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Abstract. A theory 1s presented for the frequency dependence of the power spectrum of photon current
fluctuations originating from a disordered medium Both the cases of an absorbing medium (“grey body”)
and of an amplfying medium (“random laser”) are considered n a waveguide geometry The semiclassical
approach (based on a Boltzmann-Langevin equation) 1s shown to be m complete agreement with a fully
quantum mechanical theory, provided that the effects of wave localization can be neglected The width of
the peak 1n the power spectrum around zero frequency 1s much smaller than the iverse coherence tume,
characteristic for black-body radiation Simple expressions for the shape of this peak are obtained, in the
absorbing case, for waveguide lengths large compared to the absorption length, and 1n the amplifying case,

close to the laser threshold

PACS. 42 50 Ar Photon statistics and coherence theory — 05 40 -a Fluctuation phenomena,
random processes, noise, and Brownian motion — 42 68 Ay Propagation, transmission, attenuation,

and radiative transfer

1 Introduction

The noise power spectrum of a black body 1s frequency
independent for frequencies below the absorption band
width The mnverse of the band width 1s the coherence
tume T.on of the 1adiation [1], which for a black body 1s
the longest relevant time scale — hence the white noise
spectrum P(§2) for 2 S 1/7con In a weakly absorb-
ing, strongly scattering medium there appear two longer
time scales the absorption time 7, and the time L2 /D1t
takes to diffuse (with diffusion constant D) through the
medium (of length L) As a consequence, P({2) for such
a weakly-absorbing medium (sometimes called a “grey
body”) starts to decay at much lower frequencies than
for a black body having the same coherence time
Although there 1s by now a substantial literature on
the theory of grey-body radiation [2-7], the results have
been limited to either the zero or high-frequency himits of
the noise spectrum (or, equivalently, to short or long pho-
todetection times) In the present work we remove this
himitation, by computing P(£2) for a diffusive medium for
arbitrary ratios of §2, 1/7,, and D/L? We compare two
different approaches in a waveguide geometry one which 1s
fully quantum mechanical (based on random-matrix the-
ory [7,8]) and another which 1s semiclassical (based on
a Boltzmann-Langevin equation [9]) Each method has
1ts advantages and disadvantages the quantum theory

® e-mail mishch@lorentz leidenuniv nl

includes imterference effects, which are ignored n the semi-
classical theory, but 1t 1s mathematically more mvolved
Complete agreement hetween the two approaches 1s ob-
tamned 1n the lumt that the waveguide length L 1s much
smaller than the localization length (equal to the mean
free path times the number of propagating modes)

The results for absorbing media can be applied di-
rectly to linear amplfiers, by formally changing the sign
of the temperature and the absorption time Loudon and
coworkers [10,11] used this relationship to calculate the
noise power spectrum of a waveguide without disorder
The generalization to a diffusive medium presented here
describes a random laser [12] below threshold

The outline of this paper 15 as follows We start with
the semiclassical approach, presenting a general solution
of the Boltzmann-Langevin equation 1 Section 2 and
applying 1t to a waveguide geometry in Section 3 The
quantum mechanical approach 1s developed 1in Section 4
For the quantum theory we need the correlator of reflec-
tion and transmission matrices at different frequencies
These are calculated in the Appendix, using the random-
matrix method of reference [13] We discuss our findings
in Section 5

2 Semiclassical theory

Starting pomt of the semiclassical theory 1s the
Boltzmann-Langevin equation for photons of reference [9]
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Fig. 1. Thermal radiation (solid arrow) is incident through
port So on an absorbing disordered medium (shaded). The
outgoing radiation (dashed arrows) is absorbed by photode-
tectors.

We first consider an absorbing medium (in equilibrium at
temperature T'), leaving the amplifying case for the end of
this section. We make the diffusion approximation, valid
if the mean free path [ is the shortest length scale in the
system (but still large compared to the wavelength). The
fluctuating number density n(w,r,t) and current density
j(w,r,t) of photons at frequency w, position r, and time ¢
are related by [9]

on
= “Da— + Ly,

(pf = n) + Lo.

