundary� is
at y=0. The classical mechanics of electrons and holes in
such an Andreev billiard has been analyzed in Refs. 12–14.
We first summarize the results we need, then proceed to the
identification of the adiabatic invariant, and finally present its
quantization.

FIG. 1. Classical trajectory in an Andreev billiard. Particles are
deflected by the potential V= ��r /L�2−1�V0 for r�L ,V
= �−4�r /L�2+10�r /L�−6�V0 for r�L, with r2=x2+y2 �the dotted
lines are equipotentials�. At the insulating boundaries �solid lines�
there is specular reflection, while the particles are Andreev reflected
at the superconductor �y=0, dashed line�. Shown is the trajectory of
an electron at the Fermi level �E=0�, for B=0 and EF=0.84 eV0.
The Andreev reflected hole will retrace this path.
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A. Classical mechanics

The classical equation of motion

r̈�t� = −
e

m
ṙ � B +

e

m
� V�r� �1�

is the same for the electron and the hole because both charge
e and mass m change sign. The vector B is the uniform
magnetic field in the z direction and V�r� is the electrostatic
potential in the plane of the billiard. The dots on r= �x ,y�
denote time derivatives. We follow the classical trajectory of
an electron starting at the NS boundary position �x ,0� with
velocity �	x ,	y�. The electron is at an excitation energy E
counted from the Fermi level. After a time T the electron
returns to the superconductor and is retroreflected as a hole.
Retroreflection means that 	x→−	x. The y-component 	y of
the velocity also changes sign, but in addition it is slightly
reduced in magnitude, 	y

2→	y
2−4E /m, so that an electron at

an energy E above the Fermi level becomes a hole at an
energy E below the Fermi level.

This refraction is one reason why the hole does not pre-
cisely retrace the path of the electron. A second reason is that
a nonzero B will cause the hole trajectory to bend in the
direction opposite to the electron trajectory �because the ve-
locity has changed sign�, see Fig. 2. It follows that if either E
or B are nonzero, the hole will return to the NS boundary at
a slightly different position and with a slightly different ve-
locity. The resulting drift of the quasi-periodic motion is
most easily visualized in a Poincaré surface of section, see
Fig. 3. Each dot marks the position x and tangential velocity
	x of an electron leaving the NS boundary. At nonzero E or
B, subsequent dots are slightly displaced, tracing out a con-
tour in the �x ,	x� plane. In the limit E ,B→0, the shape of
these contours is determined by the adiabatic invariant of the
classical dynamics. In Ref. 5 it was shown that the contours
in the Poincaré surface of section are isochronous for B=0.
This means that they are given by T�x ,	x�=const, with
T�x ,	x� the time it takes an electron at the Fermi level to
return to the NS boundary, as a function of the starting point
�x ,	x� on the boundary. In other words, for B=0 the time
between Andreev reflections is an adiabatic invariant in the
limit E→0.

B. Adiabatic invariant

We generalize the construction of the adiabatic invariant
of Ref. 5 to B�0. We start from the Poincaré invariant

I�t� = �
C�t�

p · dr �2�

over a closed contour C�t� in phase space that moves accord-
ing to the classical equations of motion. The contour
extends over two sheets of phase space, joined at the NS
interface. In the electron sheet the canonical momentum is
p+=mv+−eA, while in the hole sheet it is p−=−mv−+eA.
Both the velocity v±, given in absolute value by �v±�
= �2/m�1/2�EF±E+eV�r��1/2 and directed along the motion,
as well as the vector potential A=1/2Bẑ�r are functions of
the position r on the contour, determined, respectively, by
the energy E and the magnetic field B. �Since the contour is
closed, the Poincaré invariant is properly gauge invariant.�

Quite generally, dI /dt=0, meaning that I is a constant of
the motion.15 For E=B=0 we take C�0� to be the self-
retracing orbit from electron to hole and back to electron. It
is obviously time independent, with I=0 �because the con-
tributions from electron and hole sheet cancel�. For E or B
nonzero, we construct C�0� from the same closed trajectory
in real space, but now with p±�r� and A�r� calculated at the
given values of E and B. Consequently, this contour C�t� will
drift in phase space, preserving I�t�=I�0�. The Poincaré in-
variant is of interest because it is closely related to the action
integral

I = �
Oeh

p · dr . �3�

The action integral is defined as an integral along the peri-
odic electron-hole orbit Oeh followed by electrons and holes

FIG. 2. Andreev reflection at a NS boundary �dashed line� of an
electron to a hole. The left panel shows the case of perfect retrore-
flection �zero excitation energy E and zero magnetic field B�. The
middle and right panels show that the hole does not precisely re-
trace the path of the electron if E or B are nonzero.

