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The theoretical prediction for the discretization of the supercurrent in a
quantum point contact is reviewed in detail. A general relation is derived
between the supercurrent and the quasiparticle excitation spectrum of a
Josephson junction. The discrete spectrum of a quantum point contact be-
tween two superconducting reservoirs with phase difference δφ € (—π/2, π/2)
is shown to consist of a multiply degenerate state at energy ΔΟ cos(<5<^>/2)
(one state for each of the N propagating modes at the Fermi energy). The
resulting zero-temperature supercurrent is 7 = ./V(eAo/fr)sin(<5<?!>/2). The
critical current is discretized in units of eAo/ti, dependent on the energy
gap ΔΟ of the bulk superconductor but not on the junction parameters. To
achieve this analogue of the conductance quantization in the normal state,
it is essential that the constriction is short compared to the superconducting
coherence length.

I. INTRODUCTION

The work reviewed in this contribution was motivated by a sequence of
analogies. First came the quantum point contact (QPC) for electrons [l, 2],
a constriction in a two-dimensional electron gas with a quantized conduc-
tance. Then followed the optical analogue: The predicted [3] discretization
of the transmission cross-section of a diffusely illuminated aperture or slit
was recently observed experimentally [4]. One can speak of this optical ana-
logue äs a QPC for photons. Can one extend the analogue towards a QPC
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for Cooper pairst The answer is Yes [5]. A narrow and short, impurity-
free constriction in a superconductor has a zero-temperature critical current
which is an integer multiple of eAo/fi, with ΔΟ the energy gap of the bulk
superconductor. In this paper we present our theory for the discretization
of the supercurrent, in more detail than we could in our original publication
[5]. For a less detailed, but more tutorial presentation, see Ref. [6]. To in-
troduce the reader to the problem, we first summarize some basic facts on
the Josephson effect in classical point contacts [7].

The theory of the stationary Josephson effect for a classical ballistic
point contact is due to Kulik and Omel'yanchuk [8]. The adjectives classi-
cal and ballistic refer to the regime λρ -C W <C /, where λρ is the Fermi
wavelength, W the width of the point contact, and / the mean free path.
The width W and length L of the constriction are also assumed to be much
smaller than the superconducting coherence length £o = Ιϊυρ/πΑο (with vp
the Fermi velocity). It is then irrelevant for the Josephson effect whether the
constriction is made out of a superconductor or a normal metal. Kulik and
Omel'yanchuk calculated the relationship between the supercurrent / and
the phase difference δφ of the pair potential in the superconducting reser-
voirs at opposite sides of the constriction. Their zero-temperature result
is

Ι = νβ^·8ίη(δφ/2), \δφ\ < Τ Γ , (1)

where G is the normal-state conductance of the point contact. For a
three-dimensional (3D) point contact of cross-sectional area S one has
G = (2e2//i)fep5/47r, with kp the Fermi wavevector. (A 2D point contact
of width W has G = (le* / li)k?W / π .) These conductances, which are inde-
pendent of the mean free path for W <C /, are conlact conductances. The
current-phase relationship (1) is plotted in Fig. l (solid curve). As always,
the Josephson current is an odd function of δφ, and periodic with period
2ττ. The critical current /c Ξ max/(<5(/>) is reached at δφ = π, and equals
7C = TrGAo/e. At the critical current, the Ι(δφ) curve is discontinuous for
T = 0. This discontinuity is smoothed out at finite temperatures.

The supercurrent in the case of a ballistic point contact has a markedly
different dependence on the phase than in the case of a tunnel junction, for
which the Josephson effect was first proposed [10]. The T = 0 current-phase
relationship for a tunnel junction is given by [11, 12]

1= \vG— 8ΐη(δφ), (2)

plotted äs a dashed curve in Fig. 1. There is now no discontinuity in Ι(δφ).
The critical current /c = irG&.Q/'2e is reached at δφ — ττ/2. In both cases,
7C is proportional to G, but with different proportionality coefficients. The
ratio Ic/G is therefore not universal.