(2.1)

on 0

S

Here D = cl/3 is the diffusion constant, & = /D7,
is the absorption length (with 7, the absorption time),
p = 4mw?(2mc)3 is the density of states (not counting
polarizations), and f = [exp (fw/kT") — 1]71 is the Bose-
Einstein function. We assume &, > [. The fluctuating
source terms Lg and £7 have zero mean and correlators

— w6t —1)(r — 1)

j=D¢; (2.2)

LO(wa r, t)’C'O (wla I‘l, t/) = 5((")

x DE2(2fn+ pf +7),
(2.3a)
Lio(w,r,8)L1p(w 1/ t) = 26,86 (w — )6t —t')6(r — ')
x Dn(1+n/p). (2.3b)

The cross-correlator of £y and L4 is given in reference [9],
but will not be needed. Combining equations (2.1, 2.2) we
find equations for the mean 7 and the fluctuations én of
the photon number density n = 7 + dn,
1 on R n
n,om_n_ _pf (2.4)
Do o e &
18 0%n on 10 Lo

Do tar & Do T D

1)
D or D (2:5)

We present a general solution for the multiport geome-
try of Figure 1. Thermal radiation is incident through the
port Sy and can leave the system via ports Sy, S1, Sa, .. .,
where it is absorbed by photodetectors. The corresponding
boundary conditions are n(w,r,)|res, = Nin(w,t)dpo. We

assume that the closed boundaries X' of the system (with
volume V) are perfectly reflecting. The separation of the
ports is of order L > [. In what follows we assume detec-
tion of outgoing radiation in a narrow frequency interval
dw around w. We require that dw is small both compared
to w and to 1/7¢en. To minimize the notations in this sec-
tion we omit the frequency argument w and use units in
which dw = 1. (We will reinsert dw in the next section.)

The Green function of the differential equa-
tions (2.4, 2.5) in the Fourier representation with
respect to the time argument satisfies

0? i02
(51-_2 —&%+ %) G(r,r',2) =o6(r —1'). (2.6)
(Fourier transforms are defined as f(£2) =
[0 dtet f(t).) For frequency resolved detection

we require {2 < dw. We impose the boundary conditions

G(rvr/VQ)'I‘ESp :Da p:0)1727---7 (27&)
5 LELD, o, (2:7b)

where ¥ denotes the outward normal direction to the sur-
face 2. We consider separately the mean and the fluctua-
tions of the photon number and current densities.

2.1 Mean solution

The average photon density satisfying equation (2.4) can
be expressed in Fourier representation in terms of the
Green function (2.6),

Alr, 2) = —2mpfE,%6(92) /dr/ G(r,r',0)
v
_ , O0G(r,r’' 1)
+nm(!2)/dS —

So

(2.8)

Substituting this formula into the expression for the cur-
rent (2.1) and integrating over the area S, one obtains the
mean outgoing current /, through port p # 0,

L,(12) = 2mpDfET25(02 /dS /d’ (r,x7,0)

2 0
— Diun(2) /dS /dsﬁaG” KASULETUN

8 a ! (2'9)

(Summation over the repeating Greek indices is implied.)
The first term  6(§2) is the time-independent mean ther-
mal radiation from the medium. The second term is that
part of the mean radiation entering through port 0 that
leaves the medium through one of the other ports. (The
restriction to p # 0 is not essential but simplifies the gen-
eral formulas considerably, so we will make this restriction
in what follows.)
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Coplr, 257, 2) = 5 [ PG LB o7 4 yats”, 24 @) 11
‘ga P Ora (%"ﬁ
v
1
4o e, 24+ 20", 2 - 2" (2.14)

’ _ 1
42D [[ A G 0,0, DG 17, ) 00", 2+ )+ 2 [
1%

2.2 Fluctuations

The fluctuations in the number density follow in a similar
way from the Green function and equation (2.5),

dn(r, 2) =
1 dr’ G(r,x’, 2) 9. L1(r', Q) — Lo(r', £2)
D b b ar/ 3 b

A7

9G(r,v, Q)