FIG. 3. �Color online� Poincaré map for the Andreev billiard of
Fig. 1. Each dot marks the position x and tangential velocity 	x of
an electron at the NS boundary. Subsequent dots are obtained by
following the electron trajectory for E ,B→0 at fixed ratio
B /E=1/3�m /V0L2e3. The inset shows the full surface of section of
the Andreev billiard, while the main plot is an enlargement of the
central region. The drift is along closed contours defined by
K=constant �see Eq. �4��. The value of the adiabatic invariant K �in
units of �mL2/eV0� is indicated for several contours. All contours
are closed loops, but for some contours the opening of the loop is
not visible in the figure.
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at E ,B=0. To every point �x ,	x� in the Poincaré surface of
section corresponds an orbit Oeh and hence an action integral
I�x ,	x�. We compare the contour C�t� and the trajectory Oeh

intersecting the Poincaré surface of section at the same point
�x ,	x�. At t=0 they coincide and for sufficiently slow
drifts they stay close and therefore the action integral
I=I�0�+O�t2� is an adiabatic invariant of the motion in the
Poincaré surface of section.15

It remains to determine the adiabatic invariant I in terms
of E and B and the chosen trajectory C�0�. To linear order in
E ,B we find

I = 2EK, K 	 T − eAB/E , �4�

with A=1/2
�r�dr�ẑ the directed area �see Fig. 4� en-
closed by the electron trajectory and the NS boundary. Both
the time T and the area A are to be evaluated at E=B=0.
Because E is a constant of the motion, adiabatic invariance
of I implies that K	 I /2E is an adiabatic invariant. At zero
field this adiabatic invariant is simply the time T between
Andreev reflections. At nonzero field the invariant time con-
tains also an electromagnetic contribution −eAB /E, propor-
tional to the enclosed flux.

Figure 3 shows that, indeed, the drift in the Poincaré sur-
face of section is along contours CK of constant K. In con-
trast to the zero-field case, the invariant contours in the sur-
face of section are now no longer energy independent. This
will have consequences for the quantization, as we describe
next.

C. Quantization

The two invariants E and K define a two-dimensional
torus in four-dimensional phase space. The two topologically
independent closed contours on this torus are formed by the
periodic electron-hole orbit Oeh and the contour CK
in the Poincaré surface of section. The area they
enclose is quantized following the prescription of
Einstein-Brillouin-Keller16,17

�
Oeh

p · dr = 2
��m + 1/2�, m = 0,1,2,… , �5a�

�
CK

pxdx = 2
��n + 1/2�, n = 0,1,2,… �5b�

The action integral �5a� can be evaluated explicitly, leading
to

EK = 
��m + 1/2� . �6�

The second quantization condition �5b� gives a second
relation between E and K, so that one can eliminate
K and obtain a ladder of levels Emn. For B=0 the quantiza-
tion condition �5b� is independent of E, so one obtains
separately a quantized time Tn and quantized energy Emn
= �m+1/2�
� /Tn. For B�0 both Kmn and Emn depend on
the sets of integers m ,n.

D. Lowest adiabatic level

The value E00 of the lowest adiabatic level follows from
the pair of quantization conditions �5� with m=n=0. To de-
termine this value we need to determine the area O�K�
=
CK

pxdx enclosed by contours of constant K, in the limit of
large K.

In Ref. 5 the area O�K� was determined in the case
B=0, when K=T and the contours are isochronous. It was
found that

O�T� � O0exp�− �T� , �7�

with � the Lyapunov exponent of the normal billiard without
superconductor and O0 a characteristic area that depends on
the angular distribution of the beam of electrons entering the
billiard �width L� from the narrow contact to the supercon-
ductor �width W�. For a collimated beam having a spread of
velocities �	x /	F��W /L one has O0=Nh. For a noncolli-
mated beam O0=NhW /L. The integer N is the number of
scattering channels connecting the billiard to the supercon-
ductor. The quantization requirement O�T��
� gives the
lowest adiabatic level in zero magnetic field5

E00�B = 0� =

�

2�E
, �E =

1

�
ln�O0/
�� . �8�

The Ehrenfest time �E corresponds to a contour that encloses
an area 
�.