482



0.5

φ

^
ο

ο

-0.5

-1
-3π -2π -π Ο

δφ

π 2π 3π

Figure 1: Gurrent-phase relationship at Γ = 0 of a classical ballistic point
contact, according to Eq. (1) (solid curve), and of a tunnel junction, accord-

Eq. (2) (dashed curve).ing to

Point contacts and tunnel junctions have in common that the length of
the junction or weak link is much smaller than £o· At low temperatures, the
Josephson effect can occur also in junctions much longer than £Q [13, 14].
Consider an SNS junction (S=superconductor, N=normal metal) having a
length LN of the normal-metal region (i.e. the Separation of the two SN Inter-
faces) which greatly exceeds the coherence length ξο of the superconductors
(while still LN <C /). The current-phase relationship for the SNS junction at
T = 0 is a sawtooth [15, 16, 17]

(3)

with critical current 7C = aGJivp/eL·^ (reached at δφ — ?r). The numerical
coefficient a is of order unity and depends on the dimensionality of the
junction. (There is a disagreement among Refs. [15] and [17] on the precise

483



value of α.) The IC/G ratio is now a function of LN· This is in contrast
to the point contact and tunnel junction, where IC/G depends only on the
gap ΔΟ in the bulk reservoir—not on the geometry of the junction. There
is also a difTerent temperature dependence. The supercurrents (1) and (2)
decay when T approaches the critical temperature Tc ~ ΔΟ/&Β, wheras Eq.
(3) requires temperatures smaller than Tc by a factor ξο/L^s <C l-

The problem addressed in Ref. [5] was to find the superconducting
analogue of the conductance quantization in the normal state, which is a
geometry-independent effect. The System in which we looked for such an ef-
fect was a short ballistic point contact, much shorter than ξο, and of a width
comparable to λρ. One would hope t hat a quantized G will lead to a "quan-
tization" (or, more correctly, a discreiization) of Ic in units which will still
depend on ΔΟ, but which are independent of the properties of the junction.
The long SNS junction is not a likely candidate because of its Z-N-dependent
critical current. Still, if a quantum point contact is inserted in a long SNS
junction (Z/N ^> ξο), one might expect to find geometry-dependent quantum
size effects on the Josephson current. Theoretical work on that structure
was done by Furusaki, Takayanagi, and Tsukada [18]. Their result is that
Ic increases stepwise with increasing width for certain shapes of the con-
striction, but not generically. When steps do occur, the step height depends
sensitively on the parameters of the junction. As we wi l l show, a short junc-
tion (short compared to ξο) is essential for a generic, junction-independent
behavior.

In See. II we describe the method that we use to calculate the Josephson
current through a quantum point contact, which is different from the method
used in Ref. [8] for a classical point contact. The central result of that sec-
tion is a relation between the supercurrent and the quasiparticle excitation
spectrum of the Josephson junction. In See. III the actual calculation is
presented, following Ref. [5]. We conclude in See. IV with a brief discussion
of a possible experimental realization of the superconducting quantum point
contact.

The present theory is based on two approximations: Firstly, we assume
adiabatic transport, i.e. absence of scattering between the transverse rnodes
(or 1D subbands) in the quantum point contact. The assumption of adi-
abaticity brings out the essential features of the effect in the simplest and
most direct way, just äs it does in the normal state [19]. As in the normal
state [20], we expect the discretization of the Josephson current to be robust
to deviations from adiabaticity which do not cause backscattering. In par-
ticular, although we assume both / >> W and / ;> ξο in the present analysis,
we believe that the condition / S> W on the mean free path is sufficient,
since scattering in the wide regions outside the constriction is unlikely to
cause backscattering into the constriction.

Secondly, in order to further simplify the problem, we treat the propa-
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gation of the modes in the WKB approximation. The WKB approximation
breaks down if the Fermi energy EF lies within ΔΟ from the cutoff energy of
a transverse mode (being the l D subband bottom). We can therefore only
describe the plateau region of the discretized Josephson current, not the
transition from one multiple of eAo/H to the next. Since the transition re-
gion is smaller than the plateau region by a factor of order NAo/Ep (where
N is the number of occupied subbands in the constriction), it is relatively
unimportant if ΔΟ <C Ep and 7V ~ 1.

