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Abstract. A theory is presented for the frequency dependence of the power spectrum of photon current
fluctuations origmatmg from a disordered medium Both the cases of an absorbing medium ("grey body")
and of an amplifying medium ("random laser") are considered m a waveguide geometry The semiclassical
approach (based on a Boltzmann-Langevm equation) is shown to be in complete agreement with a fully
quantum mechanical theory, provided that the effects of wave localization can be neglected The width of
the peak in the power spectrum around zero frequency is much smaller than the mverse coherence time,
characteristic for black-body radiation Simple expressions for the shape of this peak are obtamed, in the
absorbing case, for waveguide lengths large compared to the absorption length, and in the amplifying case,
dose to the laser threshold

PACS. 42 50 Ar Photon statistics and coherence theory - 05 40 -a Fluctuation phenomena,
random processes, noise, and Brownian motion - 42 68 Ay Propagation, transmission, attenuation,
and radiative transfer

l Introduction

The noise power spectrum of a black body is frequency
independent for frequencies below the absorption band
width The mverse of the band width is the coherence
time Tcoh of the ladiation [1], which for a black body is
the longest relevant time scale — hence the white noise
spectrum Ρ(Ω) for Ω < 1/τοοη In a weakly absorb-
ing, strongly scattering medium there appear two longer
time scales the absorption time τα and the time L2/D it
takes to diffuse (with diffusion constant £>) through the
medium (of length L) As a consequence, Ρ(Ω) for such
a weakly-absorbing medium (sometimes called a "grey
body") starte to decay at much lower frequencies than
for a black body having the same coherence time

Although there is by now a substantial literature on
the theory of grey-body radiation [2-7], the results have
been limited to either the zero or high-frequency hmits of
the noise spectrum (or, equivalently, to short or long pho-
todetection times) In the present work we remove this
hmitation, by Computing Ρ(Ω) for a diffusive medium for
arbitrary ratlos of Ω, 1/τα, and D/L2 We compare two
different approaches in a waveguide geometry one which is
fully quantum mechanical (based on random-matrix the-
ory [7,8]) and another which is semiclassical (based on
a Boltzmann-Langevm equation [9]) Each method has
its advantages and disadvantages the quantum theory
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includes mterference effects, which are ignored m the semi-
classical theory, but it is mathematically more mvolved
Complete agreement between the two approaches is ob-
tamed in the hmit that the waveguide length L is much
smaller than the localization length (equal to the mean
free path times the number of propagating modes)

The results foi absorbing media can be apphed di-
rectly to linear amphfiers, by formally changing the sign
of the temperature and the absorption time Loudon and
coworkers [10,11] used this relationship to calculate the
noise power spectrum of a waveguide without disorder
The generahzation to a diffusive medium presented here
descnbes a random lasei [12] below threshold

The outline of this paper is äs follows We start with
the semiclassical approach, presentmg a general solution
of the Boltzmann-Langevm equation m Section 2 and
applymg it to a waveguide geometry in Section 3 The
quantum mechanical approach is developed in Section 4
For the quantum theory we need the correlator of reflec-
tion and transmission matrices at different frequencies
These are calculated in the Appendix, usmg the random-
matrix method of reference [13] We discuss our Undings
in Section 5

2 Semiclassical theory

Startmg pomt of the semiclassical theory is the
Boltzmann-Langevm equation for photons of reference [9]
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Fig. 1. Thermal radiation (solid arrow) is incident through
port SO on an absorbing disordered medium (shaded). The
outgoing radiation (dashed arrows) is absorbed by photode-
tectors.

We first consider an absorbing medium (in equilibrium at
temperature T) , leaving the amplifying case for the end of
this section. We make the diffusion approximation, valid
if the mean free path / is the shortest length scale in the
System (but still large compared to the wavelength). The
nuctuating number density η(ω, r, t) and current density
j(w, r, i) of photons at frequency ω, position r, and time t
are related by [9]

Here D = cl/3 is the diffusion constant, ξα = \fDra

is the absorption length (with τα the absorption time),
p = 4πα;2(2πο)~3 is the density of states (not counting
polarizations), and / = [exp (fvjj/kT) — l]"1 is the Bose-
Einstein function. We assume ξα ^> /. The fluctuating
source terms £Q and C.\ have zero mean and correlators