+ 5nm((2)/dS’- I

So

(2.10)

The fluctuation of the cuirent density is then given by
equation (2.1),

07a(r, £2) =

"1
/dr’ <Ga5(r,r’, DN Lyp(r', 2) + a—G(g’:—’)&)(TI, Q))
v (a4

—Danm(g)/ds;, Gop(r,x, Q). (2.11)

S’()
We have defined
9?G(r,1', 2)
Gop(r,r', 2} = W + 8apd(r — ). (2.12)
We seek the correlator of the current fluctuations
Coplr, 2,7, 02") = 6§90 (r, 2)85(r', 12) (2.13)

for r € Sp, r' € S, with p, ¢ # 0. With the help of equa-
tions (2.3, 2.11) it can be expressed as

see equation (2.14) above.

Following reference [9], we have neglected the term o< 07,y
in equation (2.11) (smaller by a factor //L) and the cross-
correlator LoL (smaller by a factor 1/&,).

We now integrate r and r’ over S, and S, to obtain
the correlator of the total currents through ports p and ¢,

Cnl2.2) = [ 45, [ S Coplr v, 2)
= (2,2 + CcP (2, 2).

rq Pq

(2.15)

The first term C,()(lj) contains the contribution from the
terms linear in the number density 7 in equation (2.14).

Performing integration by parts and using equations (2.6—
2.8) we find that this term vanishes for p # ¢. For p = ¢
it contains the mean current,

Cs (2, 02) = 6T (2 + 12'). (2.16)

For a time-independent mean current fp one has a white-
noise spectrum CSe (82, 2') = 216,,6(2 + £2')I,. This is
the usual shot noise, corresponding to Poissonian statis-
tics of the current fluctuations. The second term C,(fj) de-
scribes the deviations from Poissonian statistics. It arises
from terms in equation (2.14) that are quadratic in 7.
Performing again an integration by parts, one finds

2
CiD(0,0) =

2 1 = 11 QI/
D/dSa/dS/’B/dr”/dQ an(x"”, 2+ 27
Je 27 87{;

Sy s, v

o, 2 — Q") 9G(r,r", 2) IG( ", 2)
* or! Ora oy @10

Y

Equation (2.17) together with equation (2.8) is the result
that we need for our analysis of the frequency dependence
of the noise spectrum.

2.3 Amplifying medium

The extension of our general formulas to an amplifying
medium (in the linear regime below the laser threshold)
is straightforward [9]: we assume that the frequency w at
which we are detecting the radiation is close to the fre-
quency of an atomic transition with (on average) Nupper
and Nyower altoms in the upper and lower state. Then the
Bose-Einstein function can be replaced by the population
inversion factor f = Nupper (Nower — Nupper) ~*. This factor
is negative in the amplifying case (when Nypper > MNower )
with f = —1 for a complete population inversion. (Equiv~
alently, one can cvaluate f at a negative tcmperature [11],
with T — 07 for complete inversion.) An amplifying
medium has a negative absorption time 7, = £2/D. We
can account for this by taking £, imaginary. With these
two substitutions for f and &, our formulas for an absorb-
ing medium carry over to the amplifying case.

3 Waveguide geometry

For the application of our general forinulas we consider
a waveguide geometry (see Fig. 2). The waveguide has
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Fig. 2. Thermal radiation (solid ariows) is ncident on a
wavegulde contaming an absorbing or amplifying disordered
medium The transmitted radiation (dashed airows) 1s ab-
sorbed by a photodetector

length L and cross-sectional area A, corresponding to
N = w?A/47c® propagating modes (not counting polar-
1zations) at frequency w We abbieviate s = L/§, We
consider a statronary mcident current Iy = cAdwii,, /4 =
(Néw/27p)fy, and calculate the noise power spectrum of
the transmitted curient,

P(2) = / dte?* §1(t)41(0)

-0

(31)