II. JOSEPHSON CURRENT FROM EXCITATION SPECTRUM

The theory of Kulik and Omel'yanchuk [8] on the Josephson effect in a clas-
sical point contact is based on a classical Boltzmann-type transport equation
for the Green's functions (the Eilenberger equation [7]), which is not appli-
cable to a quantum point contact. The present analysis is based on the fully
quantum-mechanical Bogoliubov-de Gennes (BdG) equations for quasipar-
ticle wavefunctions, into which the Green's functions can be expanded [21].
In the present section we describe how the Josephson current can be ob-
tained directly from the quasi-particle excitation spectrum — without having
to calculate the Green's functions. This method is particularly well suited
for the point contact Josephson junction, which h äs an excitation spectrum
of a very simple form.

The BdG equations consist of two Schrödinger equations for electron
and hole wavefunctions u(r) and v(r), coupled by the pair potential Δ(Γ):

Ή. Δ \ f u\ ( M\ ,,,
Δ* -H' Λ ν )=£(v)> (4)

where Ή = (p + e A)"2 /2m + V — Ep is the single-electron Hamiltonian in the
field of a vector potential A(r) and electrostatic potential V (r). The exci-
tation energy e is measured relative to the Fermi energy. Since the matrix
operator in Eq. (4) is hermitian, the eigenfunctions Φ = (u, v) form a com-
plete orthonormal set. One readily veriiies that if (u, v) is an eigenfunction
with eigenvalue e, then (—v*, u*) is also an eigenfunction, with eigenvalue
— e. The complete set of eigenvalues thus lies symmetrically around zero.
The excitation spectrum consists of all positive e.

In a uniform System with Δ(ι·) = Δ0ε'ψ, A(r) = 0, V(r) = 0, the
solution of the BdG equations is

c = ( ( f t 2 £ 2 / 2 m - £ F ) 2 + A g ) , (5)

u(r) = (2e)-1/V*/2(£ + ft2fc2/2m-JBF)1/2eik-r, (6)

v(r) = (2 £)- 1/ 2e- i^ 2(e-ft 2fc 2/2m + f7P)1 / 2e i k- r. (7)
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The excitation spectrum is continuous, with excitation gap ΔΟ- The eigen-
functions (u, v) are plane waves characterized by a wavevector k. The coef-
ficients of the plane waves are the two coherence factors of the BGS theory.
As we will discuss in the next section, the excitation spectrum acquires a
discrete part in the presence of a Josephson junction. The discrete spectrum
corresponds to bound states in the gap (e < ΔΟ), localized within £o from
the junction. The Josephson current turns out to be essentially determined
by the discrete part of the excitation spectrum.

Close to the junction the pair potential is not uniform. To determine
Δ(Γ) one has to solve the self-consistency equation [21]

A(r) = ff(r)£y(r)u(r)[l-2/(£)], (8)
£>0

where the sum is over all states with positive eigenvalue, and /(e) =
[l + exp^/ÄßT)]"1 is the Fermi function. The coefficient g is minus the
interaction constant of the BGS theory of superconductivity. At an SN In-
terface, g changes abruptly (over atomic distances) from a positive constant
to zero. In contrast, the Cooper pair density A/g goes to zero only over
macroscopic distances (on the order of ξο for a planar SN Interface). Be-
cause of Eq. (8), the determination of the excitation energy spectrum is a
non-linear problem, which is für t her complicated by the fact that the vector
potential has also to be determined sclf-consistently from the current den-
sity, via Maxwell 's equations. (The electrostatic potential can usually be
assumed to be the same äs in the normal state.)

Once the eigenvalue problem (4) is solved self-consistently, one can cal-
culate the equilibrium average of a single-electron operator P by means of
the formula (cf. Ref. [21])

(p) = 2 Σ idr (/(Ou'Pu + t1 - /(OJvPV) . (9)
£>0 ̂

Notice the reverse order, u*"Pu versus vPv* , and the different thermal weight
factors, f(e) for electrons and /(— e) = l — f(c) for holes. The prefactor of 2
accounts for both spin directions. (It is assumed that P does not couple to
the spin.) We are interested in particular in the equilibrium current density
j(r), which is given by

J = ~2^ Σ Re (/WU*(P + eA)u + t1 - /WHP + eA)v*) , (10)
t>0

in accordance with Eq. (9). The Josephson current / is the integral of j · n
over the cross-section of the junction (with n a unit vector perpendicular to
the cross-section).

