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1. Introduction.

Several investigators have lately found in the long-
itudes of the sun and the planets fluctuations which
run parallel to those discovered by NEWCOMSB in the
moon’s longitude. Their results, however, while agreeing
in establishing the reality of these fluctuations, disagree
on two important points. One of these is whether
the fluctuations of the longitude of the sun and the
planets are equal to those of the moon diminished in
the exact ratio of the mean motions, or to those
fluctuations so diminished multiplied by a factor, for
which values ranging from unity to about 2-5 are
found. The second questionable point is whether the
fluctuations of the sun and planets agree with the
total fluctuations of the moon, or with the ‘minor
fluctuations’ which remain after the removal of the
‘great empirical term’,

It is very desirable to decide these two points by
a discussion of the observations alone, unbiassed by
any reference to a possible explanation which might
favour one or another particular answer to the questions
raised.

For such a discussion it is necessary in the longitude
of each heavenly body 'to introduce as unknowns
corrections to the mean motion and the longitude at
the epoch, and also a secular acceleration of the mean
longitude. The corrections to the other elements can
be neglected at the present stage. In the case of
Mercury, however, it is necessary to take account of
the equation of the centre making the correction to
the true longitude different from that to the mean
longitude.

To introduce the secular acceleration, we put

S =7+ 133 T —o026,

the time 7  being counted in centuries from 1900-0.
S is zero for 17500 and 1917°1. Further let B be
the total fluctuation of the moon’s longitude. The

21

excess of the moon’s true longitude over that given
by BROWN’s tables is then

AL=AL,+ TAn+5"92 (1+%)S+ B
— 10771 sin (140°0 7 + 240°7)

The correction to the longitude of the sun from
NEWCOMB’s tables is

AL = AL + TAng 4 S(1 + 2) + Q’—:ZEB',
and to the mean longitudes of Mercury and Venus
A)(i = Al,‘o + TA”,’ -+ %S(I +7~i) + Q,'%iB’.

As a first approximation I have taken Q = Q; = 1-50.
The values of 1°50 #;/n and of #;/n, are

Sun I'50 o/ = 0O'112
Mercury (7=1) 1'50 72:/n2 = 0°466 nifro = 4°1%
Venus (7 =2) 1'50 7' = 0183 #2/10 = 1°63

There are thus in all four unknowns for the sun
and for each of the planets, and three for the moon.
It is not to be expected, however, that it will be found
possible to determine all fifteen unknowns independ-
ently of each other. Especially the x; can only be
determined from a very long series of exact observations.
It has been found that the transits of Mercury are
the only series of observations allowing an independent
determination of x,.

2. Secular accelerations of the sun and the moon.

These can only be determined from the ancient
observations of eclipses and other phenomena. For
the moon the secular acceleration cannot be separated
from the fluctuations in the modern observations,
which cover only twa centuries and a half, from 1670
to 1925. For the sun the only entirely trustworthy
observations are those made after 1830 or 1835.

If we leave the fluctuations out of account, the
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excess of the true over the tabular longitude at the
time 7 is

for the sun: AL = AL + TAn, + S(1 +»)
Jor the moon: AL = AL, + TAn + 5792 S(1 + 7))

The ancient observations have been very thoroughly
discussed by FOTHERINGHAM and SCHOCH. From these
discussions I derive the following equations of con-
dition for » and «'.

@. From HIPPARCHUS’s determinations of the equinox
FOTHERINGHAM finds (M. V. %8, p. 416) a correction
to the sun’s longitude of

AL =+ (195 £ 0"27) I* + 3”9 T + 1".95
=+ 730" + 125,
which is valid for the epoch 7= — 204.
6. From solar eclipses FOTHERINGHAM finds (M. /V.
81, p. 126) for the mean epoch 7 = — 21

AL’:‘I‘(I”'S iO//,3) Y,_l_ 3//,0 T+ I"‘5:+600”i 1300'

The probable error has been estimated from the
diagram given Z.c. p. 123.

¢. From the magnitudes of lunar eclipses FOTHER-
INGHAM finds (M. N. 61; p. 124, 69, p. 668; 778, p. 422)
for the epoch 7"= — 188

AL = + 570" + 140"

d. From occultations FOTHERINGHAM finds (M. 1V.
75, pp. 377 and 395) a correction to the moon’s
longitude of *)

AL=+(4"8+0"7)T?+10"7 T+1"2==+2240"+ 270,

which is valid for the epoch 7'= — 19°6.
e. From solar eclipses FOTHERINGHAM finds (M. V.
81, p. 126) for 7 = — 21

AL = 4+ 1900" + 220"

/- The most reliable solar eclipse, in fact the only
one which was evidently observed according to a
prearranged (and remarkably well arranged!) plan, is

B.A.N. 124.

that known as the ‘eclipse of HiPPARCHUS'. From
FOTHERINGHAM’s discussion of this eclipse in M. V.
69, p. 208 and 81, p. 122, we can derive an equation
of condition between the two coordinates of the diagram
(M.N. 81, p. 123) which is

xr—2y =81 + 02,

the probable error being estimated from the diagram.
The coordinates are determined by

AL'=(1) 4 (y— 110) [(3)— (1)]
AL = (1) + (x—101 ) [(2)— ()],

where (1), (2), (3) are the three hypotheses on which
FOTHERINGHAM carried out his computations, viz:

(1) AL = + 410" AL = +1334"
(2) AL = + 410 AL =+ 1712
(3) AL = 4 780 AL = + 1334.

The equation thus becomes
AL —049 AL = — 280" + 40".

The epoch is — 20°3.

g. The results derived by FOTHERINGHAM (/M. V.
80, p. 580) from the observed times of lunar eclipses
have been combined into two means, viz:

T'=—207

AL — AL'= 4 2950" + 660"
IT=—1y77 +

AL — AL =4 2320 + 560".

4. Dr. ScHOCH*) has on the whole discussed the
same eclipses as Dr. FOTHERINGHAM, and he derives
very much the same secular accelerations. The most
important of his eclipses not included in FOTHERING-
HAM’s discussion is a very precise observation of a
lunar eclipse at Babylon in the year —424, of which
the probable error may be estimated at + 7 minutes
of time. From this I derive, for 77=—23"24:

AL — AL =+ 1700" + 200".

From these results I derive the following equations
of condition:

(@) AL —204 An, + 389 x = + 340 + 123
(6) AL —210 An, + 413 » = 4+ 187 £ 130
(¢) AL —188 An, + 328 x = + 240 + 140
d AL, —196 An + 2120 *' = + 120 * 270
() AL, —210 An + 2445 » = — 545 + 220
kf) AL — o5 AL, —20'3 An, + 10T An + 384 » — 1140 »' = 4470 + 40
(g) AL — AL, —207 An, + 2077 An + 400 » —2370 ' = — 980 + 660
(g) AL — ALy, —17'7 Ang +17'7 An 4290 » — 1710 ' = — 900 + 560
(/) AL — AL, —232 An, + 232 An + 520 » — 3080 »' = + 860 + 200

*) A correction of — 0”3 to the coefficient of 7"z applied later
(M.N. 83, p. 372) has been neglected, being far within the
probable error.