In order to generalize Eq. �7� to B�0, we discuss the
concept of scattering bands, introduced in Ref. 18 for a nor-
mal billiard �where they were called transmission and reflec-
tion bands�. Scattering bands are ordered phase space struc-
tures that appear in open systems, even if their closed
counterparts are fully chaotic. These structures are character-
ized by regions in which the functions T�x ,	x� and A�x ,	x�
vary slowly almost everywhere. Hence, they contain orbits
of almost constant return time and directed area, that is, or-
bits returning by bunches. One such bunch is depicted in Fig.
5. The scattering bands are bounded by contours of diverging
T�x ,	x� and A�x ,	x�. The divergence is very slow �
1/ ln �,
with � the distance from the contour4�, so the mean return

time T̄ and mean directed area Ā in a scattering band remain
finite and well defined.19

FIG. 4. Directed area for a classical trajectory, consisting of the
area enclosed by the trajectory after joining begin and end points
along the NS boundary �dashed line�. Different parts of the enclosed
area have different signs because the boundary is circulated in a
different direction.
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The area Oband of a band depends on T̄ as18

Oband�T̄� � O0exp�− �T̄� . �9�

Since an isochronous contour must lie within a single scat-
tering band, Eq. �7� follows from Eq. �9� and from the fact
that the distribution of return times is sharply peaked around

the mean T̄. Because contours of constant K=T−eAB /E
must also lie within a single scattering band, the area O�K� is

bounded by the same function Oband�T̄�. We conclude that
within a given scattering band the largest contour of constant
T and the largest contour of constant K each have approxi-
mately the same area as the band itself

O�T�,O�K� � Oband�T̄� � O0exp�− �T̄� . �10�

We are now ready to determine the magnetic field depen-
dence of the lowest adiabatic level E00�B�. The correspond-
ing contour CK lies in a band characterized by a mean return

time T̄=�−1ln�O0 /
��, according to Eqs. �5b� and �10�. This
is the same Ehrenfest time as Eq. �8� for B=0 �assuming that
the orbital effect of the magnetic field does not modify ��.
The energy of the lowest adiabatic level E00 is determined by
the quantization condition �6�

E00K � E00�E + eAmaxB = 
�/2. �11�

The range of directed areas −Amax� Ā�Amax is the product
of the area L2 of the billiard and the maximum number of

times nmax�	FT̄ /L that a trajectory can encircle that area

�clockwise or counterclockwise� in a time T̄. Hence Amax

=	FT̄L�	F�EL and we find

E00�B� 	 Egap
ad �


�

2�E
− e	FLB . �12�

We conclude that a magnetic field shifts the lowest adia-
batic level downward by an amount e	FLB which is indepen-
dent of �E. Equation �12� holds up to a field Bc

ad at which the
lowest adiabatic level reaches the Fermi level

Bc
ad =


�

2eAmax
�


�

2�Ee	FL
. �13�

We have added the label “ad,” because the true critical field
at which the gap closes may be smaller due to non-adiabatic
levels below E00. For B=0, the ground state is never an
adiabatic state.10 In the next section we study the effective
RMT, in order to determine the contribution from non-
adiabatic levels �return times T��E�.

E. Density of states

The pair of quantization conditions �5� determines the in-
dividual energy levels with T��E and �A��Amax=	F�EL. For
semiclassical systems with L /�F�1 the level spacing � of
the isolated billiard is so small that individual levels are not
resolved and it suffices to know the smoothed �or ensemble
averaged� density of states �ad�E�. In view of Eq. �6� it is
given by

�ad�E� = N�
0

�E

dT�
−Amax

Amax

dAP�T,A�

�

m

��E −

��m + 1/2� + eAB

T
� , �14�

in terms of the joint distribution function P�T ,A� of return
time T and directed area A. In the limit �E→� this formula
reduces to the Bohr-Sommerfeld quantization rule of Ref. 1
for B=0 and to the generalization of Ref. 20 for B�0. The
adiabatic density of states �14� vanishes for E�Egap

ad . Its high
energy asymptotics �meaning E�Egap

ad , but still E���
can be estimated using P�T ,A�= P�A �T�P�T� with
the conditional distribution P�A �T� �which will be discussed
in the next section� and the return time distribution P�T�
=exp�−T /�D� /�D. One gets

lim
E→�

E��

�ad�E� =
2

�
�1 − e−�E/�D�1 +

�E

�D
�� . �15�

The limit �15� is less than the value 2/�, which also contains
the contribution from the nonadiabatic levels with T��E.