2 A cutoft" at tujSQ, with WD the Debije frequency, has to be introduced äs usual in the
BCS theory.
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There is an alternative (and often more convenient) way to arrive at the
total equilibrium current / flowing through the Josephson junction, which is
to use the fundamental relation [11]

between the Josephson current and the derivative of the free energy F with
respect to the phase difference. (The derivative is to be taken without vary-
ing the vector potential.) To apply this relation we need to know how to
obtain F from the BdG equations. This is somewhat tricky, since (because
of the pair potential) one can not express F exclusively in terms of the ex-
citation energies (äs one can for non-interacting particles). The required
formula was derived by Bardeen et al. [23] from the Green's function expres-
sion for F . Here we present an alternative derivation, directly from the BdG
equations.

Following De Gennes [21], we write

F = U - TS, (12)

(13)

(14)

(15)
£>0

The energy U is the sum of the single-particle energy (ü) [defined according
to Eq. (9)] and the interaction-potential energy C/lnt (which is negative, since
the interaction is attractive). The entropy S of the independent fermionic
excitations can be rewritten äs

(16)
£>0

Using Eqs. (4) and (8) we obtain for the single-particle energy the expression

(17)
C>0 £>0

The term containing the u's and v's is in fact independent of these eigen-
functions, äs one sees from the following sequence of equalities:

/ Ar f lu l 2 - Iv l 2 ) = Y^ /dr(u*7<u +vWv*)/ V I I l i / / _j Ι \ ' /
J t>0J

i V f r l "Ή *Ή* }ϊλ;] r(u u + v v)

n \
(18)
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Here we have made use of the completeness of the set of eigenfunctions
(u, v) when both positive and negative e are included. Collecting results, the
expression for the free energy becomes

F = -2kBTY^\u['2cosh(e/2kBT)]+ dr\A\2/g + TrW. (19)
e>0 ^

This is the electronic contribution to the free energy, without the energy
stored in the magnetic field. Eq. (19) agrees with Ref. [23] — except for the
term TrTi, which is abseilt in their expression for the free energy.3

The first term in Eq. (19) (the sum over e) can be formally interpreted
äs the free energy of non-interacting electrons, all of one single spin, in a
"semiconductor" with Fermi level halfway between the "conduction band"
(positive e) and the "valence band" (negative e). This familiär [22] semi-
conductor model of a superconductor appeals to Intuition, but does not give
the free energy correctly. The second term (—t/ int) in Eq. (19) corrects for a
double-counting of the interaction energy in the semiconductor model. The
third term (TrW) cancels a divergence at large € of the series in the first
term. Substituting F into Eq. (11), we obtain the required expression for
the Josephson current:

/«OO J

/ de In [2 cosh(e/2fcBT)] -£-

where we have rewritten Σ(>ο as a sum over ^'le discrete positive eigenvalues
fp (p = 1 ,2 , . . . ) , and an Integration over the continuous spectrum with
density of states p((.)· The term Tr'H in Eq. (19) does not depend on δφ,
and therefore does not contribute to /. The term — U\nt does contribute in
general. For the case of a point contact Josephson junction considered in this
paper, however, we will show that this contribution (the third term in Eq.
(20) can be neglected relative to the contribution from the semiconductor
model. A calculation of the Josephson current from Eq. (20) then requires
only knowledge of the eigenvalues. This is in contrast to a calculation based
on Eq. (10), which requires also the eigenfunctions.

3Bardeen et al. [23] use the free energy (including the magnetic field contribution) to

determine the self-consistent pair and vector potentials variationally: The self-consistent

Δ and A mhumize the total free energy of the System. Since TrH depends 011 A, it is

not irnmediately obvious to us that it is justified to disregard this term in the variational

calculation of A, as was done in Ref. [23]. A possible argument is that energies near the

Femii energy do not contribute to ΊΥΉ, because eigenvalues below Ep cancel those above

Ef. The canccllation is not exact, however.
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Figure 2: Schematic drawing of a superconducting constriction of slowly
varying width. (Taken from Ref. [5].)