*Y Die Seculare Acceleration des Mondes und der Somne,
Berlin, Dec. 1926. See also FOTHERINGHAM, A. V. 87, p. 154.
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I now combine simular equations by weights, and | of + o'10 of the right hand member. We then have:

reduce the resulting equations to a probable error

R, R, R,

(a,8,c) +.00 AL, AL, — 03 An, An + 50 2 ¥ = + 34| —02 —-03 —‘OI
d, e) + 00 — 01 4+ 101 = — ‘14| +'02 00 -+ 03
(f) + 00 — *00 — 03 + 03 +96 —285 = +118 | —'02 +°'05 + ‘OI
(2) -+ 00 — 00 — 00 + ‘00 +08 — 47 = — 22| —36 —-33 [—°35]
(%) + 0o — 00 — -0l + o1 +26 —1.54 =+ 43 | —01 +-02 "00

It is clear that these equations can contribute nothing
to the determination of AL, AL,, An,, and Az, which
must be deduced from modern observations. Taking
as a first approximation Ax, =+ 2, Az =o0, we find

» — +-85 + 16

¥ = — 16 + ‘05,
the probable errors being derived from the weights,
assuming a probable error of + o'10 for unit weight.
These leave the residuals given under R,.

From the discussion to be related below we find
for the final values of A, and An

A7, = + 140 An = 4+ 4°00.
Introducing these we find from all equations:
%z — +°826 + 160

’

% = — 104 ;‘053,

leaving after substitution the residuals R,.
If we reject the equation (¢) we find
% = 4 774 + 162

7

» = — 128 + ‘053,

with the residuals R,.
As the most probable values we may adopt *)
%z — +08 +-16

’

¥ = —o0'I2 + -05.
These correspond to the secular accelerations for

(1) the sun: + (1”80 £ 0"16) S
the moon: + (522 + +30) S.

It is evident that, assuming the generally accepted
ratio, the secular accelerations of the sun and the
moon are contradictory, and apparently they cannot
both be explained by a retardation of the earth’s
rotation by tidal friction. The probable errors of the
equations of condition have bezen estimated rather too
high than too low. Also the probable errors derived
from the residuals would not be appreciably different,
and they would be very much smaller if the equations
(g) were rejected. From the transits of Mercury we
found, as will be explained below, x, = 4 055 + ‘10,
which is sufficiently near the value of z for the sun
not to exclude the possibility of the true values being
identical. In that case we would be led to ascribe

*) See also footnote to page 36.

the whole of the secular acceleration of the sun and
the planets to tidal friction, which would then by
the usual ratio demand a secular acceleration of the
moon nearly twice as large as found from the observ-
ations, i.e. of the same order as the #ofa/ secular
acceleration of the moon, nc/uding the part due to
perturbations of the planets. It will be remenbered
that LAPLACE originally explained the total observed
value of 11”7 7% in this way, leaving nothing for tidal
friction: now we would be inclined to explain the
greater part of it by tidal friction, leaving very little
for perturbations. '

A possible explanation of this apparent contradiction
will be suggested below, in art. 7.

In the following discussions the values » = 4 0-8o,
»'==—o0"17 were used, giving the secular accelera-
tions + 17°80 S and + 4"'92 S respectively. A correction
corresponding to AL = + 0”30 .5 has been applied to
the final residuals.

3. The ‘great empivical term’ and the fluctuations.

The question whether the fluctuations in the longi-
tudes of other heavenly bodies correspond to the total,
or to the minor, fluctuations in the moon, can only
be solved by the discussion of a long series of observ-
ations. In the case of the sun and Venus we have
practically only observations from 1835 to 1925 and
during this interval the sinusoid representing the
‘great empirical term’ differs so little from a straight
line, that any satisfactory representation of the total
fluctuations can, by suitable corrections to the mean
motion and the epoch, be transformed into an equally
satisfactory representation of the minor fluctuations,
or inversely, especially so since the value of Q must,
if the distinction between the ‘great empirical term’
and the ‘minor fluctuations’ is to have any meaning
at all, be assumed different for the two cases, which
gives one more parameter by which to improve the
representation of the observations.

The only series of observations which can be used
for our purpose are the transits of Mercury across
the sun’s disc. We must thus derive an empirical
sine term independently for the moon and for the
transits of Mercury. If these two agree in period and
phase, this proves that there is a correlation between

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1927BAN.....4...21D&amp;db_key=AST

927BAN T DU DIZIDD

rt

24 LEIDEN

the total fluctuations in the two cases. It does not
follow that the sine term has a real existence, distinct
from the total fluctuations. This would only be con-
cluded if the remaining minor fluctuations either
showed no correlation at all, or a correlation with a
very different factor of proportionality.

The first step is thus to represent the total fluc-
tuations B° of the moon’s longitude by a formula

B = AL, + Tan + ¢S + K sin (BT + 7).

For B’ I have in this stage taken the values given
by BROWN in his latest paper*) corrected for the
difference of the adopted secular accelerations, thus

) B = —(Th—G) —0"13 S.

The residuals remaining after the substitution of
the unknowns found from the solution are then the
minor fluctuations £.

The term ¢S has been written down in the equation,
although it was evident a priori, and also it appeared
at once from the solution, that it is impossible to
separate the determination of ¢ from that of the
elements of the sine term. Consequently ¢ was taken
equal to zero. For the sine term the values found
for 3 and y depend largely on the weights assigned
to the early observations. The corrections found to
the values adopted by BROWN, which were used as
a first approximation, were not larger than the un-
certainty of their determination. The distinction
between the ‘great empirical term’ and the ‘minor
fluctuations’ is rather arbitrary in any case, and for
our purpose it is not very important which precise
values are adopted for the period and the phase of
the assumed sine term. I have therefore finally deter-
mined only the three unknowns AZ,, Az and K
from the equations of condition

B, = AL, + TAn + K sin (1400 7" + 240°0).

Weights were assigned corresponding to an assumed
probable error of unit weight of + 0”10, the weight
of a mean of three years modern Greenwich observ-
ations being 4 on this scale. The resulting values
of the unknowns with their probable errors, computed
from the weights, are:

”

AL, = + 0”66 + "02
An = + 079 £ ‘02
K = 1442 % -03

The probable error of unit weight derived from
the residuals /7 would be + 3:"1. The probable error
of the unknowns corresponding to this value would
be + "50, £+ "70 and + "-80 respectively.

Yy Transactions of Yale University Observatory, Vol. 111,
Part. 6.

B.A.N. 124.

Similarly for the transits of Mercury the equations
of condition are:

O—C=a, +b; T+ ¢, S+ K, sin (B, T+ 7,),

and the residuals remaining after the substitution are
called F..

From INNES’s discussion in Union Observatory Cir-
cular 65 we can derive the excess of the observed
difference of true longitude of Mercury and the sun
over the tabular value. In the case of Mercury a
reduction from true to mean longitude is required on
account of the large excentricity. It will be shown
below that this can be effected with sufficient accuracy
for our present purpose by using for the difference
of true longitude the weights of the observed zimes
and then treating the true longitudes as mean ones.
It was again found impossible to determine the sine
term independently of the secular acceleration. Con-
sequently for ¢, the value corresponding to », —+0'80
was taken. For the sine term we thus found

4”57 sin (136°0 7 4 236°4)
+°23 +I4 + 24

The agreement of the argument with that adopted
for the moon is so close that there can be no reason-
able doubt about their equality. I have therefore made
a new solution introducing as unknowns only a,, 4
and K,. The value found for the latter was

I

K, =4"39 + "21.