, r, ί)£0(ω', r', t') = δ(ω - ω')δ(ί - ί'}δ(ΐ - r')

(2.3a)

£ΐα(ω, r, t)£lß(u>', r', t') = 2δαβδ(ω - ω')δ(ί - - r

The cross-correlator of £Q and £1 is giveii in reference [9],
but will not be needed. Combining equations (2.1, 2.2) we
find equations for the mean n and the fluctuations δη of
the photon number density n = n + δη,

l dn d2n
~15~dt+lh2

8δη Θ2δη

n
~Ϊ2

D dt

= _pf

ea
δη _ l d

d^~ti=Dfr

assume that t he closed boundaries Σ of the System (with
volume V) are perfectly reflecting. The Separation of the
ports is of order L ^> 1. In what follows we assume detec-
tion of outgoing radiation in a narrow frequency interval
δω around ω. We require that δω is small both compared
to ω and to l/rcoh· To minimize the notations in this sec-
tion we omit the frequency argument ω and use units in
which δω Ξ 1. (We will reinsert δω in the next section.)

The Green function of the differential equa-
tions (2.4, 2.5) in the Fourier representation with
respect to the time argument satisfies

(2.6)

(Fourier transforms are defined äs ί(Ω) —
jC^o dielßt/(i).) For frequency resolved detection
we require Ω <C δω. We impose the boundary conditions

G(r,r / ,ß) | r e S p=0, p = 0,1,2,. . . ,

Σ· Γ€Σ = 0,

(2.7a)

(2.7b)

where Σ denotes the outward normal direction to the sur-
face Σ. We consider separately the mean and the fluctua-
tions of the photon number and current densities.

2.1 Mean solution

The average photon density satisfying equation (2.4) can
be expressed in Fourier representation in terms of the
Green function (2.6),

n(r, Ω) = - dr' G(r,r',0)

<9r'

Substituting this formula int o the expression for the cur-
rent (2.1) and integrating over the area Sp one obtains the

(2.3b) mean outgoing current Ίρ through port p =^ 0,

ΙΡ(Ω) = dS · / dr'

- Όη·ίη(Ω) / dSa dS'ß-

(2.4)

-ΙΓ (2·5)

drndr'r.
(2.9)

β

We present a general solution for the multiport geome-
try of Figure 1. Thermal radiation is incident through the
port SO and can leave the System via ports SO, 5Ί, 5*2, . . · ,
where it is absorbed by photodetectors. The corresponding
boundary conditions are η(ω, r, t)\resp = η[η(ω,ί)δρ0. We

(Summation over the repeating Greek indices is implied.)
The first term oc δ(Ω) is the time-independent mean ther-
mal radiation frorn the medium. The second term is that
part of the mean radiation entering through port 0 that
leaves the medium through one of the other ports. (The
restriction to p φ 0 is not essential but simplifies the gen-
eral formulas considerably, so we will make this restriction
in what follows.)
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Γ Γ
+ 2D / dr"GQ7(r,r",ß)G /37(r',r",ß') \n(r",:

J L

1 Γ r\ O"/ U.J ώ _ / n f~ /-\l! \ ~ ( !l /-"V <~\!Ι \\ ( c\ ι Λ \n (r , Ω + Ω )n(r ,ß -ß ) (2.14)

2.2 Fluctuations Performing Integration by parts and using equations (2.6-
2.8) we und that this term vanishes for p ^ q. For p = q

The fluctuations in the number density follow in a similar it contains the mean current,
way from the Green function and equation (2.5),

(2.16)

— dr' G(r,r',ß) —

9G(r, r',/2)
- (2.10)

The fluctuation of the cmrent density is theu given by
equation (2.1),

dr'

-Όδη1Τί(Ω) / d5^ Οαβ(τ,τ',Ω}. (2.11)

We have defincd

For a time-independent mean current Ip one has a white-

noise spectrum C$0?, ß') = 2ττδρί1δ(Ω + Ω')Ιρ. This is
the usual shot noise, corresponding to Poissonian statis-

(2)tics of the current fluctuations. The second term Cpq de-
scribes the deviations from Poissonian statistics. It arises
from terms in equation (2.14) that are quadratic in n.
Performing again an Integration by parts, one finds

ör

ön(r", ß' - Ω") 9G(r, r", i?) <9G(r', r", ß'

Equation (2.17) together with equation (2.8) is the result
that we need for our analysis of the frequency dependence
of the noise spectrum.