In terms of the correlator of the previous section, one has
Ci11(02,82) = 2rP(2)0(2 4 ')

3.1 Absorbing medium

We calculate the noise power from equations (2 8, 2 17),
using the Green function

G(z,z',02) = -¢&,
y sinh [(2< /€)1 — 1027, sinh [(s — 2~ /€)1 — 1027,]

simh [sy/1 —1827,] ’
(32)

where v and z- ale the smallest and largest of z, 2’ re-
spectively The mean photon density 1s time independent
In Fourier representation one has, from equation (2 8),

of

sinh s

X (smhs —smh (z/€,) —smmh (s — ac/fa))

_ sinh (s~ z/&,)
2 8(£2)y, S~ T/ Ga)
+2mo(2)n sinh s

n{x, 2) = 275(§2)

(33)

The mean current I = Iy, +Iirans 15 the sum of the thermal
radiation from the medium

4D
Itn = ; f(N(Sw/27r) tanh (s/2) (34)
and the transmitted mcident current
= 4DIy
I rans — 1 5
¢ c€, smh s (35)

Substitution of equations (3 2, 3 3) mto equation (2 17)
yields the super-Poissoman noise P — I as a sum of three

The European Physical Journal D

terms. P—-1= Pth + Ptrans + cha with

8D #2
Punl(€2) = Cgf

A hs 2
y /ds’ (cosh(s s') — cosh s > K(s's), (36)
0

(Néw/2m)

smh s

D 2
Ptrdns(\-(2> = ‘8‘—‘“0510 (2’/7'/N(5(4))

4

2 o
X /ds’@(s—Qg—)K(s’,b), (37)
sinh” s
16D fI,
P () = 2120
CX( ) Cfa
’r_ o o
></ds,[coshs cosh (s 23 )] cosh (s S)K(s’,s)
J sinh“ s
(38)
We have defined
A 2
K(s'5) = sih(s'v/1 —1027,) (39)
sinh(s/1 — 1027,)

The two terms P, e and Py desciibe sepatately the noise
power of the transmitted mcident curient and of the thei-
mal current fiom the medium The term P,y 1s the excess
noise due to the beatmg of the incident 1adiation with the
thermal fluctuations from the medium

The three contributions are plotted separately n
Figure 3 For L > ¢, the fiequency dependence sumpli-

fies to _
_ .[Ith

FPin($2) = e (3 10)
Pirans(92) = Cg—‘ié%i(zw/Naw)

« (1*2__23551) +i{§jﬁ§> (311)

Pox(£2) = [Lirans 2 i ig (312)

whete we have defined

(=Re V1—-1027, =

As discussed 1n reference [9] (for the zero-fiequency case)
the 1esult for Prane requues that the mmcident radiation 1s
mn a thermal state, at some temperatuie Ty (The quantity
f(w,Tp) = Io(2w/Néw) 18 the corresponding value of the
Bose-Einstein function ) There 1s no such 1equirement for
Py and Py, which are mndependent of the incident state
For Ty > T we may genetally neglect Py, and Fey 1ela-
t1ve t0 Pirans, 50 that P = lipane + Pirans However, if the
mcident radiation 1s m a coheient state, then FPjans = 0
and smce for sufficiently large Iy we may neglect I3y, we
have i this case P = Iiane + Fox The contiibution Py, 18
important mainly 1in the absence of external illumination,
when P = Iy + P

1 2_2\1/2 172
(L2224 o (313)
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Pe‘(/fltlans
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PtraHS/ZIu ans

P/l

Qr,

Fig. 3. Frequency dependence of the thiee super-Poissonian
contributions to the nowse power, P — T =P+ Pions + Pey, for
duferent values of s = L/& m an absorbing waveguide The
sohd cuives a1e computed from equations (3 6-3 8), the dashed
curves are the laige-s asymptotes (310 3 12) The parameter
Z 15 defined as Z = (c€a/2D) (27 /Néw)