The ratio between this coefficient and the one found
for the moon is

Kt_—O'O — 1 272,—710
& = 0304 = 13252

thus giving
(3) ' 0. = 1°32 + ‘0.

The residuals 77}, remaining after removing the sine
term, must now be compared with the residuals 7 of
the moon’s longitude. This comparison is shown in
figure 1, where, however, the final reduction of the
transits of Mercury, which will be explained below,
was used. The parallelism between them is at once
apparent. A determination of the ratio gave

)

Hy — g

: 7 |
(3) 7 = (I'34 £ 02)
The probable error was derived from the residuals.

Although the uncertainty of the two values (3) and
(3') of @, is probably larger than is indicated by
the probable errors, it is still very probable that the
factors must be assumed to be the same for the sine
term and for the residuals remaining after its removal.
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FIGURE 1.

1680 1700 20 40 6o 8o

This proves that the distinction between the ‘great
empirical term’ and the ‘minor fluctuations’ is entirely
artificial, and it will henceforth be dropped. We will
only consider the total fluctuations of the moon’s
longitude, which are now defined by

B'= B, — 66 — 0”79 T,

B, being defined by (2). B is thus the excess O—C
of the observed mean longitude O of the moon over
the computed value C, which latter is

)

C = BROWN’s tables — 10”71 sin (140°0 7 + 240°7) +
+ 4779 (T + 1) 4+ 013 S + 0"79 T+ 0"66.

The first three terms are the 7/ of BROWN's (77:—G),
the last three are the correction found here. As has
been mentioned above a further correction of + 0”°30 .S
was finally adopted. Including this we have

B’ — observed.mean longitude of moon — C
(4) C = BrOWN’stables — 10™71 sin (140°0 7 + 240°'7)
+ 57225 + 4”00 7"+ 6"70.

For the observed longitude I have taken the results
derived by NEWCOMB from eclipses and occultations
up to 1833, and the Greenwich meridian observations
after that date. The observed values were combined

1800 20 40 6o 8o 1900 20

was afterwards adopted, and do thus correspond
exactly to the formula (4). The values for 1925°5 and
19265 were not used in the discussions, but were
afterwards kindly communicated by the Astronomer
Royal. The value for 1925°5 is, however, already con-
tained in the normal place for 1924°5.

The probable error of the first normal point (a solar
eclipse observed by GASSENDI) is + 14", of the second
about + 5", and by 1681 it has come down to + 1”.
It then continues to decrease, being of the order of
+ 0”:3 about 1800. The probable errors of the normal
points after 1goo are + 0”04 or + 0"053.

The general shape of the curve shows some rough
similarity to a sinusoid, as any variable quantity os-
cillating between limits and having the average value
zero, must necessarily do. But the best fitting sinusoid
leaves residuals over 4”. A much better fit can be
obtained by a series of straight lines. The entire period
from 1660 to 1920 can be represented within the
limits of uncertainty of the observations by five straight
lines, the points of discontinuity being at 1784, 1864,
1876, 1897. At these points the mean motion of the
moon has apparently changed abruptly. The excesses
of the actual mean daily motion over its average value

47435" are:

into normal places of five, four or three years, and 1660—1784  An' = 4 o0c07
. . 7. 1784—1864 — 0005
were interpolated linearly between these for interme- 1864—1876 — 0021
diate epochs. The values actually used are given in 1876 —1897 — -ooIt
Table 1. These include the correction + 0”30 .S which 1897—1917 + 0009
TABLE 1. FLUCTUATIONS OF THE MOON’S MEAN LONGITUDE.
¢ B : B ¢ B t B
1621 - 22" 1785 + 15'f4 18525 - 3/'/50 1900"§ — 15°53
37 — 164 92 -+ 1473 57°5 + 268 035 | —1448
49 — 167 1801°% + 129 625 + 141 065 — 1332
62 — 158 09°5 + 123 67°5 — 177 09§ — 1278
81 — 121 130 + 11°2 725 — 504 12°5 — 11'62
1710 — 32 218 + 101 77°% — 943 155 — 1035
27 4+ 20 31°% + 67 825 — 10°84 185 — 10°20
37 + 49 875 — 1325 21§ —10°18
47 + 8o 1837.4 + 411 91°5 — 14'47 245 — 12°03
55 + 96 43°1 + 381 94°5 — 1581 25°5 (—1239)
71 + 138 488 + 342 97°% — 1612 26°5 (—12°35)
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After 1917 A#n’ becomes negative again, but the
amount cannot yet be stated.

For a further discussion of these fluctuations see
section 7.

4. The sun’s longitude.

The observed. longitudes of the sun after 1835 were
taken from Dr. JONES's paper in M. N. 87, p. 4,
whith the only difference that from 1915 the correc-
tion of + 0%°04 to the Greenwich observations adopted
by JONES has been altered to + 0%03, which, accor-
ding to a private letter from Dr. JACKSON to the
writer, represents better the change of personality
due to the introduction of the travelling-wire micro-
meter.*) In accordance with this the systematic cor-
rection applied to the Cape series from 1912—1916
was altered to 4 0”30. The last two columns of
JonEus’s Table III on p. 9 were altered accordingly,
and then means were taken for four, three or two years.

For the period 1750 to 1835 means were formed
from the observed errors given in BROWN’s paper,
Table IV, p. 223, applying a systematic correction
of — 0”66 to Cambridge, and assigning weights very
much on the same principles as was done by JONES
in the formation of his Table IL

The observed corrections to NEWCOMB’s tables
derived in this way are given in Table 2 under the
heading (O—C),. The last two means were not used
in the solution, but added afterwards to the table.
The last is the mean of the results for 1925 and
1926, which were kindly communicated by the Astro-
nomer Royal.

As a first approximation we adopted the secular
acceleration 4 1”:80 S and a correction + 2”00 (7 + 1)
to the mean longitude, and we assumed (= 1°50.
We thus get

(0—-C),=(0—C)o—[2"00(T+1)+1"80S5+01125'],

which is also given in the table. It is evident from
these that the observations before 1830 are too un-
reliable. From 1865 to 1895 the residuals (O—C),
are systematically positive, while from 1835 to 1863
and after 1895 they are small and not strongly sys-
tematic. It seems probable that the observed longitude
of the sun in the interval 1865—g5 requires a negative
correction of about 0”:60. It is, of course, also possible
that the adopted fluctuations of the moon in this
interval require a positive correction of about §5"4.
In both cases it appears better to exclude these years
from the final approximation. Accordingly the un-

*) See also M.IV. 87, p. 459.

B. A.N. 124.

knowns @, &, ¢ were determined from the equations
of condition

O—Ch=a+b6T+cH

formed for the normal places from 1839 to 1863 and
18965 to 1922. The resulting values were

@ =—0"11
b=—059
¢ —=—00I4

A slight mistake in the last epoch was discovered
afterwards, making the residual for 1922 — 0”24 as
given in the table, instead of + 0”01 as originally
found. Correcting this and making a new solution
including the last two normal places, we find

da——-01 + 06
3b—=—"11 &+ ‘25§
dc = 4 ‘004 % -010.