III. EFFECTIVE RANDOM-MATRIX THEORY

The adiabatic quantization applies only to the part of
phase space in which the return time T is less than the Ehren-
fest time �E. To quantize the remainder, with T��E, we ap-
ply the effective random-matrix theory �RMT� of Ref. 5. The
existing formulation5,10 does not yet include a magnetic field,
so we begin by extending it to nonzero B.

A. Effective cavity

The effective RMT is based on the decomposition of the
scattering matrix in the time domain into two parts

FIG. 5. Illustration of a bunch of trajectories within a single
scattering band in the billiard defined in Fig. 1. All trajectories in
this figure have starting conditions in the band containing the con-
tour with K=11 of Fig. 3. Both T and A vary only slightly from one
trajectory to the other, so that the whole band can be characterized

by a single T̄ and Ā, being the average of T and A over the scatter-
ing band.
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S�t� = �Scl�t� if t � �E

Sq�t� if t � �E.
� �16�

The classical, short-time part Scl�t� couples to Ncl scattering
channels of return time ��E, which can be quantized adia-
batically as explained in the previous section. The remaining

Nq = N − Ncl = Ne−�E/�D 	 Neff �17�

quantum channels, with return time ��E, are quantized by
RMT with effective �E-dependent parameters.

To describe the effective RMT ensemble from which Sq is
drawn, we refer to the diagram of Fig. 6, following Ref. 10.
A wave packet of return time t��E evolves along a classical
trajectory for the initial �E /2 and the final �E /2 duration of
its motion. This classical evolution is represented by a ficti-
tious ballistic lead with delay time �E /2, attached at one end
to the superconductor. The transmission matrix of this lead is
an Neff�Neff diagonal matrix of phase shifts exp�i��B�� �for
transmission from left to right� and exp�i��−B�� �for trans-
mission from right to left�. The ballistic lead is attached at
the other end to a chaotic cavity having Neff�Neff scattering
matrix S0 with RMT distribution. The entire scattering matrix
Sq�t� of the effective cavity plus ballistic lead is, in the time
domain

Sq�t� = ei��−B�S0�t − �E,B�ei��B�, �18�

and in the energy domain

Sq�E� = eiE�E/�ei��−B�S0�E,B�ei��B�. �19�

The level spacing �eff of the effective cavity is increased
according to

�eff/� = N/Neff = e�E/�D, �20�

to ensure that the mean dwell time 2
� /Neff�eff remains
equal to �D, independent of the Ehrenfest time.

For weak magnetic fields �such that the cyclotron radius
m	F /eB�L�, the phase shifts ��B� are linear in B

��B� � ��0� + B���0� 	 ��0� + diag��1,�2 ¯ �Neff
� .

�21�

The phases �n are the channel dependent, magnetic field
induced phase shifts of classical trajectories spending a time
�E /2 in a chaotic cavity.

The conditional distribution of directed areas A for a
given return time T is a truncated Gaussian20,21

P�A�T� 
 exp�− A2/A0
2���Amax − �A��, A0

2 
 	FTL3,

�22�

with ��x� the unit step function. This implies that the distri-
bution P��� of phase shifts �=eAB /� for T=�E /2 is given
by

P��� 
 exp�−
�2

c

�D

�E
�B0

B
�2����max − ���� , �23�

�max =
eAmaxB

�
�

B

B0

�	F�E
2

L�D
. �24�

The constant c of order unity is determined by the billiard
geometry and B0 denotes the critical magnetic field of the
Andreev billiard when �E→0. Up to numerical coefficients
of order unity, one has11

B0 �
�

eL2� L

	F�D
. �25�

B. Density of states

The energy spectrum of an Andreev billiard, for energies
well below the gap � of the bulk superconductor, is related
to the scattering matrix by the determinantal equation22

Det�1 + S�E�S*�− E�� = 0. �26�

Since Scl and Sq couple to different channels, we may calcu-
late separately the contribution to the spectrum from the ef-
fective cavity, governed by Sq. We substitute the expression
�19� for Sq, to obtain

Det�1 + e2iE�E/�S0�E,B���B�S0
*�− E,B��*�B�� = 0, �27�

��B� 	 ei��B�−i��−B� = diag�e2i�1,e2i�2
¯ e2i�Neff� . �28�

In Ref. 10 the density of states was calculated from this
equation for the case B=0, when �=1. We generalize the
calculation to B�0. The technicalities are very similar to
those of Ref. 23.