III. JOSEPHSON CURRENT THROUGH A QUANTUM POINT

CONTACT

Let us now consider an impurity-free superconducting constriction (Fig. 2),
whose cross-sectional area S(x) widens from Smm to S'max ^> Smm over a
length L >> λ/· and <C ξο· The a:-axis is along the constriction, and the
area S'max is reached at χ = ±L. We are interested in the case that only a
small number 7V ~ 5m m/Ap of transverse modes can propagate through the
constriction at energy Ef, and we assume that the propagation is adiabaiic,
i.e. without scattering between the modes. In the superconducting reservoirs
to the left and right of the constriction the pair potential (of absolute value
ΔΟ) has phase φι and </>%, respectively. We wish to calculate the current
Ι(δφ) which flows in equilibrium through the constriction, for a given (time-
independent) phase difference δφ = φι — φ% S (—π,ττ) between the two
reservoirs. The characterization of the reservoirs by a constant phase is not
strictly correct. The phase of the pair potential has a gradient in the bulk
if a current flows. The gradient is I/£Q when the current density equals
the critical current density in the bulk. In our case the critical current is
limited by the point contact, so that the gradient of the phase in the bulk is
much smaller than l/ξο (by a factor Slmn/S(x) <C 1). Since the excitation
spectrum is determined by the region within ξο from the junction, one can
safely neglect this gradient in calculating Ι(δφ] from Eq. (20).

As we enter the constriction from, say, the left reservoir, the pair po-
tential Δ(Γ) begins to vary from the bulk value Aoexp(i</>i), for two reasons:
(a) because the small number of transverse modes leads to a non-uniform
density; and (6) because of contributions from the ./V modes which have
reached r from the right reservoir. Non-uniformities in Δ due to (a) and
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(6) are of order l / N ( x ) ~ \l/S(x] and N/N(x) ~ Smm/S(x), respectively
( N ( x ) being the number of propagating modes at x). For \x > L we have
both S(x) ^> λρ and S(x) > 5mm· One may therefore neglect these non-
uniformities for \x > L, and put

' ifx<-L,

Note the difference wilh planar SNS junctions, where Δ recovers its bulk
value only at a distance ζο from the SN interface. The much shorter decay
length for non-uniformities due to a constriction is a geometrical "dilution"
effect, well known in the theory of weak links [7, 8]. No specific assumptions
are made on the Variation of Δ in the narrow part of the constriction. In
particular, our analysis also applies to a non-superconducting constriction

(A(r) = 0 at SVn i n)· Eq· (21) remains valid up to terms of order Sm'm/Smax <C
1.

We describe the propagation of quasiparticles through the constriction
by means of the BdG equations (4). The electrostatic potential V(r) is now
the confining potential which defines the constriction. We neglect the vector
potential induced by the Josephson current. This is allowed if the total flux
penetrating the junction is small compared to the flux quantum /i/2e, which
is generally the case if the constriction is small compared to ξο·4 For A(r) =
0, the transverse modes n) = φη (r) are eigenfunctions of (p^+p^)/2m+K(r),
with eigenvalues En(x). We expand Φ(Γ) = 53n(u„, νη)φη into transverse
modes and neglect ofT-diagonal matrix elements (η\Ή\η') and (η|Δ|?ϊ') ((. . .}
denotes Integration over y and z). This is the adiabatic approximation. The
functions un(x) and vn(a;) then satisfy the one-dimensional BdG equations

(pl/lm ~ U„)un + Δηνη = eu„,

-(pl/2m - Un )v„ + Δ>η = evn , (22)

where Un(x) = Ef — En(x) — (l/1m)(n\p%.\n) fz EF - En(x) is the kinetic
energy of motion along the constriction in mode n, and An(x] = (?ι|Δ|η)
is the projection of Δ(ι·) onto the n-th mode. We will consider one mode
n < N at a time, and omit the subscript n for notational simplicity in most
of the equations.

In order to simplify the solution of the 1D BdG equations (22), we adopt
the WKB method of Bardeen et al. [23], which consists in substituting

u e'"/2

v
exp (i ( k(x')dx'\ (23)

\ Jo /
4More precisely, the constriction should be small compai'ed to the penetration depth

of the magnetic field in the Josephson junction, which length is much larger than £o in a
type II superconductor [7].
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into Eq. (22) and neglecting second order derivatives (or products of first
order derivatives). One thus generalizes the familiär WKB method for the
Schrödinger equation to the BdG equations, by having not only a spatially
dependent wavevector k(x)—but also spatially dependent coherence factors
exp[±ir;(3;)/2]. The resulting equations for η(χ) and k(x) are