The probable errors have been derived from the
residuals. It has not been thought worth while to
carry these corrections through, and the original solu-
tion has been retained. The correction to NEWCOMB’s
tables is thus

(5) AL =+41"89+ 1741 T+ 1805 + 0098 5.
The coefficient of B’ corresponds to

©) Q=131 £ 13.

The real uncertainty may be larger than is indic-
ated by the probable error, on account of the doubt
regarding the systematic corrections of the observations.

The residuals given in Table 2 correspond to the
finally adopted value Q = 1°23, and the adopted values
AL =+ 1789, An, =+ 1"°41. The last column of the
table gives the fluctuations in the sun’s longitude
multiplied by #/Qn, to make them comparable with
those of the moon. Thus

B, = 1072 (0-C)
) C = NEWCOMB’s tables + 17°89 + 1”41 7+ 1”80 S.

The values of B, are represented in the figures
3, 4 and 3.

In figure 2 the corrections (O—C), to NEWCOMB’s
tables as derived from the Greenwich observations
are represented, the smoothed means for every year
being taken after 18go. The figure also contains the
results from some other observatories, without any
systematic corrections. These were, after 1890, taken
from JoNus’s table III, smoothed by taking the means
of every three successive years. The two values for
Leiden were taken from Zeiden Annals, XI, 2, page
B 10o4. The broken line marked ( gives the cor-

rections to NEWCOMB's tables of the sun derived
from the observed fluctuations of the moon by the °
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TABLE 2. LONGITUDES OF THE SUN.
¢ (0—C)o (0—C); Res. B ¢ (0—C)o (0—C): Res. By
1767 — 042 — o070 ——11{15 + o"'4 1888 +o728 +o,f78 —I—olf 1 —
89 + 1°03 + 53 + 25 +17°5 92° + 004 + 58 + '28 —rz'g
1804 — o076 —I'I2 — 137 — 19 965 — 027 + 14 + o2 — 157
17 — 319 — 350 — 370 — 290 1900°§ — oIl + ‘06 — 09 —"16°5
27 — 089 —1'08 — 127 — 52 03'5 + o0y + -or — 14 — 160
34 4052 + 39 + 30 + 88 06°5 + 034 + oz — 09 — 142
39 + 016 -+ -o8 4+ or + 42 09'§5 + 072 + ‘19 + 12 — 116
47°5 4 o029 + o4 + o3 <+ 39 12°5 + 080 — 02 — 06 — 122
55.5 + 040 + 15 + o3 + 33 15°5 + 091 — 17 — 18 — 123
63 + 043 + ‘17 + -06 + 17 180 + 1°09 — I4 — °II — 115
69 + 082 + ‘83 + 68 + 43 200 + 112 — 23 e ) — 122
73 + o051 + 75 + 56 — 03 22°0 + 114 — ‘30 — 24 — 131
78 =+ 035 + 83 + 57 — 35 240 (+ 1°16) — 23 — 19 — 139
83 + o029 + 70 + 49 — 59 260 (+ 122) — 23 — 18 — 14°5

1 1 1 1 1 1 1 1

1 1 1

1780 1800 20 40

formula (5), replacing however the coefficient of B’
0098 by 0094 to conform to the finally adopted
value Q = 1-25. It will be seen at once from this
figure how uncertain the observations before 1830 are.
It is earnestly to be hoped that the reduction of the
observations made at the Radcliffe Observatory by

6o

8o

1900 20

HORNSBY from 1774 to 1803 and by ROBERTSON and
RIGAUD from 1811 to 1838 will help to elucidate this
uncertainty.

Also the apparent systematic error of + 0”60 from
1865 to 1895 is very strikingly shown.
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5. The longitude of Venus.

The values of A/ smoothed given by JONES in his
Table VII, /. ¢. p. 19, were plotted and a smooth
curve drawn through them, from which the correc-
tions (O—C), to NEWCOMB's tables, contained in Table
3, were read off. JONES derived thé errors in the
longitude of Venus from the observed geocentric long-
itudes by means of his observed errors of the sun.
They are consequently affected by the systematic
error of the latter from 1865 to 1895, but the effect
on the mean of a few years will not be systematic,
since it changes sign at the conjunctions. The observ-
ations were treated in the same way as those of
the sun, with this difference that a possible correction

dx, to the adopted value z, = + 0-80 was kept explic-

itly in the right hand members of the equations. The

B. A.N. 124.

epochs 1840, 1845 and 1850 were not used in the final
approximation.

The resulting correction to NEWCOMB's tables is

Ak, =+ 3736 + 0740 0%, + (203 — 1795 Ox,) 7 +
+ (1780 + d%,) S,

where S, =163 S, and the value found for Q was
(8) Q.= 1269 + 062 + ‘028 Jx,.

The residuals are very small. Table 3 contains the
residuals and the value of B,” corresponding to the
finally adopted values Q = 1-25, dz, = — 0°25, viz:

B, = 638 [(0—C), — AL,].

The effect of the correction dx, on the residuals is,

however, extremely small.

TABLE 3. LONGITUDES OF VENUS.
¢ (0—C Res. B, ¢ (0—C)o Res. By ¢ (0—C) Res. B,
1840 — ol"g,o —088 | = 18 1875 + o75o + o'-’37 — 572 1904 + o:,s 5 — o 3 | —1 5'f1
45 " 4023 — 46 | + o7 3o + o052 + 57 — 67 o7 + 102 — ‘o1 | —1373
50 + 053 — 26 + 15 84 —o'I0 — o7y — 120 10 + 1°31 — oI — 126
55 + 092 — 04 | + 2.8 38 —o0'17 — 03 — 138 I3 + 151 — 18 | — 126
60 -+ 1703 + o7 + 25 92 —o018 — ‘IO — 153 16 + 196 — 08 | — 1079
65 + 096 + o4 | + o3 96 —0'l4 — o8 — 165 19 + 2°35 + 08 | — 97
70 |* 4049 + cor — 38 1900 + o135 — 08 — 162 22 + 256 + 12 — 97

Figure 5 shows the values of B, computed for
every year from JONES’s smoothed means smoothed
once more. In the figures 3 and 4 the normal points
of Table 3 are represented. It wil be seen that, with
the exception of the first years, the agreement of
B, with the fluctuations of the moon’s longitude is
remarkably close, in fact the deviations are on the
whole not larger than those between the results from
the meridian observations of the moon and the occul-
tations.