The scattering matrix S0�E ,B� of the open effective cavity
can be represented by24,25

S0�E,B� = 1 − 2
iWT�E − H0�B� + i
WWT�−1W , �29�

in terms of the Hamiltonian H0�B� of the closed effective
cavity and a coupling matrix W. The dimension of H0 is
M �M and the dimension of W is M �Neff. The matrix WTW
has eigenvalues M�eff /
2. The limit M→� at fixed level
spacing �eff is taken at the end of the calculation. Substitution

FIG. 6. Pictorial representation of the effective RMT of an An-
dreev billiard. The part of phase space with long trajectories �return
time ��E� is represented by a chaotic cavity with level spacing �eff,
connected to the superconductor via a fictitious ballistic lead with
Neff channels. The lead introduces a channel-independent delay time
�E /2 and a channel-dependent phase shift �n, which is different
from the distribution of phase shifts in a real lead.
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of Eq. �29� into the determinantal Eq. �27� gives a conven-
tional eigenvalue equation23

Det�E − Heff�B�� = 0, �30�

Heff�B� = �H0�B� 0

0 − H0
*�B�

� − W , �31�

W =



cos u
� WWTsin u W��B�WT

W�*�B�WT WWTsin u
� . �32�

We have abbreviated u=E�E /�.
The Hamiltonian H0�B� of the fictitious cavity has the

Pandey-Mehta distribution26

P�H� 
 exp�−

2�1 + b2�

4M�eff
2

� 

i,j=1

M

��Re Hij�2 + b−2�Im Hij�2�� . �33�

The parameter b� �0,1� measures the strength of the time-
reversal-symmetry breaking. It is related to the magnetic
field by11

M

Neff
b2 =

1

8
�B/B0�2. �34�

The ensemble averaged density of states �eff�E� is ob-
tained from the Green’s function,

�eff�E� = −
1



Im Tr�1 +

dW
dE

�G�E + i0+� , �35�

G�z� = ��z − Heff�−1� , �36�

where the average �¯� is taken with the distribution �33�.
Using the results of Refs. 11 and 23 we obtain a self-
consistency equation for the trace of the ensemble averaged
Green’s function

G = �G11 G12

G21 G22
� =

�



�Tr G11 Tr G12

Tr G21 Tr G22
� . �37�

The four blocks refer to the block decomposition �31� of the
effective Hamiltonian. The self-consistency equation reads

G11 = G22, G12G21 = 1 + G11
2 , �38�

0 = Neff� E

2ET
− � B

B0
�2G11

2
�G12

+ 

j=1

Neff e2i�jG11 + G12sin u
1
2 �e−2i�jG12 + e2i�jG21� + cos u + G11sin u

,

�39�

0 = Neff� E

2ET
− � B

B0
�2G11

2
�G21

+ 

j=1

Neff e−2i�jG11 + G21sin u
1
2 �e−2i�jG12 + e2i�jG21� + cos u + G11sin u

,

�40�

with the Thouless energy ET=� /2�D.
From Eq. �35� we find the density of states

�eff�E� = −
2

�eff
Im�G11 +

�E

�Dcos u

�

j=1

Neff G11 + 1
2sin u�G21e

2i�j + G12e
−2i�j�

cos u + G11sin u + 1
2G12e

−2i�j + 1
2G21e

2i�j
� .

�41�

Because Neff�1, we may replace in Eqs. �38�–�41� the sum

 j f�� j� by �d�P���, with P��� given by Eq. �23�. In the
next section we will compare the density of states obtained
from Eqs. �38�–�41� with a fully quantum mechanical calcu-
lation. In this section we discuss the low and high energy
asymptotics of the density of states.

In the limit E→� ,E�� we find from Eqs. �38�–�40� that
G12=G21
1/E→0 while G11→−i. Substituting this into Eq.
�41� we obtain the high energy limit

lim
E→�

E��

�eff�E� =
2

�eff
�1 +

�E

�D
� =

2

�
e−�E/�D�1 +

�E

�D
� . �42�

This limit is larger than 2/�eff because of the contribution
from states in the lead, cf. Fig. 6. Together with Eq. �15� we
find that the total density of states

��E� = �eff�E� + �ad�E� , �43�

tends to 2/� for high energies, as it should be.
At low energies the density of states �eff�E� obtained from

the effective RMT vanishes for E�Egap
eff . In the limit

�E��D the lowest level in the effective cavity is determined
by the fictitious lead with return time �E. This gives the same
gap as for adiabatic quantization