Gaß(r,r', Ω) =f δαβδ(τ - r'). (2.12)
g

We seek the correlator of the current fluctuations
_

Caß(r, Ω; r', Ω') = S j a ( r , Ω}δ]β(ν', Ω) (2.13)

2.3 Amplifying medium

The extension of our general formulas to an amplifying
medium (in the linear regime below the laser threshold)
is straightforward [9]: we assume that the frequency ω at
which we are detecting the radiation is close to the fre-
quency of an atomic transition with (on aveiage) JVuppor

and ^^^ atoms in the upper and lower state^ Then theBose-Einstein function can be replaced by the population
Inversion factor / = 7Vuppel (7Vlowol - JVuppor)-1 . This factor
is negative in the amplifying case (when Nup-pCl > N\owei ) ,
with / = _ ! for a COmplete population Inversion. (Equiv-
alenüy; Qne can cvaluate j at a negative tcmperature [11],
with T __> Q- for complete Inversion.) An amplifying
medium has a negative absorption time ra = ξ%/Ό. We

can account for this by taking ξα imaginary. With these
two substitutions for / and ξα our formulas for an absorb-
ing medium carry over to the amplifying case.

'). (2.15) 3 Waveguide geometry

The first term Cpq contains the contribution from the For the application of our general formulas we consider
terms linear in the number density f? in equation (2.14). a waveguide geometry (see Fig. 2). The waveguide has

for r 6 5P, r' e 5, with p, q ̂  0. With the help of equa-
tions (2.3, 2.11) it can be expressed äs

see equation (2. U) above.

Following rcference [9] , we havc neglected the term oc önm

m equation (2.11) (smaller by a factor l /L) and the cross-
correlator £0£i (smaller by a factor 1/ξα).

We now integrate r and r' over 5p and Sq to obtain
the correlator of the total currents through ports p and g,

,. Λ
Cpqfä, Ω') - l dSn l dS'ß Caß(r, Ω; r', Ω')

sp sq
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x = 0
D-

x = L

Fig. 2. Thermal radiation (solid anows) is mcident on a
waveguide contammg an absorbmg or amplifymg disordeied
medmm The transmitted radiation (dashed airows) is ab-
sorbed by a photodetector

length L and cross-sectional area A, corresponding to
N = ω^Α/^πο2 propagatmg modes (not countmg polar-
izations) at frequency ω We abbieviate s = L/£a We
consider a stationaiy mcident current /o = οΑδωηιη/4; =
(Νδω/2πρ)ηιη, and calculate the noise power spectrum of
the transmitted cunent.

(31)

In terms of the correlator of the previous section, one has
<7n (ß, ß') = 2·κΡ(Ω)δ(Ω + Ω')

3.1 Absorbing medium

We calculate the noise power from equations (28, 2 17),
using the Green function

smh - ißra] smh [(s

smh [s\/l — \Ωτα

(32)

where x< and x> aie the smallest and largest of χ, τ' re-
spectively The mean photon density is time mdependent
In Fourier representation one has, from equation (2 8),

η ( χ , Ω ) = Pf
smh s

χ ί smh s - smh (χ/ξα) - smh (s - χ/ξα) )

smh Ä
(33)

The mean current / = /th+^trans, is the sum of the thermal
radiation from the medium

(Νδω/2π) tanh (s/2)

and the transmitted mcident current

4D/o
-^trans — ^ö smh s

(3 4)

(35)

Substitution of equations (3 2, 3 3) mto equation (2 17)
yields the super-Poissoman noise P — J äs a sum of three

terms, P - I = Ptn + -Pirat* + PCX, with

Pth(ß) =

x / ds1, / cosh (s — &') — cosh s'

V

ο η τ2

smh s

(2π/Νδω)

K(s',s), (36)

smh 6
(37)