6. Transits of Mercury.

The transits of Mercury have been discussed by
NEwWCOMB in Astr. Papers Am. Ephemeris, Vol. I,
p- 363 (1882). A new reduction, including all transits
observed since, was given by INNES in Union Observ-
atory Circular 65 (1925). INNES gives in Table IX
of his paper, p. 321, the observed corrections to the
predicted times of the second and third contacts, and
in the eleventh column of Table VIII, p. 320, are
given the logarithms of the factors by which these
must be divided to give the errors in the difference
of longitude. In Table IX he further gives the coef-
ficients of the corrections to several elements and
to the mass of Venus. I have adopted a correction
dm, — -+ o0010m,, which is about the mean of the

values found by JONES from the sun (+'0080 + ‘0019,
M. N. 86, p. 434, 1926) and R0OSS from Mars (+'0115
+'0058, Astr. Papers Am. Eph. g, p. 260, 1917).
Denoting the coefficient of Table VIII, 11th column,
by A, and the coefficient of 10 Omz,[m, (Table IX,
10oth column) by ¢, we have

Vs
8

= Av, — A7 —_Q_T_to‘le
}—— x o — A )

Av, and Av, being the corrections to the true lon-
gitudes of Mercury and the sun respectively. These
were formed for each of the epochs given by INNES,
and then the second and third contacts of each transit
were combined with the weights given by INNES. The
corrections Av, — Ay, thus derived are the quantities
denoted by V and W by NEWCOMB, Astr. Papers,
1, P. 447, viz:

for November transits: V = 1.487 Ak, — 101 AL
—+ corrections to other elements
W = 0716 Ak, — o097 AL

- corrections to other elements.

Jor May transits:

The coefficients of AX, and AL’ vary a little from
one transit to another, but not more than about one
percent, and we can safely use the average values

throughout.
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The weights of the observed corrections are
P = 002 A%p,

the factor 0'02 being about the average value of 1/42,
and p being proportional to the weight of INNES’s
O — C (in time). The factor of proportionality was so
chosen as to make the probable error of unit weight
+ 17o. Half weight was assigned to the transit of
May 1924, on account of the unfavourable circum-
stances of the observations: the second contact shortly
before sunset in America, the third and fourth soon
after sunrise in Europe and Africa. The values of V7,
and I, and their weights g, so derived are given in
Table 4. It is doubtful whether the weights assigned
by INNES to the May transits are not too high. On
the whole the residuals given by the May transits are

~not so much smaller than those of the November

transits as to justify these high weights. The weights
2 of the O— C in tims are the same on the average
for the May and the November transits. There is no
a priori reason, of course, why the observations of
the times of contact should be less accurate in May
than in November, except that the May phenomena
are somewhat slower. Since the May and the November
transits were discussed separately, the point is, however,
not of much importance, and I have retained the
weights as given.

As a first approximation the value of AL’ derived
above, and an approximation for AA; found from a
preliminary discussion, were introduced, thus

AL = +1"89 +1"41 7 + 180 S
Ak, = +8:84 +8-387 +1 -80S,
where
., = 4°15 .S.
We put
Q=150 (1 +v) 0.= 150 (1 +v)

Then taking as a first approximation Q =0, =140,
or v —v, = —'067, we have
V=V, —[1487 A\, — 101 AL’} — '540 B’
W,=W,—[ 716 AX, — 97AL]—-210 75"

The coefficients of 5’ are 0°933 [1°487 X466 — 101 X

x-112] and 0°933[716 X 466 —97 X 112] respectively.
The values of I/, and ¥, are also given in Table 4.
The equations of condition now are

V,=1487[0A,, + 7%, + S,02,] — 101 [0L, + 70, +
+ S0%] +692 By —113 B'v, + 0V, + 19V,
W, = 716[0ho+ T0n, + Sidz.]— 07 [0Ls + Tdn, +
+ S0%] +°334 B'v—-109 B'v, + 0 W, + TOW,,
where
oV =20V,+ 10V,
OW=0W,+ T0W,

are made up out of corrections to the other elements
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(¢, 7, €5, ;) and their secular variations. With a view
to the remaining uncertainty of these elements as used
in NEWCOMB’s tables it must be considered quite pos-
sible that 077 and 07/ may be of the order of several
tenths of a second of arc. It is, of course, impossible
to determine 0},, 0Z' and the corrections ¢ V and d W/
separately. I have therefore neglected the corrections
to the longitude of the sun, thus including their effect
in 0/ and 0. Even then the only unknowns that
can be determined are

a, + 6,7 = 1487 Ok + Z0n,) + oV
a + 6/T= 716 (Ohy + TOn,) + OW,

And the distribution of the corrections found between
0k, 0V and 0 W remains arbitrary.

If we neglect the corrections 07 and ¢ I¥ entirely,
and then divide the equations of the November trans-
its by 1'487 and those of the May transits by 0716,
the coefficient of d,, + 797, becomes unity in both
cases, and the weights become (1°487,%p, and (0'716)? p,
respectively. Now. p, contains A4* as a factor, and the
values of A, though varying rather much from one
transit to another, especially for those near the northern
or southern limbs of the sun, are of the order of about
5 for the November, and 12 for the May transits. Con-
sequently the weights of the equations in which the
coefficient of J}, is reduced to unity become on the
average equal to the original weights p of the observed
errors in time. This is the approximation used above

| in section 3. Here, however, I retain the equations

without this reduction and with the weights z,.

We can now either treat the November and the
May transits separately, in which case the November
transits involve the unknowns

@y by, Ony— 164 0%, v, — 164 0,
and the May transits

a,, b/, 0z, — 326 0%, 0y, — 326 0dv,
Or we can combine all equations to one set of
normals, in which case we must make a hypothesis
regarding the corrections 07 and ¢ ¥/, and we must

_neglect dz and Jv. Putting

200 — 0V = x = x, + 2,7
WOW + 30V =y,

the corrections dm, de,, etc., have large coefficients
in x and small ones in y. We can thus neglect y,
and then we have

a, + b, T = 1487 (0o + T01,) —0'4 (%o + 2, 7)
a'+ 6/ T = 0716 (0h,, + T0n,) +03 (x, + 2, 7),

and the combined equations contain the unknowns

al10) 8”1) KXo, X1, azl) avl'
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The solutions, in which the transit of November
1782 was rejected, gave

Combined

November transits May transits equations
(ZI:—3,'182 a;' =— "-86 Oho= — I”'99
b:=—375 b'=—r112 gf‘:“‘zl”
. Oy —16402=—"54 Ox,—"32602=—"35 % _ B 2’3
Ov, — 1640y——-25 v, —'3260v—=—"14 o= + 72
x;, — + .08

From a,, b4,, a,’, 4. we would find

0k = — 2°0§
on, = — 2'15
Yo — + 202
x, — + 138

The values of 04, and 07, are in excellent agreement
with those derived from the combined solution; those
of x, and #x, are not, but the weight of their determ-
ination is very small.

The determinations of 0%, and 31/ are unsatisfactory,
the unknowns being badly separated I have therefore

made a new solution transferring dx, to the right
hand members. We then find
0, =— 76 + 2"'91 0x, +[— 120 + 21/206;@] T+ .S, 0%,

0V = —+36 —2:66 0%, + [+ ‘11 —1960%,]7
SW=+ 24+ 154 0% + [~ 08+ 080x,]7

dv, = —09 + 200,
Residuals were computed for the three hypotheses
— 40,

The 'sums of the squares of the residuals, each
multiplied by its own weight, were for the three cases

o, — o, —-80.

November 446 308 712
May 456 71°0 222°2
Sum Q02 1018 2932

Representing these by a parabolic formula, we can
interpolate the value of O, which makes them a
minimum. We find

November 0z, = — 0°30
May -— 12
Combined — 17

The direct determinations of 0, from the normal
equations gave about

3%1 - — 0’40
On the whole it seems safe to adopt
dx, = — o025 + IO

The probable error is only a rough estimate, but
I expect it to be rather too high than too low.