Egap
eff = Egap

ad =
�

�E
�


2
− 2�max� �


�

2�E
− evFLB , �44�

cf. Eq. �12�. The two critical magnetic fields Bc
eff and Bc

ad

coincide in this limit

Bc
eff = Bc

ad �

�

2�EevFL
� B0� �DL

vF�E
2 , if �E � �D, �45�

cf. Eq. �13�. In the opposite regime of small �E we find a
critical field of

Bc
eff = B0�1 −

c�E

8�D
�, if �E � �L�D/vF, �46�

which is smaller than Bc
ad so Bc=Bc

eff. In the intermediate
regime �L�D /	F��E��D, the critical field Bc is given by
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Bc = min�Bc
eff,Bc

ad� . �47�

We do not have an analytical formula for Bc
eff in this inter-

mediate regime, but we will show in the next section that Bc
ad

drops below Bc
eff so that Bc=Bc

ad.

IV. COMPARISON WITH QUANTUM MECHANICAL
MODEL

In this section we compare our quasiclassical theory with
a quantum mechanical model of the Andreev billiard. The
model we use is the Andreev kicked rotator introduced in
Ref. 7. We include the magnetic field into the model using
the three-kick representation of Ref. 27, to break time-
reversal symmetry at both the quantum mechanical and the
classical level. The basic equations of the model are summa-
rized in the Appendix.

In Fig. 7 we show the ensemble averaged density of states
of the Andreev kicked rotator and we compare it with the
theoretical result �43�. The Ehrenfest time is given by6,7

�E = �−1�ln �N2/M� + O�1�� , �48�

with M the dimensionality of the Floquet matrix. We neglect
the correction term of order unity. The mean dwell time is
�D= �M /N��0 and the level spacing is �= �2
 /M�� /�0, with
�0 the stroboscopic time. The relation between B /B0 and the
parameters of the kicked rotator is given by Eq. �A10�.

In Fig. 7�a� �E��D and we recover the RMT result of
Ref. 11. The density of states is featureless with a shallow

maximum just above the gap. In Figs. 7�b�–7�d� �E and �D
are comparable. Now the spectrum consists of both adiabatic
levels �return time T��E� as well as effective RMT levels
�return time T��E�. The adiabatic levels cluster in peaks,
while the effective RMT forms the smooth background, with
a pronounced bump above the gap.

The peaks in the excitation spectrum of the Andreev
kicked rotator appear because the return time T in Eq. �14� is
a multiple of the stroboscopic time �0.7 The peaks are broad-
ened by the magnetic field and they acquire side peaks, due
to the structure of the area distribution P�A �T� for T a small
multiple of �0. This is illustrated in Fig. 8 for the central peak
of Fig. 7. The distribution was calculated from the classical
map �A11� associated with the quantum kicked rotator. The
same map gave the coefficient c=0.55 appearing in Eq. �23�.

In Fig. 9 we have plotted the critical magnetic field Bc at
which the gap closes, as a function of the Ehrenfest time. For
�E��D the Andreev kicked rotator gives a value for Bc close
to the prediction B0 of RMT, cf. Eq. �A10�. With increasing
�E we find that Bc decreases quite strongly. In the figure we
also show the critical magnetic fields Bc

ad for adiabatic levels
and Bc

eff for effective RMT. The former follows from Eqs.
�13� and �A14�:

Bc
ad =




4
B0�2�D�0

�E
2 , �49�

and the latter from solving Eqs. �38�–�40� numerically. As
already announced in the previous section, Bc

ad drops below
Bc

eff with increasing �E, which means that the lowest level
Egap is an adiabatic level corresponding to a return time
T��E. The critical magnetic field is the smallest value of Bc

eff

and Bc
ad, as indicated by the solid curve. The data of the

Andreev kicked rotator follows the trend of the quasiclassi-

FIG. 7. �Color online� Ensemble averaged density of states ��E�
of the Andreev kicked rotator. The dark �red� curves show the nu-
merical results from the fully quantum mechanical model, while the
light �green� curves are obtained from Eq. �43� with input from the
classical limit of the model. The energy is scaled by the Thouless
energy ET=� /2�D and the density is scaled by the level spacing �
of the isolated billiard. The parameters of the kicked rotator are
M =2048,N=204,q=0.2,K=200 in panel �a� and M =16384,
N=3246,q=0.2,K=14 in panels �b�, �c�, �d�. The three-peak struc-
ture indicated by the arrow in panels �b�, �c�, �d� is explained in
Fig. 8.