16DfI0

/
. , [cosh s' — cosh (s — s')l cosh (A — s') r , , .
ds- j^ -K(s, s)

smh2 s

(38)

We have defined

snüWT^— (39)

The two termb P(ttms and Pth descube sepaiately the noise
power of the tiansmitted mcident cuiient and of the thei-
mal current fiom the medium The teim Pcx is the excess
noise due to the beatmg of the mcident ladiation with the
thermal fluctuations from the medium

The three contributions are plotted sepaiately in
Figure 3 For L 3> ξα the fiequency dependence bimph-
fies to

Pth(ß) = -i-^, (3 10)

/ Λ Γ c \
/ N δω)

C - i
1 + 2C

+
3ζ + 2

wheie we have defined

C = Re v/T
1/2

(312)

(313)

As discussed in referencc [9] (foi the zeio-fiequency case)
the lesult for Ptran& requiies that the mcident radiation ib
m a thermal state, at some tempeiatuie TO (The quantity
f(ui,To) = Ιο(2π/Νδω) is the corresponding value of the
Böse-Ernstem function ) There is no such lequirement for
Pth and Pcx, which are mdependent of the mcident state
For Tb > T we may geneially neglect Pth and Pex lela-
tive to Ptrans, so that P = /trans, + -Ptrans However, if the
mcident radiation is m a coheient state, then Ptians = 0
and smce for sufficiently large JQ we may neglect Pth, we
have m this case P = /tian& + PCX The contnbution Pth is
important mamly m the absence of exteinal Illumination,
when P = /th + Pth



1 5

05

02

E G Mishchenko et al Fiequcncy dependence of thc photonic noise

10

293

oo

6 = l

= 2

oo

6 = l

Ωτα

Fig. 3. Frequency dependence of the thiee supei-Poissoman
contributions to the noi&e powei, P — I = Pth + Pti-ms + Pex, foi
diffeient values of s = L/ξα in an abborbmg wavcguide The
sohd cuives aie coniputed from equations (3 6-3 8), the dashed
curves are the laige-s asymptotes (3 10 3 12) The paiameter
Z is defincd a& Z = (ε

3.2 Amplifying medium

The rcsults for an amphfymg medmm aie obtamed by the
Substitution ξα —> ιξα, f —> Nuppcl(Niowci - Nuppu)~l, cf
Section 2 3 The fiequency dependence of Pth, Ptiam,, and
Pcx followmg fiom equations (3 6-3 8) is plottcd in Fig-
uie 4 for lengthb L below the laser thieshold at L = πξα

l—l

*·>·-.

>—l

tsi

05

0

5 6

"S 4

= l

Fig. 4. Same ab Figuie 3, foi the case of an amphfymg waveg-
uide The lasei threshold occuis at s = π

Fiom equations (2 17, 3 2, 3 3) we obtain

r;c .„ . ' , /cosh(s-s')-cofahs'
- (Νδω 1π / ds' ^ {·

α J \ smhs

smh[sVl - ιΩτα] smh[(s - s')^l + ιΩτα]

The cioss-corielatoi is plotted in Figuie 5 for both the ab-
sorbmg and amplifymg caseb The outgoing curientb at the
two ends of the waveguide aie anti-coirelated foi Ωτα ^> l

3.3 Cross-correlator

In the absence of any mcident ladiation, the uoibe P =
/th + PÜI is due entucly to the themial fluctuations in
the medium The cuirent fluctuations at the two ends of
the waveguide are corielated, äs measuied by the cross-
conelator

P12(ß)= / die1ißc (314)

4 Comparison with quantum theory

A fully quantum mechamcal theoiy ioi the photocount
disti ibution of a disordeied medium was developed in
references [7,8] In this section we venfy that it agiees
with the bemiclassical lesults of the pievious section We
considei the same System of Figuie 2, a disoideied waveg-
uide with a photodetector at one end and a stationary
curient mcident at the othei end We assume that the m-
cident curient origmates fiom a theimal bource at tempei-
atuie TQ The photocount dibtubution is the distnbution
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Fig. 5. Frequency dependence of t he cross-correlatoi of t he
outgomg current at the two ends of the waveguide, in thc
absence of any external Illumination Computed from equa-
tion (3 15) for the absorbmg case (lower panel) and amplifymg
case (upper panel)

of the number of photons n(t) counted (with unit quan-
tum efficiency) in the time inteival (Ο,ί) Substitution of
/ = an/dt in the definition (3 1) of the noise powei Ρ(Ω)
leadb to a relation with the variance Varn(i) of the pho-
tocount,

leflcction and tiansmisbion matuces r (ω), t (ω) of the
waveguide [7,8],

oo oo

«Irans(ί) = / ̂  / —£(ω - ü/, ί)