© Astronomical Institutes of The Netherlands e
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The corresponding value of dv, is — 0'14, giving
v; — — 207, and

(9) Q. = 1'19 + ‘075

The probable error corresponds to the weight derived
from the combined equations, taking the probable
error for unit weight to be + 1”0.

Collecting the different determinations of Q, O, and

0. given by (3), (3), (6), (8) and (9) we have

from the sun 0 = 1°31 % "13
Jrom Venus 0, = 126 + 06
Sfrom Mercury ‘great empirical term’ 0, = 1°32 + 'Oy
‘minor fluctuations’ 1'34 + 02
total fluctuations I'19 + 08

The difference between the value of O, derived here,
and those found in art. 3 is due chiefly to the different |
treatment of the weights. The comparison of these
different determinations, which are independent of
each other, makes it very difficult to avoid the con-
clusion that the true value of @, O, and (@, is the
same. Assuming this, we can take as a general mean

Q0 = 125 + 02

The probable error corresponds to the deviation
of the different determinations, but it seems likely
that the true uncertainty is much larger. I estimate
it to be about + -08. :

Adopting now-0%, = — 025, 0, = 0 = 1'25, a new
determination was made of a,, &,, a.’, 8., from which
the final corrections to the mean longitude of Mercury
and the corrections 07 and 01 are found to be:

A=+ 7765 + 713 T + 1755 S, + 388 B
6V :_11'55 _1/042 T
OW =+ 53+ .44 T

We have made 07 and JWW about equal and of
opposite signs, but the three corrections are not in-
dependent. We can add an arbitrary quantity z to
0k, if we subtract at the same time 1°487 # from
0V and 0716 z from 0.

With the residuals from this final solution two, further

(10)

experimental solutions were made. In one of these

the unknowns a@,, 6., a,’, &, d,», were introduced.
This gave
0%, = — 03 + ‘07
In the other solution, taking the unknowns z,, &,,
a,, &, 0.v;, we found
0;¥; — — 07 + 08
These corrections are smaller than their probable
errors, and the solution (10) was accordingly adopted

as final.
The residuals of this final solution are given in

Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1927BAN.....4...21D&amp;db_key=AST

7BAN. T TS AT T DN

I'I_

B. A.N. 124.

Table 4. The probable error of unit weight derived
from them is + 1700, in exact agreement with the
assumed value on which the weights were based. It
will be seen that most residuals are small. Of the
modern observations 1894'9 and 1924°4 are the only
ones leaving considerable residuals, especially the latter.
Attention has already been called to the unfavourable
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circonstances under which it was observed. The transit
of May 1740, to which INNES assigns the weight zero,
rests on only one observation of one contact. The
November transit of 17829, which also leaves an
excessive residual, was well observed. The third con-
tact, which is responsible for the discrepancy, occurred
very near sunset in Europe, but near noon in America.

TABLE 4. TRANSITS OF MERCURY.

November transits

May transits

¢ Vo 2 Vi Res. By ¢ W P wr Res. By
16779 e 2757 0’1 + 1'06 —|—o"’73 — 112
99'9 — 232 oI + 6o + 22 — 83 " ” ” ”
97°9 | — 709 | 03 | —279 — 344 — 151 17404 | — 1466 o | —1365 | —1366 | —6773
17239 | — I'lo | 10 | +179 + 1°05 + 31 534 | — o078 4 | — 21 | — 30| 4 72
369 — 042 17 + 1'55 + 81 + 66 864 — o018 15 — w77 | — 8 + 106
439 — 086 19 + 35 — 31 + 64 99°4 + o032 14 — ‘oI — 22 4113
56'9 — ©O'I1I o2 + o9 — 45 + 92 1832°4 + o042 23 + 26 — 03 + 63
69,9 | — o550 | o9 | —1I8g — 231 + 83 454 | + o056 | 26 | + 30 | 4+ o5 | + 379
829 + 1051 | [279] + 823 + 7:95 + 318 784 — 006 25 + -39 + 09 — 95
899 | + 138 | 17 | — 53 — 9 + 1275 914 | — oos | 25 | + 46 | + 19 | —14%4
18029 | + 034 | 06 | —11I3 — I'44 + 99 19244 | + 259 | 14 | — 88 | — 62 | —153
229 + o076 I'1 — 73 — 87 + 81 -
489 | + 135 | 277 | — °36 + 43 4+ 45
61.9 + 182 2°'1 — 17 + 27 + 23
689 | — o008 | 335 | + o9 + 37 — 39
819 — 1'23 40 — 27 4+ 14 — 102
94°9 — 047 43 + 51 + 127 — 132
1907°9 + 2710 41 — 164 — 14 — 133
149 + 414 4’5 — 260 — 66 — 119

The transit was nearly a grazing one, the least distance
of centres being not 30" less than the sun’s semi-
diameter. The discrepancy must thus be ascribed to
the difficult nature of the observation.

The last column of Table 4 gives the fluctuations
B,', computed by :

November : B, =2'07[V, —1°4870%,+1'010L'—d 1]
May 5.32[ Wo— 7160%,+ -970L —0WV].

These are also represented in the figures 3, 4 and 5.

The attention of observers may be called to the
coming transit of November g of the present year.
The importance of this transit for the problems in
hand was already pointed out by NEWCOMB.*)

7. Theoretical considerations.

The projections of the angular momentum of the
system Earth-Moon on the ecliptic and on two planes
rectangular to it and to each other are:

Cocose + pancosi (1 —e?)b =,
(11) Cosinesin§ + pa®n sinisin § (1 — )b = ¢,
Cwsinecosy + pa*n sinicos £}, (1 — %) = ¢,.

XY Astr. Papers, 1, p. 484.

The axial rotation of the moon has been neglected,
and also the rotations of the earth constituting the
variation of latitude. The orbital motion of the earth
has also been disregarded. It is easily shown *) that
(dno|n.)|(dn|n) is equal to the ratio of the couples
produced by the solar and lunar tides multiplied by
a*nja,"n,. This factor is 0°000088. We have put:

C — the moment of inertia of the earth referred to its axis
of rotation,

® == the earth’s velocity of rotation,

€ — the inclination of the ecliptic,

{ = the node of the equator on the ecliptic,

p. = the moon’s mass (mass of the earth = 1),

a= » » mean distance,

= » » mean motion,

e= » » excentricity,

7 = the inclination of the moon’s orbit on the ecliptic,
&b = the node » » » » » » »

The ecliptic is taken as an invariable plane. The’
three quantities ¢,, ¢,, ¢, must remain constant.
The energy of the system, also neglecting negli-
gible quantities, is
=1 (w® + L pa®n

*) JEFFREYS, The Eartk, p. 213.
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Differentiating (11) and eliminating de and 4§ by
forming dc; — tan ¢ (sin dde, + cos Pdc,), omitting terms
containing sin (£}, — ) or cos (§H —¢) as a factor,
since these will give zero when integrated over a
complete revolution of the moon's node (19 years),
usingKEPLER’s third law a3 %2 = const. *), and putting
in the resulting equation cos 7=1, (1—e?)=1, we find

(12) secsd%c)—k@—g,,é(ea’e—]—sinz'di):
where
_patn
/e_—3Cm_162.

If we neglect the variation of ¢ and 7, (12) becomes

sece d—<6m—)—- (ﬁ

(122) Co .