-(H2/2m)kif + e = |A |cos(i7-<£), (24)

(Ti2/2m)(k2 - ik') - U = \\Δ\ΒΪη(η-φ), (25)

where Δ(α;) = \Δ.(χ)\&'^χ\ In general, both η and k are complex. The
WKB approximation requires that U changes slowly on the scale of λρ, so
that reflections due to abrupt variations in the confining potential can be
neglected. Reflections (accompanied by a change in sign of Re k) due to
spatial variations in the pair potential are negligible provided that |Δ| is
much smaller than the kinetic energy U of motion along the constriction.
Since U £ Ep — E?j(Q), the WKB method can not treat the threshold regime
that Ef lies within ΔΟ from the cutoff energy EW(0) of the highest mode N
at the narrowest point of the constriction (x — 0). The energy Separation
SE = Efj+i(Q) — -Ejv(O) ~ Ep/N is much larger than ΔΟ for small 7V, so that
the threshold regime \Ep — -E/v(0)| ;$ ΔΟ consists only of small intervals in
Ferini energy (smaller than the non-threshold intervals by afactor Δο/δΕ <C

l)·
For \x > L, where Δ is independent of x, one has a constant η which

can take on the tvvo values ?ye and i/1,

?f>h = φ + ae'h arccos(e/A0), (26)

where <re Ξ l, σ'1 = —1. We have φ = φι for x < —L and φ = φ-ζ for x > L.
The function arccosi is defined such that arccosi 6 (Ο,π/2) for 0 < t < 1;
for t > l, one has iarccosi = In [i + (t~ - l)1/2]. The (unnormalized) WKB

wavefunctions Φ^1^) for x\ > L describe an electron-like (e) or hole-like
(h) quasiparticle with positive (+) or negative (—) wavevector,

(27)

(28)

The square roots are to be taken such that Re fce'h > 0, Im ke > 0, Im kh < 0.
The wavefunction (27) is a solution for |a;| > L of the BdG equations up to
second order derivatives. One can verify that for zero confining potential
the solution (27), (28) is equivalent to the energy spectrum and coherence
factors given in Eqs. (5)-(7).

For € > ΔΟ, the wavevectors ke'h are real at \x\ > L, and hence the
wavefunctions (27) remain properly bounded äs |a; —»· oo. This is the con-
tinuous spectrum. The density of states /3e 'h(f) of the electron and hole
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independent of the precise behavior of Δ(Γ) in the consinciion. Since
arccos(e/Ao) > 0, there is a smgle bound state per mode, with energy
independent oflhe mode index n < N. This TV-fold degenerate bound state
at energy Δ0 cos(6<f>/2) dilTers qualitatively from the Andreev levels [24] in
an SNS junction with LN ~S> ζο, which are sensitive to the mode index, to
the length LN of the junction, and also to the pair-potential profile at the
SN Interfaces. This sensitivity is at the origin of the geometry-dependent
critical current of the SNS junction which we discussed in the Introduction.

We are now ready to calculate the Josephson current from Eq. (20).
(The alternative calculation based on Eq. (10) was given in Ref. [5], and
leads to the same final result.) The integral over the continuous part of the
excitation spectrum does not contribute in the limit L/ζο — * 0 (see above).
The spatial integral of |Δ|2/</ contributes only over the region within the
constriction (|Δ| being independent of δφ in the reservoirs). Since |Δ|2/<7 ~
Δο/λρ·£ο> one can estimate

-, (36)

which vanishes in the limit L/ξο — *· 0. What remains is the sum over the dis-
crete spectrum in Eq. (20). Substituting cp = Δ0 α38(δφ/2), p = 1,2, ... N ,
we obtain the final result for the Josephson current through a quantum point
contact:

Ι(δφ) = NjA0(T) sin(ty/2) tanh ( —^ cos(^/2)") . (37)