ΐ(ωΤ0)/(ω',Τ0)ΤιΤ(ω)Τ(ω'),

άω l°° άω'

2π
L(u> -ω',ί)

(43)

(44)

(45)

where we have defined

ί t

/

/·
di' / di"

J
o o

(46)

(47)

T (ω) =

Substitution into equation (4 2) giveb the coirespondmg
contnbutions to the noit,e power P =

χ Τι Τ(ω)Τ(ω + Ω) + {Ω -> -Ω},

diVar«,(£)cosßi, (41a)

OO

Var n(t) = - - / άΩΩ~2Ρ(Ω) (cos Ωί - l) (4 Ib)
7Γ /

The variance can be separated into two terins, Var??(i) =
n(t) + κ (t) = tl + κ (i), with κ (i) the becond factorial
cumulant The teim tl, bubstituted into equation (4 l a),
gives the frequency-mdependent shot noise contubution /
to the power spectrum,

-Ω}, (410)

= 2/(ω Τ,,)/(ω + β, Τ)

Ρ(Ω) =Ι-Ω2 at κ (t] cos Ωί (42)

The cumulant κ = Kilan<, + «th + Kex contains sepaiate
contributionb from the tiansmitted mcident ladiation and
theimal fluctuationb in the medium, plus an excess con-
tribution from the beatmg of the two Thc&e contubu-
tionb have an exact icpresentation in teims of the N χ Ν

χ Τι Τ(ω)<3(ω + Ω) + {Ω -> -Ω] (411)

As in the picvious scction, we abbume a ftcquency-iesolved
inea&uiement in an inteival δω ^C ω, l/Tcoh with Ω ̂  δω
We may then omit thc integial ovei ω and appioximate
the aigument ω ± Ω m the functions / by ω We take the
en&emble aveiage ( ) of the noise powei, in which cabe
the contiibutionb from ±Ω are the bame Finally, we mseit
the mcident cuuent /0 = /(ω,Το)Νδω/2π, to amve at

PH ms(ß) = (2π/Νδω)Ι${Ν-1Τι Τ(ω)Τ(ω + Ω)}, (4 12)

Pth (ß) =

Ρβχ(Ω) = 2Ι0/(ω,Τ)(Ν-ιΤι Τ(ω)(3(ω + Ω)}

(413)

(4 14)
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It remains to evaluate the ensemble averages. This is done
in the Appendix, by extending the approach of refer-
ence [13] to correlators of reflection and transmission ma-
trices at different frequencies. The calculation applies to
the diffusive regime that the length L of the waveguide
is large compared to the mean free path l, but still small
compared to the localization length Nl. (The absorption
length ξα is also assumed to be » /.) The results are

X D Γ
= — / ds'ff(s',s)

εςα 7
ο

cosh2(s — s')
· 2sinn s

(4.15)

(Ν~ΐΓΐΐ (3(

s
Ο Γ) /·

= ^L ds'K(a',s)

0

[coshs' — cosh(s — s')]^

sinh s
(4.16)

s
877 Γ

+ ß)) = — l as'K(s',s)
0

cosh(s — s') coshs' — cosh2(s — s')

sinh2 s

where s = Ι//ξα and the kernel K(s', s) is defined in equa-
tion (A.29). The combination of equations (4.12-4.17)
agrees precisely with the results (3.6-3.8) of the semiclas-
sical theory. The quantum theory is more general than the
semiclassical theory, because it can describe the effects of
wave localization. The method of reference [13] gives cor-
rections to the above results in a power series in L/Nl.
We will not pursue this investigation here.