If instead of eliminating 4e and & we had neglected
them, and then eliminated 47 and 4§ and neglected
de, we would have found
d(Cw) .

Cw n

7

(126) cose

which is also found from dc, = o neglecting ¢, de and d.

The equation that is usually taken is neither (124)
nor (125), but

4(Cw) dn

(12¢) < — & — =0

Although the variations de, de and &7 are actually
absolutely negligible, nevertheless the equations (12)
and (124) derived by neglecting them, as well as
(12¢), are, of course, inaccurate, and we must use (12).

In B.A.N. 117 (126) was used, and the ratio 0, =230
derived from it, giving 5”92 7* in the moon’s longi-
tude for 1”00 7% in the sun, was taken as the basis
of the first approximation. It disappears, however,
entirely from the final results, which are thus inde-
pendent of the choice of any of the equations (12a),
(126) or (12¢), and in fact of any theoretical con-
siderations.

In the equation (12) we put

(ea’zz—|—smza’z)_—fd—7Z

It is not possible to determine de, &7 and de separ-
ately. They can, however, be determined from (10)

*) Strictly speaking the ‘constant’ is not constant, but
asn® = fM(1+ p) <1 +]——>, with /62 = 3 C—M‘-{i , and con-
sequently it is affected by changes of C. The effect on # is,
however, of the order of 1/4000 of that produced through (12).

B. A.N. 124.
in terms of f. We find, taking the secular values only,

de=—k(1—f) sin e. a;_n

%sini(l—f).@

n

(13) di =

I, ... L, an
gde_-g (sin? z + fcos® 7) o

The variations dd and d§b are purely periodic.

As to the first term of (12) d(Cw)/Cw, we must
keep in mind that what we actually observe is not
the rotation of the earth as a whole, but of its outer
crust, or even, for the greater part of our material,
of the Greenwich Observatory. To allow for the pos-
sibility of a difference in the rate of change of the
rotation of this and the whole earth, I will suppose
the earth to consist of two parts, of which the mo-
ments of inertia are C(1—p) and Cp, the variations
of their rotations being dw and 4o’ respectively. Then

d(Cw) dC (r—p)dm+pdm ac
Co C 2

dw’ being the observed change of rotation. The
factor ® thus allows for a possible difference of this
from that of the earth as a whole. ® may be either
positive or negative, but it is probably small.

The observed change of the moon’s apparent mean
motion, i. e. the mean motion referred to astronomical
time, is given by

an’ ﬁz . do’
n . n W
If we put
dw' an'
= Q )
® n
we have
dn'
——( —Q) )

and consequently (12) becomes

7

dn

—1)(1—f)kcose p”

() =00

The change of energy of the system is

aE IdC o +®)d_w_k;zd_;z
Co* 2 C w o’

or by a similar reduction, and using (14)

dE I dan'
(15) ?&:—EQ<I+®) i

2n| dn’

_g(Q—I),é[(I-—f)cose——; pr
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Introducing numerical values (14) and (15) become

L dC o an o o dn
(14') “CT—(I +O)7—(Q_I>[O49—I49f—0]7
N dE 1 an’
(15) G =21+ O 5=
an'

I A
—5 @ =0 [245 — 149/ + O] —,
where the effect of a deviation of @ from unity has
been brought into evidence.

In the case of the secular acceleration, if it is
ascribed to tidal friction, the moment of inertia is
not affected. Consequently, putting dC=o0 in (14,
we must have

(049 —149 f) (@—1) =L

We have taken ® = o, since it is inconceivable that
the rotation of the crust, or of any part of it, should
be secularly different from that of the whole earth,

If we take do'|w = — dn,[n,, the observations give,
adopting » = + 080,

Qs = 4°6.
With f=o0 we would have 049 (0 —1) =1, or¥)
Qs = 3°05.

The difference between these two values constitutes
the apparent contradiction which was referred to in
art. 2. There is, however, no a priori reason to regard
the distribution of the perturbations due to tidal friction
over the three elements corresponding to f—=o0 as
more probable than any other. From Q — 46 we find *¥)

f=+o014.

This by (13) and with ‘%”:_ 3-6";1 gives

de—=+ 313 ‘% =+0"0039 7
di = — 0'093 a’7n ——o0"00012 7T
de = + 2'00 an’ = 4 0"o0025 T

7

These secular variations are, of course, too small
to be detected by observations.

DARWIN has computed the effect of the friction
of bodily tides in a viscous earth on the excentricity
and the inclinations of the moon’s orbit and the
equator on the invariable plane. He finds variations
of the same sign, and of nearly the same mutual
proportion, as those found here, but much larger. ***¥)

*) From the equations (12 6) and (12¢) we would find Os= 230
and Qs = 266, corresponding to f= —-18 and f= —09 res-
pectively.

*) From Qs = 4'4 (see p. 36), we would find f=-}o013.
***) Collected Works, Vol 11, fifth paper, especially pages 329
and 349. See also the pages 381 and 382.

/
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Of course these results for a planet of small viscosity
cannot be transferred to the actual earth, on which the
tidal friction and its reaction on the moon is most
probably not produced by the bodily tides, nor even
by the ocean tides, but, as explained by JEFFREYVS,
by the skin friction in regions of strong tidal currents,
and the secondary tidal waves set up by the reaction
of these on the ocean *). Still they may be taken as
an indication that a small positive value of f is not
improbable.

Taking ® =0, Q =46, f= +0°14, we find from (15’).

AE _ o ad
Cor — 453 n 74 - per century.

JEFFREYS finds from the sum of all shallow seas
investigated by him *¥)

dFE = —1°1.

109 ergs per second,
or
dE
Co?
Thus, in order to explain the observed secular
accelerations of the sun and the moon, we must sup-
pose that the seas not investigated by JEFFREYS con-
tribute about twice as much as those investigated.
This does not appear improbable, seeing that the
Behring Sea alone is responsible for more than two
thirds of the total found, and considering that the polar
seas, where perhaps the friction may be increased by
the action of the ice, were not included in his inves-
tigation.

= —0'9 . 1078 per century.

Consider now the equations (14) and (15) or (14')
and (15') for the fluctuations. We have seen (page 25)
that these are equivalent to a series of changes in the
moon’s mean motion, taking place suddenly, or at
least within a few years, which are of the same order
of magnitude as those produced by the secular acce-
leration in the course of a century. Taking the observed
value of Q, viz: Q =125, and the value of f derived
from the secular acceleration, viz: f = 4+ 0'14, then
from

o _ +4.1078
L T4 )
which is about the change in 1897, we find for three

different values of ©

0 = — 020 o + 020

g 0C
10 - = 432 —05 +40 —03 +48 —0I
1o® gf)i —1'6 —1'0 —20 —I'l —24 —I'2

*) JEFFREYS, 7#he Earth, p. 210.
**) JEFFREYS, The Earth, p. 220.
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The parts corresponding to Q = 1 and to the excess
of O over unity have been kept separate. It will be
seen that the increase of the moment of inertia is
very little affected by the increase of Q*). It is only
for much larger values of Q, approaching the value
for the secular acceleration, that 0C becomes small.
The dissipation of energy corresponding to the increase
of @ from I toJ-25, on the other hand, is consider-
able. It is practically independent of ®, while the
dissipation for O =1 increases with ©.