3.2 Amplifying medium

The results for an amplfying medium ale obtained by the
substitution &, — 1€, [ — Nupper (Nowar — Nuppar) ™1, ¢f
Section 2 3 The fiequency dependence of Py, P an., and
P, following fiom equations (3 6-3 8) 1s plotted 1 Fig-
wie 4 for lengths L below the laser thieshold at L = 7€,

3.3 Cross-correlator

In the absence of any madent 1adiation, the nowe P =
Iy + Py 18 due entuely to the thermal fluctuations in
the medium The cuirent fluctuations at the two ends of
the waveguide are corielated, as measuied by the cross-
cotielator

o0

Plg(Q) = /dtelméh(t)éfg(O)

— 0

(3 14)
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=
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3 5

o
0

2
Itl ans

Ptxans/Z

Pth/|f|[Lh

Q7

Fig. 4. Same as Figwe 3, for the case of an amphfying waveg-
uide The laser threshold occuis at s =7

From equations (2 17, 3 2, 3 3) we obtan

8D f?

CGa

cosh (s—s')—cosh s’ ) ?

Po(2)=
12(£2) sinh s

(Néw/QTr)/ds' (
0
y sinh[s’v/1 — 1027, smh|(s — §')/1 +1027,]
| smbhi[sy/1 — 1027,]|?
The cross-correlator 1s plotted i Figure 5 for both the ab-

sorbing and amplifying cases The outgoing curients at the
two ends of the waveguide ate anti-correlated for 27, > 1

(3 15)

4 Comparison with quantum theory

A fully quantum mechanical theoiy {o1 the photocount
distiibution of a disordered medium was developed 1n
references [7,8] In this section we venfy that 1t agiees
with the semiclassical 1esults of the pievious section We
consider the same system of Figuie 2, a disordered waveg-
uide with a photodetector at one end and a stationary
curtent mcident at the other end We assume that the in-
cident current originates fiom a thermal source at temper-
atuie 7y The photocount distiibution 1s the distiibution
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Qr,

Fig. 5. Frequency dependence of the cross-correlator of the
outgoing current at the two ends of the waveguide, in the
absence of any external illumination Computed from equa-
tion (3 15) for the absorbing case (lower panel) and amphfying
case (upper panel)

of the number of photons n(f) counted (with umt quan-
tum efficiency) 1n the time mnteival (0,¢) Substitution of
I = dn/dt in the defimtion (3 1) of the noise power P({2)
leads to a relation with the variance Varn(t) of the pho-
tocount,

o>
(22/dt Var n(t) cos 2t, (4 1a)

Varn(t

Al

0
/dQQ 2P(2)(cos 2t —1)  (41b)
0

The variance can be separated mto two terins, Varn(t) =
A(t) + k(t) = tI + k(t), with k(t) the second factorial
cumulant The teim ¢/, substituted mto cquation (4 1a),
gives the frequency-independent shot noise contiibution
to the power spectrum,

P(2)=1-10? /dt K (t) cos £21
0

(42)

The cumulant & = Kyrans + Kih + Kex contains sepaiate
contributions from the transmitted mncident 1adiation and
thetmal fluctuations m the medium, plus an excess con-
tribution from the beating of the two These contiibu-
tions have an exact 1cpresentation m terms of the N x IV

The Europecan Physical Jownal D

reflection and transnussion matiices 7(w), t(w) of the

waveguide [7,8],

Oodw dw’
Ktrans(t):/%/ o L( —w/,t)

0 0

X flw To)f(w', To)Ty T(w)T (W), (43)
Ken(t / /0 dw L{w—u',t)
Fw, D)/, T)T Qw)Qw"), (44)
Fex(t) = g—% —w'1)
0
X 2f(w, To) f(' . T)Tha T(w)Q(w'), (45)
where we have defined
L(w,t)= [ dt' | dt" explw(t — ")) =2w"?(1~coswt),
[*]
(46)
Qw) =1~ rw)rl(w) — tw)!! W), 47)
T(w) = t(w)tT (w) (4 8)