FIG. 8. Conditional distribution P�A �T� of directed areas A en-
closed by classical trajectories with T=2�0, for K=14,q=0.2, and
�D=5�0. The distribution was obtained from the classical map
�A11� at �=0. Trajectories with T=2�0 give rise to a peak in the
density of states centered around E /ET= �m+1/2�
� /2�0, cf. Eq.
�14�. On the energy scale of Fig. 7 only the peak with m=0 can be
seen, at E /ET=2.5 
�7.9. In a magnetic field this peak broadens
and it obtains the side peaks of P�A �2�0�.
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cal theory, although quite substantial discrepancies remain.
Our quasiclassical theory seems to overestimate the lowest
adiabatic level, which also causes deviations between theory
and numerical data in the low energy behavior of the density
of states �cf. Fig. 7, panels �c�, �d��. Part of these discrepan-
cies can be attributed to the correction term of order unity in
Eq. �48� as shown by the open circles in Fig. 9.

In the regime of fully broken time-reversal symmetry the
distribution of eigenvalues is determined by the Laguerre
unitary ensemble of RMT.28,29 The ensemble averaged den-
sity of states vanishes quadratically near zero energy, accord-
ing to

��E� =
2

�
�1 −

sin �4
E/��
4
E/�

� . �50�

In Fig. 10 we show the results for the Andreev kicked rotator
in this regime and we find a good agreement with Eq. �50�
for �E��D. We did not investigate the �E dependence in this
regime.

V. CONCLUSION

We have calculated the excitation spectrum of an Andreev
billiard in a magnetic field, both using a quasiclassical and a
fully quantum mechanical approach. The quasiclassical
theory needs as input the classical distribution of times T
between Andreev reflections and directed areas A enclosed in
that time T. Times T smaller than the Ehrenfest time �E are
quantized via the adiabatic invariant and times T��E are
quantized by an effective random-matrix theory with
�E-dependent parameters. This separation of phase space into
two parts, introduced in Ref. 5, has received much theoreti-
cal support in the context of transport.18,27,30–34 The present
work shows that it can be successfully used to describe the
consequences of time-reversal-symmetry breaking on the su-
perconducting proximity effect.

The adiabatically quantized and effective RMT spectra
each have an excitation gap which closes at different mag-

netic fields. The critical magnetic field Bc of the Andreev
billiard is the smallest of the two values Bc

ad and Bc
eff. For

relatively small Ehrenfest time �E��D the critical field Bc
eff

from effective RMT is smaller than the critical field Bc
ad of

the adiabatic levels, so Bc=Bc
eff. This value Bc

eff is smaller
than the value B0 of conventional RMT,11 because of the �E
dependence of the parameters in effective RMT. For
�E��D the two fields Bc

ad and Bc
eff coincide, but in an inter-

mediate regime of comparable �E and �D the adiabatic value
Bc

ad drops below the effective RMT value Bc
eff. This is indeed

what we have found in the specific model that we have in-
vestigated, the Andreev kicked rotator.7 The lowest level has
T��E for sufficiently large �E and B. This is a feature of the
Andreev billiard in a magnetic field: For unbroken time-
reversal symmetry the lowest level always corresponds to
longer trajectories T��E,8 and thus cannot be obtained by
adiabatic quantization.5,10
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APPENDIX: ANDREEV KICKED ROTATOR IN A
MAGNETIC FIELD

The Andreev kicked rotator in zero magnetic field was
introduced in Ref. 7. Here we give the extension to nonzero
magnetic field used in Sec. IV. We start from the kicked
rotator with broken time-reversal symmetry but without the
superconductor. The kicked rotator provides a stroboscopic

FIG. 9. Critical magnetic field Bc of the Andreev kicked rotator
as a function of the Ehrenfest time. The Ehrenfest time
�E=�−1ln�N2 /M� is changed by varying M and N while keeping
q=0.2 and �D /�0=M /N=5 constant. For the closed circles the kick-
ing strength K=14, while for the squares from left to right
K=4000, 1000, 400, 200, 100, 50. The solid curve is the quasiclas-
sical prediction �47�. The open circles are obtained from the closed
circles by the transformation ��E→��E+1.75, allowed by the terms
of order unity in Eq. �48�.