Since N is an integer, Eq. (37) teils us that / for a given value of
δφ increases stepwise äs a function of the width of the constriction. At
T = 0 we have Ι(δφ) — Ν(εΑο/ΐι)8ΐη(δφ/'2), with a critical current 7C =
NeAo/fi (reached at δφ = π). Near the critical temperature Tc we have
Ι(δφ) — N(e&Q/4TikBTc) 5ΐη(δφ), and the critical current is reached at δφ =
π/2. The ratio I/G (with G = INe2 jh the normal-state conductance of
the quantum point contact) does not contain ./V and is formally identical to
the result for a classical point contact [8].5 In Fig. 3 we have plotted 1(6 φ)
from Eq. (37) for three different temperatures: T = 0,0.1,0.2 in units of
Δο(0)/&Β = 1-76 Tc. For these relatively low temperatures the T-dependence
of ΔΟ may be neglected. The T-dependence of the Josephson current is easily
understood within the semiconductor model (cf. See. II), äs a cancellation
of the current due to the states in the energy gap at — cp and at +ep . States
above the Fermi energy are unoccupied at T = 0, but become occupied when

5The identity of the classical aiid quantum lesults for I/G should not be inistaken
for a universal truth: It only holds within the approximations made in our analysis, and
breaks down in particular in the tiansition region between two subsequent plateaux of
discretized supercurrent.
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branches of the excitation spectrum is

r L \
(29)

The length L$ of the superconducting regions at opposite sides of the con-
striction is assumed to be much larger than £o· The wavevector change
6ke'h is of order l/ζο for e £ ΔΟ and decays äs e~3/2 for e ^> ΔΟ. It follows
that the integral over the continuous spectrum in the expression (20) for the
Josephson current is of order Ν(εΑο/ΐι)Ι;/ξο, which vanishes in the limit
L/ζο -* 0.

For 0 < e < ΔΟ, the wavevectors ke'h have a non-zero imaginary part at
|a: > L, so that Eq. (27) is not an admissible wavefunction for both χ > L
and χ < —L. The two bounded WKB wavefunctions for 0 < e < ΔΟ are
given at \x\ > L by

ß+*e
+ i f i > L,

Φ - -Φ6

Γ

 i f a-'<-L ' (32)
1 5-Φ'1 i f x > L . ( 'k

The transition from kh to ke on passing through the constriction (associated
with a change in sign of Im k) is analogous to Andreev reßection at an
SN interface [24]. Andreev reflections are to be distinguished from ordinary
reflections involving a change in sign of Re k. Ordinary reflections due to the
pair potential are neglected in the WKB approximation. By matching the
wavefunctions Φ-j- to the region \x < L we obtain a boundary-value problem
with a discrete energy spectrum. Since e < ΔΟ <C U, we may approximate
k « ±(2mU/fi )1 / / 2 in Eq. (24) (the upper sign refers to Φ+, the lower sign
to Φ_). The boundary-value problem thcn becomes

±[Λ2^(χ)/27Τ7]1/2

ν '(χ) + |Δ(χ·)| COS[T,(I) - φ(χ)} = e, (33)

η(-1] = φι Τ arccos(e/A 0),

= φ-, ± arccos(e/A0). (34)

Noting that η is real, one deduces from Eq. (33) the inequality \η'\ <
(ε+|Δ|)(Λ2ί//2)η)-1/2. Since |Δ| < Δ0 and U > EF-EN(Q), we have the lim-
iting behavior \η(1) - η(-1)\ < (L/£0)(l - EN(Q)/EF}-1^ -+ 0 in the l imit
L/ζο — > 0. Hence, to order L/ξο the bound-state energy e is determined by

arccos(c/A0) = ±τ;δφ, (35)
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mdependent of the precise behavior of Δ(ι·) in ihe consinction. Since
arccos(e/Ao) > 0, there is a snigle bound state per mode, with energy
mdependent of the mode mdex n < N. This ./V-fold degenerate bound state
at energy Δ0 ο35(δφ/2) difiers qualitatively from the Andreev levels [24] in
an SNS junction with LN ^> ξο> which are sensitive to the mode index, to
the length LN of the junction, and also to the pair-potential profile at the
SN interfaces. This sensitivity is at the origin of the geometry-dependent
critical current of the SNS junction which we discussed in the Introduction.