Substitution mto equation (4 2) gives the corresponding
contributions to the noise power P = I+ P, ans + Pt + Pex,

o0
dw

Ptxans(g) - 5 / ——]C((U TO)f(w + Q;T())

0

x T T(w)T(w+ 2)+{2— -2}, (49

BmngfﬁﬁwTﬁw+mﬂ
0

x T Qw)Qw + 2) +

P(2) = 1/ ﬁ‘izf(w To)f(w + 0,T)

{2 — -0}, (410)

2

0
x T T(W)Q(w+ 2) + {2 — -2} (411)
Asn the previous section, we assume a fiequency-1esolved
measwiement 1 an mterval dw < w, 1/7con with 2 < dw
We may then omut the mtegral over w and appioximate
the argument w - {2 1n the functions f by w We take the
ensemble average () of the nowsc power, mn which case
the contiibutions from 442 are the same Finally, we insert
the madent cunent Iy = f(w, Tp)Ndw/2m, to annive at

Pywne(£2) = 27 /NOWIZN T ITV T(w)T(w + £2)), (412)
Py(£2) = (Now/2m) f*(w, T){N T Q(w)Qw + 2)),

(4 13)

Pox(82) = 21 f(w, TY (N 'L T(w)Q(w + 2)) (4 14)
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It remains to evaluate the ensemble averages. This is done
in the Appendix, by extending the approach of refer-
ence [13] to correlators of reflection and transmission ma-~
trices at different frequencies. The calculation applies to
the diffusive regime that the length L of the waveguide
is large compared to the mean free path [, but still small
compared to the localization length N{. (The absorption
length £, is also assumed to be 3> [.) The results are

(NT' Ty T(w)T(w + 2)) = i—g /ds' K(s,s)

0
cosh?(s — ')
x LTI 415
sinh? s ( )
-1 8D / ’ l
(NT'Tr Qw)Q(w + 2)) = & ds' K(s', s)
‘0
! _ V12
y [cosh s .coszh(s sl (@16)
sinh” s
—1 8D [ l /
(NTTr T(w)Q(w + 2)) = o ds’ K(s', s)
“ 0
o I 200 o
" cosh(s — §’) cosh s’ — cosh®(s — s )’ (4.17)

sinh? s
where s = L/, and the kernel K(s', s) is defined in equa-
tion (A.29). The combination of equations (4.12-4.17)
agrees precisely with the results (3.6-3.8) of the semiclas-
sical theory. The quantum theory is more general than the
semiclassical theory, because it can describe the effects of
wave localization. The method of reference [13] gives cor-
rections to the above results in a power series in L/NI.
We will not pursue this investigation here.

5 Discussion

We have presented a theory for the frequency dependence
of the noise power spectrum P({2) in an absorbing or am-
plifying disordered waveguide. The frequency dependence
is governed by two time scales, the absorption or amplifi-
cation time 7, and the diffusion time L?/D), both of which
are assumed to be much greater than the coherence time
Teon- A simplified description is obtained, in the absorb-
ing case, for lengths L much greater than the absorption
length £, = +/D7,, and, in the amplifying case, close to
the laser threshold at L = m¢,. We will discuss these two
cases separately.

5.1 Absorbing medium

The general formulas (3.6-3.8) for P = I + Py, + Prans +
P, simplify for L > £, to equations (3.10-3.12). To char-
acterize the frequency dependence we define the charac-
teristic frequency 2. as the frequency at which the super-
Poissonian noise has dropped by a factor of two:

P2 — T = % (P0) - 1) . (5.1)
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Fig. 6. Ratio of I3, and Py, in an amplifying waveguide as a
function of its length for different frequencies, computed from
equations (3.4, 3 6). The approximation (5.5) valid near thresh-
old for small frequencies is shown dashed.