5 Discussion

We have presented a theory for the frequency dependence
of the noise power spectrum Ρ(Ω) in an absorbing or am-
plifying disordered waveguide. The frequency dependence
is governed by two time scales, the absorption or amplifi-
cation time ra and the diffusion time L 2 / D , both of which
are assumed to be much greater than the coherence time
Tcoh· A simplified description is obtained, in the absorb-
ing case, for lengths L much greater than the absorption
length ξα = ν^Ότα, and, in the amplifying case, close to
the laser threshold at L — πξα. We will discuss these two
cases separately.

5.1 Absorbing medium

The general formulas (3.6-3.8) for P = 7 + Pth + -Ptrans +
Pex simplify for L 3> ξα to equations (3.10-3.12). To char-
acterize the frequency dependence we define the charac-
teristic frequency ßc äs the frequency at which the super-
Poissonian noise has dropped by a factor of two:

(5.1)

0.25 ?

Fig. 6. Ratio of Jt
2
h and Pth in an amplifying waveguide äs a

function of its length for different frequencies, computed from
equations (3.4, 3 6). The approximation (5.5) vabd near thresh-
old for small frequencies is shown dashed.

In the absence of any external Illumination (/o = 0) we
have, from equation (3.10),

P = 1 +
C

/th = (5.2)

with ζ — Re \/l ~~ ϊΩτα, hence Qc — 17/τα. If the Illumi-
nation is in the coherent state from a laser, then we have,
from equation (3.12),

P = /trans l + /
.1+J2C

c + c2 (5 3)
V 0 ' 0 /

here i2c = 9/τα. In both these cases the diffusion time does
not enter in the frequency dependence. This is different
for Illumination by a thermal source at temperature TO
much greater than the temperature of the medium. Prom
equation (3.11), with /o = /(ω,Το), we then have

— -Miians

(5.4)

The characteristic frequency Qc — (64D/L2T^)1/4 now
contains both the diffusion time and the absorption time.

5.2 Amplifying medium

In the amplifying case the noise power becomes more and
more strongly peaked near zero frequency with increasing
amplification. Close to the laser threshold at s = π the
frequency dependence of Pth for small frequencies Ωτα <ξ^
l has the form

4(1 - s/π)2] '

4/

Z(ττ - s)
(5.5)

Here again Z = (οξ,α/'2Ό)(1·π/Νδω). Close to threshold
the peak in the noise power spectrum has a Lorentzian
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Imeshape with half-width ßc = (2/r0)(l — L/πξα) At the
laser threshold both Pth and Jth diverge, but the ratio
I^h/Pth lemains finite (see Fig 6)

Finally, we note the fundamental difference between
the time scales appeaung in the noise spectrum for pho-
tons, on the one hand, and electrons, on the other hand
The absorption or amplification time τα obviously has no
electronic analogue The diffusion time L2 /D appears in
both contexts, however, the electronic noise spectrum re-
mams frequency mdependent foi Ω > D/L2 [14] The rea-
son for the difference is screemng of electronic Charge As a
result the charactenstic frequency scale for electronic cur-
rent fluctuations is the mverse scattering time D /l2, which
i&> much greater than the mverse diffusion time D /L2

We thank P W Brouwer for advice concernmg the calculation
m the Appendix and Yu V Nazarov and M P van Exter for
useful discussioris This research was supported by the "Neder-
landse orgamsatie voor Wetenschappehjk Onderzoek" (NWO)
and by the "Stichting voor Fundamenteel Onderzoek der Ma-
terie" (FOM) E G M also thanks the Russian Foundation for
Basic Research

Appendix A: Correlators of reflection
and transmission matrices

To compute the noise power spectrum in the quantum
mechamcal appioach of Section 5, we need the correlators
of reflection and transmission matrices t(ui±) and r(u>±) at
two diffeient frequencies ω± = ω ± Ω/2 (For Ω <C ω this
is the same äs the correlator at frequencies ω and ω + Ω )
We calculate these correlators for a waveguide geometry
m the diffusive regime, by extendmg the equal-frequency
(Ω = 0) theory of Brouwer [13]

Upon attachment of a short segment of length SL to
one end of the waveguide of length L, the transmission
and reflection matrices change according to

(A la)