We are now ready to calculate the Josephson current from Eq. (20).
(The alternative calculation based on Eq. (10) was given in Ref. [5], and
leads to the same final result.) The integral over the continuous part of the
excitation spectrum does not contribute in the limit L/£o —> 0 (see above).
The spatial integral of |Δ| 2/</ contributes only over the region within the
constriction (|Δ| being independent of δφ in the reservoirs). Since |Δ| 2/</ ~

one can estimate

h)^ (36)

which vanishes in the limit L/ξο —* 0. Wh a t remains is the sum over the dis-
crete spectrum in Eq. (20). Substituting ep = ΔΟ Μ8(δφ/2), p = 1,2,... N,
we obtain the final result for the Josephson current through a quantum point
contact:

Ι(δφ) = NjA0(T) sin(5</;/2) tanh f ̂ £0. Cos(<^/2)) . (37)
n \ ίκ-Ql J

Since N is an integer, Eq. (37) teils us that I for a given value of
δφ increases stepwise äs a function of the width of the constriction. At
T = 0 we have Ι(δφ) = N(eAo/fi)s'm(6$/'2), with a critical current /c =
ΤνεΔο/Λ (reached at δφ = π). Near the critical temperature Tc we have
Ι(δφ) = Ν(εΔ%/4Τι^Τ(;)Β\η(δφ), and the critical current is reached at δφ —
π/2. The ratio I/G (with G = 2Ne~/h the normal-state conductance of
the quantum point contact) does not contain N and is formally identical to
the result for a classical point contact [S].5 In Fig. 3 we have plotted Ι(δφ)
from Eq. (37) for three differcnt temperatures: T = 0,0.1,0.2 in units of
Δο(0)/&Β = 1.76TC. For these relatively low temperatures the T-dependence
of ΔΟ may be neglected. The T-dependence of the Josephson current is easily
understood within the semiconductor model (cf. See. II), äs a cancellation
of the current due to the states in the energy gap at —ep and at +(r . States
above the Fermi energy are unoccupied at T = 0, but become occupied when

5The identity of the classical and quantum results for I/G should not be mistaken
for a universal truth: It only holds within the approximations made in our analysis, and
breaks down in particulai* in the tiansitioii region between two subsequent plateaux of
discretized supercurrenl.
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Figure 3: Current-phase relationship of a superconducting quantum point
contact, according to Eq. (37), for three diflerent temperatures (in units
of Δ0(0)/Α,·Β): T = 0 (solid curve), T = 0.1 (dashed curve), and T = 0.2
(dotted curve).

f-p-
smallest there.

The supercurrent decays niost rapidly near \δφ\ — π, since ep is

IV. EXPERIMENTAL REALIZATION

A superconducting quantum point contact (SQPC) of fixed width rnight
be constructed relatively easily äs a constriction or microbridge in a super-
conductor of uniform composition. A test of the present theory, however,
requires the fabrication of nanostructures with variable width or density. In
the case of normal-state quantum point contacts this has been realized by
depleting the high-mobility two-dimensional electron gas (2DEG) at the in-
terface of a GaAs-AlGaAs heterostructure by applying a negative voltage to
a split gate on top of the heterostructure [1,2, 25]. This is an ideal System
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Figure 4: Top view of a possible experimental realization of a superconduct-
ing quantum point contact.

for the study of ballistic transport of normal electrons, because of the long
mean free path (/ ~ ΙΟμηι) and Fermi wave length (\p — 50nm).

An SQPC might be realized in the same System, if superconducting
contacts to the 2DEG can be made [26]. An observation of the discretized
critical current requires that the superconducting regions extend well into
the constriction on either side, äs illustrated schematically in Fig. 4 (black
regions). A remaining problem is the mismatch in Fermi energy that will in
general exist at the Interface between the 2DEG (where Ep ~ lOmeV) and
the superconductors (where EF ~ leV). This mismatch, if it is abrupt, in-
duces normal reflections (rather than Andreev reflections) of quasiparticles
incident on the reservoirs. The fabrication of sufficiently clean supercon-
ducting contacts to the 2DEG in a GaAs-AlGaAs heterostructure may be
difficult, because contacting requires an alloying process. This problem may
be circumvented by using the surface 2DEG present äs a natural Inversion
layer on p-InAs [27]. Superconducting contacts, with a shape äs in Fig. 4,
may then be evaporated directly onto the surface. Once the contacts have
been made, a constriction of variable width may again be realized by means
of split gates (insulated from the surface 2DEG). Because of the non-linear
dependence of the supercurrent on the gate voltage, such an SQPC has pos-
sible device applications [28].
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