In the absence of any external illumination (Ip = 0) we
have, from equation (3.10),

P:fth (1_{‘1—.{2)3 jth:4£f

with ¢ = Re v/1 — if27,, hence 2. = 17/7,. If the illumi-
nation is in the coherent state from a laser, then we have,
from equation (3.12),

1 +2§> 7 .
<+ CQ i tians —

here 2. = 9/7,. In both these cases the diffusion time does
not enter in the frequency dependence. This is different
for illumination by a thermal source at temperature Ty
much greater than the temperature of the medium. From
equation (3.11), with fo = f{w,Tp), we then have

(Néw/2m). (5.2)

8DIy

a

P = Tvans (1 +f e, (5.3)

Ptldns(‘Q) = I_tlans

fo _J1—e 21 3c49
x<1+5e { = +<2+<D. (5.4)

The characteristic frequency 2. = (64D/L2*13)/* now
contains both the diffusion time and the absorption time.

5.2 Amplifying medium

In the amplifying case the noise power becomes more and
more strongly peaked near zero frequency with increasing
amplification. Close to the laser threshold at s = 7 the
frequency dependence of Py, for small frequencies 27, <
1 has the form

ZI%
Pth = 2, 0 217
2m[(2272 + 4(1 — s/m)?]
_ 4f
Ith -~ Z(7r — S) : (55)

Here again Z = (c&,/2D)(2w/Néw). Close to threshold
the peak in the noise power spectrum has a Lorentzian
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lineshape with half-width 2. = (2/7,)}(1 — L/n€,) At the
laser threshold both P, and [y, diverge, but the ratio
I3, /Py 1emauns finite (see Fig 6)

Finally, we note the fundamental difference between
the time scales appearing in the noise spectrum for pho-
tons, on the one hand, and electrons, on the other hand
The absorption or amplification time 7, obviously has no
electronic analogue The diffusion time L?/D appears n
both contexts, however, the electronic noise specirum re-
mains frequency independent for £2 > D/L? [14] The rea-
son for the difference 1s screening of electronic charge As a
result the characteristic frequency scale for electronic cur-
rent fluctuations 1s the mverse scattering time D /12, which
15 much greater than the inverse diffusion time D/L?
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useful discussions This research was supported by the “Neder-
landse orgamsatie voor Wetenschappelyk Onderzoek” (NWO)
and by the “Stichting voor Fundamenteel Onderzoek der Ma-
terie” (FOM) E G M also thanks the Russian Foundation for
Basic Research

Appendix A: Correlators of reflection
and transmission matrices

To compute the noise power spectrum n the quantum
mechanical appioach of Section 5, we need the correlators
of reflection and transmission matrices ¢t(w+ ) and r(wy ) at
two different frequencies wy = w £ £2/2 (For 2 <« w this
1 the same as the correlator at frequencies w and w + 2 )
We calculate these correlators for a waveguide geometry
mn the diffusive regime, by extending the equal-frequency
(2 = 0) theory of Brouwer [13]

Upon attachment of a short segment of length §L to
one end of the wavegwde of length L, the transmission
and reflection matrices change according to

(A la)
(A 1b)

t—tsp (14 1750)1,

7 — 1+t (1 + rr(;L)rt}L,

whete the superscript T wmndicates the transpose of a ma-~
trix (Because of reciprocity the transmission matrix from
left to 11ght equals the transpose of the transmission ma-
trix from right to left ) The transmission matrix ¢57, of
the short segment at frequency w. may be chosen propor-
tional to the unit matrix,

w18

2 2!,

126 L
Er 4
The mean free path I’ = 4//3 and the veloaty ¢’ = ¢/2
represent a weighted average over the N transverse modes
mn the waveguide

Unitaiity of the scattering matrix dictates that the re-
flection matrix from the left of the short segment 1s related

to the reflection matrix from the right by 75, = —7’2; . We
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abbreviate ro7, = ér The matrix §r 15 symmetric (because
of reciprocity), with zero mean and variance

<57’k.l57"*

mn

)= (N + 1) (0kmbin + Skndim)0L/I (A 3)