(Alb)

wheie the superscnpt T mdicates the transpose of a ma-
tnx (Because of reciprocity the transmission matnx from
left to nght equals the transpose of the transmission ma-
trix from nght to left ) The transmission matnx tgL of
the short segment at frequency u>± may be chosen propor-
tional to the unit matrix,

/ A Λ(Α2)

The mean free path /' = 4//3 and the velocity c' = c/2
represent a weighted average over the 7V transverse modes
in the waveguide

Umtanty of the scattering matrix dictates that the re-
flection matrix from the left of the short segment is related
to the reflection matrix from the right by r'SL = —rSL We

abbreviate r/>L Ξ 5r The matrix ör is Symmetrie (because
of recipiocity), with zero mean and vanance

(örklSr:nn) = (N+ ΙΓ1^™^ + Skn6,m)SL/l' (A 3)

The lesultmg change m the matnx products ttf and rr^ is

tt1" -> (l - ÖL/l' - SL/c'ra^ + (rört)(rSrrf

+ rirttt + (r6rtt^^ (A 4a)

trr

+ rörrr'' + — rör — (rör)^ (A 4b)

The frequency Ω does not appear explicitly in these m-
crements

We define the followmg ensemble averages

Tl = (7V^ lrTr(]l -rr-t)}, (A 5)

C = (N~lrfi(i-r_r\.}), (A 6)

T = {7V~1Tiii t}, (A 7)

where r, t are evaluated at frequency ω and r±, i± at fre-
quency ω ± Ω/2 Similaily, we define the correlators

C„ =

Ctt =

- r_rL)(IL - (A 8)

(A 9)

(A 10)

We will see that, in the diffusive regime, these 6 quantities
satisfy a coupled set of ordmary differential equations in L

The diffusive legime corresponds to the large-7V hmit,
in which the length L of the waveguide is much less than
the locahzation length Nl In this hmit we may replace
equation (A 3) by (Srkl5r^n) = (6L/Nl')ökm5in In the
large-TV hmit we may also replace averages of products
of traces by products of averages of tiaces From equa-
tion (A 4) we thus obtam the differential equations

'~
aL

'~
aL

= -(47 + c + c* 27),

(AH)

(A 12)

(A 13)

1

(A 14)

aL
= -(27 + C + C*)Ctt - 2TCrt + 2T2

(A 15)

(A 16)

with the defimtion 7 = l'/c'ra The initial conditions are
that each of these 6 quantities —> l for L —> 0

This set of differential equations may be simphfied fur-
ther if we assume, äs we did m the semiclassical theory,
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that the mean free path is small compared to both the
absorption length and the length of the waveguide All
6 quantities (A 5-A 10) are of Order λ/7, which is <S l if
/' <C c'ra, so that we obtam m leading order

l'^-2-y-·1 i r — Δ ldL

l'^--
dL~
dT _

ldL~~ '

l'^ = -(C + C* +
dL

dL

+ :

-C*

(A 17)

(A 18)

(A 19)

(A 20)

(A 21)

rt 2T2

As initial condition we should now take that the product
of each quantity with L remams finite when L — > 0

Although the differential equations are coupled, they
may be solved separately for ΊΖ, C, T, Crr, Crt, Ctt, m that
order In terms of the rescaled length s = ( 2 j ) 1 / 2 L / l ' =
L/ξα, the results are

n =

c =

τ =

crr =

(27)
1/2

tanhs

tanh s-\/l + ιΩτα '

(27)
1/2

smhs

(87)1/2

sinh2 s
2 /ds' K(s',s)cosh s

(A 23)

(A 24)

(A 25)

(A 26)

(87)
1/2

sinh2 s
ds' K (s1, s) cosh(s - s') coshs', (A 27)

2smh s
ds' K (s', s) cosh2(s - s'), (A 28)

where the kernel K is defined by

, 2

K(s',s) = ιΩτα ιΩτα

-2

(A 29)

These are the expressions used in Section 4 (where we have
also substituted \72~7 = 4-D/c£a) The lemaming Integrals
over s' may be done analytically, but the lesultmg expres-
sions are rather lengthy so we do not record them here
For Ω = 0 our results reduce to those of Brouwer [13] (up
to a misprint m Eq (13c) of that papei, where the plus
and minus signs in the expression between brackets should
be mtei changed)
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