FIG. 10. �Color online� Ensemble averaged density of states of
the Andreev kicked rotator for fully broken TRS. The histogram
shows the numerical results, while the curve is the theoretical pre-
diction �50� of the Laguerre unitary ensemble. Both the energy and
the density of states are scaled by the level spacing � of the isolated
billiard. The parameters of the kicked rotator are M =2048,
N=204,q=0.2, while K was varied between 200 and 250 to obtain
an ensemble average.
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description of scattering inside a quantum dot. The propaga-
tion of a state from time t to time t+�0 is given by the
M �M unitary Floquet operator F with matrix elements27

Fmn = �X�Y*�Y�X�mn. �A1�

The three matrices X ,Y, and � are defined by

Ymn = �mnei�M�/6
�cos�2
m/M�, �A2�

Xmn = �mne−i�M/12
�V�2
m/M�, �A3�

�mn = M−1/2e−i
/4exp�i�
/M��m − n�2� . �A4�

The potential

V��� = K cos�
q/2�cos��� +
K

2
sin�
q/2�sin�2�� �A5�

breaks the parity symmetry for q�0. Time-reversal symme-
try is broken by the parameter �. For kicking strengths
K�7 the classical dynamics of the kicked rotator is chaotic.

The Floquet operator �A1� describes electron excitations
above the Fermi level. The hole excitations below the Fermi
level are described by the Floquet operator F*. Electrons and
holes are coupled by Andreev reflection at the supercon-
ductor. The N�M matrix P, with elements

Pnm = �nm � �1 if L0 � n � L0 + N − 1

0 otherwise
� , �A6�

projects onto the contact with the superconductor. The inte-
ger L0 indicates the location of the contact and N is its width,
in units of �F /2. We will perform ensemble averages by
varying L0. The process of Andreev reflection is described by
the 2M �2M matrix

P = �1 − PTP − iPTP

− iPTP 1 − PTP
� . �A7�

The Floquet operator for the Andreev kicked rotator is con-
structed from the two matrices F and P7

F = P1/2�F 0

0 F* �P1/2. �A8�

The 2M �2M unitary matrix F can be diagonalized effi-
ciently using the Lanczos technique in combination with the
fast-Fourier-transform algorithm.35 The eigenvalues eiem de-
fine the quasienergies �m� �0,2
�. One gap is centered
around �=0 and another gap around �=
. For N�M the
two gaps are decoupled and we can study the gap around
�=0 by itself.

The correspondence between the TRS-breaking parameter
� of the kicked rotator and the Pandey-Mehta parameter b
for K�1 is given by27

lim
K→�

b�MH =
�M3/2

12

. �A9�

Here MH is the size of the Pandey-Mehta Hamiltonian.26

Comparison with Eq. �34� gives the relation between � and
the magnetic field B

M3/2

N1/2 � =��D

�0
M� = 3
�2

B

B0
. �A10�

In RMT the gap closes when B=B0, so when �=�0
=3
M−1�2�0 /�D.

For the quasiclassical theory we need the classical map
associated with the Floquet operator �A8�. The classical
phase space consists of the torus 0���2
 ,0� p�6
. The
classical map is described by a set of equations that map
initial coordinates �� , p� onto final coordinates ��� , p�� after
one period �0

27

�1 = � ± p/3 − V����/6 − 2
��1
,

p1 = p � � sin��1� � V����/2 − 6
�p1
,

�2 = �1 ± p1/3 − 2
��2
,

p2 = p1 − 6
�p2
,

�� = �2 ± p2/3 + � sin��2�/3 − 2
���,

p� = p2 ± � sin��2� � V�����/2 − 6
�p� . �A11�

The upper/lower signs correspond to electron/hole dynamics
and V����=dV /d�. The integers �� and �p are the winding
numbers of a trajectory on the torus.

The directed area enclosed by a classical trajectory be-
tween Andreev reflections can be calculated from the differ-
ence in classical action between two trajectories related by
TRS, one with �=0 and one with infinitesimal �. To linear
order in � the action difference �S acquired after one period
is given by27

�S = ��cos �1 − cos �2� . �A12�

The effective Planck constant of the kicked rotator is
�eff=6
 /M, so we may obtain the increment in directed area
�A corresponding to �S from

e

�
B�A =

�S

�eff
=

M

6

��cos �1 − cos �2� . �A13�

Since �cos �1−cos �2��2, the maximum directed area Amax
acquired after T /�0 periods is

Amax = 2
T

�0

�

eB0
� �0

2�D
. �A14�
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