The 1esulting change 1 the matrix products ¢t and rrf 1s

tth — (1 = 6L/ — SL/c o)ttt + (rért) (rore)T

+ rérett + (rérett)T, (A 4a)

rrt = (1=20L/1'=28 L) 7, yrrt + (rdrr) (rér )+ 67T 6
+ rérrrt 4+ (rérrr)t —rér — (rr)1 (A 4b)
The frequency 2 does not appear explicitly i these n-

crements
We define the following ensemble averages

R = (N"1Tr (1 —rrh)), (A 5)
C=(N""Tx (1~ r_rl)), (A 6)
T = (N"'TvetT), (A7)

where r, ¢ are evaluated at frequency w and r4.,t+ at fre-
quency w £ 2/2 Similaily, we define the correlators

Crp = (N~ (]1~7;7’T_)(11—7"+7°T,_)>, (A'8)
Cpyp= (N7 v (1 —r_rl )t el), (A9)
Cy = (N Trt_th e ¢h) (A 10)

We will see that, in the diffusive regime, these 6 quantities
satisfy a coupled set of ordinary differential equations in L

The diffusive 1egime corresponds to the large-/NV hmit,
i which the length 7 of the wavegude 1s much less than
the localization length NI In this hmit we may replace
equation (A 3) by (67,,6r% .Y = (L/NU')6kmbin, In the
large-N hmit we may also replace averages of products
of traces by products of averages of tiaces From equa-
tion (A 4) we thus obtain the differential equations

d
1/5 =2v(1 - R) - R?, (A 11)
;A€ 2
I I =29(1+1027,)(1 - C) - C*, (A12)
d7
Z’E:—”yT—RT, (A 13)
/dOrT *
Ve =~y +C+C" +2R)Crr + 2R(R + 27),
(A 14)
p99r _ _sicqo T
aL —'—( v+ C+ +R)Ort_TCrr+2(R+7) )
(A 15)
l/dctt - * T2 A
7 =—(2y+C+C")Cy — 2T Cry + 277, (A 16)

with the definition v = I’/¢’7, The mitial conditions are
that each of these 6 quantities — 1 for L — 0

Thus set of differential equations may be simplified fur-
ther if we assume, as we did in the semiclassical theory,
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that the mean free path 1s small compared to both the
absorption length and the length of the waveguide All
6 quantities (A 5-A 10) are of order /¥, which 1s <« 1 1f
I < /74, so that we obtam 1 leading order

1,2_7; oy R2 (A 17)
l'ad% = 2v(1 +1027,) — C?, (A 18)
z’% _ _RT, (A 19)
/dcrr * 2
Vg = —(C+C" +2R)Cpp + 2R, (A 20)
l’d(iczt — —(C+C*+R)Cps — TCrr +2RT, (A 21)
Z/ddC[ft = —(C+C*)Cy — 2T Cpy + 277 (A 22)

As mitial condition we should now take that the product
of each quantity with L remains fimite when L — 0

Although the differential equations are coupled, they
may be solved separately for R, C, T, Cyp, Cry, Cpy, 10 that
order In terms of the rescaled length s = (2v)'/2L/1' =
L/&,, the results are

27)1/2
R= (tanhs ’ (4 23)
1/2
= E) VLTl (A 24)
tanh sv/1 + 1027,
2,}/ 1/2
7= (sm)hs ’ (A 25)

s

1/2
Crr = (87312 /ds’K(s’,s)cosh2 s,
smh® s

(A 26)

S

o : :
=7, ds' K(s',s) cosh(s — ') coshs’, (A 27)
sin )

A28
sinh? s / ( )

12 7
Cy = (87) /ds’ K(s',s)cosh®(s — s'),
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where the kernel K 1s defined by
2 -2
K(s',s) = ‘smhs’\/1+1(27a {smhs\/1+1!)7’a‘

(A 29)

These are the expressions used n Section 4 (where we have
also substituted /2y = 4D/c€,) The 1emaining integrals
over s’ may be done analytically, but the 1esulting expres-
sions are rather lengthy so we do not record them here
For 2 = 0 our results reduce to those of Brouwer [13] (up
to a misprint i Eq (13c¢) of that paper, where the plus
and minus signs 10 the expression between brackets should
be mterchanged)
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