The hypothesis Q = 1 would mean that the moon’s
true mean motion does not change (d» = 0). We can
then consider the change of the moment of inertia as
the primary cause of the fluctuations. This produces
the dissipation (or generation as the case may be) of
energy corresponding to the first terms given above.
For ® =o' and for d»'/n = 4 4.107% this amounts to
0FE = —8.10%% ergs. The changes of C are very great.
In order to get an idea of their order of magnitude
we may for a moment suppose them to be produced

by local displacement of masses. The displacement of .

a mass p from the distance #» from the axis of rotation
to 7+ 0 would give

M being the mass of the earth and ¢ the latitude.
The effect of a displacement of the whole of the central
Asian highlands, including the Himalaya and the
Kven Lin, over its own height would produce a change

" of the order of 0C/C=107%, i. e. about one fourth of

the change in 1897. It is, of course, rather improbable
that catastrophes of this order of magnitude should
have happened in historical times without producing
any other effects that would have been noticed by
geologists. It is also evident that the displacement of
mass produced even by many thousands of earthquakes
is entirely inadequate. If the displacements are not
local, but distributed throughout the body of the
earth, or a considerable part of it, they need only be
comparatively small, as BROWN has pointed out **).
They would correspond to the expansion or contraction
produced by a change of temperature of a fraction
of a degree. But the work done against (or by, as
the case may be) gravitation would still be enormous.
We are compelled, as BROWN has convincingly shown,
to ascribe the changes of C to some deep seated origin,
however difficult it may be to imagine a cause which
can produce such enormous effects in so short a time.

The dissipation of energy needed to explain the
excess of (O over unity (which is accompanied by a
comparatively small change in C) is in our example

*) The part due to Q — 1 would become zero for ® = - 0'28.
**) Yale Observatory Transactions, Vol. 111, Part 6, p. 232.

B. A.N. 124.

4.10%% ergs, i. e. of the order of 109 times the dissi-
pation by tidal friction in one second. This must be
produced within an interval of the order of few. years,
say 10®seconds at most. It must be due to a force
finding its origin in the moon, like tidal friction. This
force should thus be about ten times as powerful as
that acting in tidal friction. In our example, which
was about realised in 1897, it is of the same sign as
tidal friction, Z. e. the rotation of the earth is retarded.
But there must on the average be as many occasions
when it is negative as when it is positive. In 1864
thére occurred a shortening of the day of about three
quarters of the lengthening in 1897. Now friction can
never generate energy, and an interaction between
the motion of the moon and the rotation of the earth
by any other mechanism than tidal friction is hardly
conceivable. It would thus appear that the excess of
Q over unity cannot be explained in this way, which
is also the point of view taken by BROWN.

We must remember that the factor @ is primarily
not more than a mathematical symbol used to describe
the observed facts. Our discussion shows that it is
very difficult to ascribe a physical meaning to any
other values of Q than @ = 1 or Q = Q,, the value
for the secular acceleration. Now it may well be that
the tidal friction, and the secular accelerations pro-
duced by it, vary irregularly, the values found in
art. 2 being the average over the last 2000 or 2500
years. Supposing then the fluctuations in the longi-
tudes of the moon, the sun and the planets to be
the combined effect of this variability of tidal friction,
and of the sudden changes of the moment of inertia
considered just now, then for the part of the fluctua-
tions produced by this latter cause the ratio of the
change in the rotation of the earth and in the moon’s

mean motion will be given by dw’lw = — dn’|n, and
for the former do'|o = — Q, dn'[n. If the ratio of the
action produced by the two causes be p/g, we must have
?+g=1
2+ Qg =0
Taking
Qs = 46, 0 = 125
we find *)
p = 093, g = 007

The first cause (change of the moment of inertia)
corresponds to a representation of the fluctuations
by a series of straight lines. The second (variability
of secular acceleration), is equivalent to a represent-
ation by a series of parabolas. These represent a'
term in 7%, which is necessarily negative in some

*) With Qs = 44 we would find p = 0.926, ¢ = 0074.

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1927BAN.....4...21D&amp;db_key=AST

7BAN. T TS AT T DN

rt

B.A.N. 124.

LEIDEN 35

cases. We are thus limited in the choice of our para- The dissipation of energy needed for the steepest
bolas, since the total coefficient of 7% must be positive. | interval (1880—1917) is about g times that computed
We take three parabolas, corresponding to three values | by JEFFREYS from the shallow seas, and 3 times that
of the secular acceleration, as follows: corresponding to the average of the last 2000 years,
which is repeated in the last line. This interval is
108 dE L 4E much shorter than the other two, no representation
2 . . . .
Coeficient Cwal a Coefficient after 1917 being attempted. It is quite possible, and
Interval of 7% in per  ergs pcelr of T2 in in fact the run of the residuals after 1920 make it
moon’s longitude MUY S€CORA gunigiongitude | rather probable, that from a larger interval we would
” ” h f i
1630—1742 1+ Sy C2g — 36 + o4 ave found a s.maller. coefficient. .
1742—1880 + 317 —17 — 22 + 1'10 For the straight lines representing the first cause
1880—1917 + 1552 —81  —101 + 535 (change, of moment of inertia) we adopt the following
average + 522 —27 — 34 + 180 excesses of the moon’s mean daily motion and of
FIGURE 3.
' G; ' ' ‘ I ' l ' T J + 408
© SunN
+ VENUS
® ?TRANS!TS Nov
5] » May .
+s )
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+ s ®
o
o OccuLTATIONS
- 5 o MERID 0BS.
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s
— 20 A L L L L L
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the length of the day over their average values
(47435" and 86400° respectively):

Discontinuities
Interval A At IOBS—CG 107280 F
” s ergs
1630—1667 + o'o0013 -+ 0'00023 - g‘
1667—1758 + 00073 1+ .oor3y TI3 —25
1758—1784  + oooqr  + woooys 9% TS
1784—1864 — .00050 — 00091 —-r +g;7
1864—1876 — 00196 — ‘00357 31 + I
1876—1897 -— °00102 — 00186 +20 —3 g
1897—1917 + 00084 + 00153 +39 -7

These are equal to 0°93 times those given on page
25, with a slight refinement before 1780, which is
not really necessary for the representation of the
observations, having regard to their uncertainty, but
diminishes somewhat the jumps at the epochs of dis-
continuity.

The changes of the moment of inertia, and the

dissipation or generation of energy involved, at the
points of discontinuity have been added.

Recapitulating we represent the fluctuations in the
longitudes ‘of the moon, the sun and the planets by
the combination of: (A) a series of discontinuous
changes in the rate of rotation of the earth, produced
by. changes of the moment of inertia, and (B) a
series of changes in the coefficient of tidal friction.
The fluctuations are then

in the moon’s longitude
in astronomical time and the
longitudes of the sun and planets

:0°93(4) + 007 (B)
1 0°93 (A) +0.32(B)

The two causes act independently of each other,
the epochs of discontinuity being different.

In figure 3 the lower curve is 0'93 (4) + 007 (B)
and the observed fluctuations of the moon are plotted
against it. The upper curve is 0°8[0°93 (4) + 0°32(B)]
and the observations of the sun, Venus and the
transits of Mercury are plotted against it. The factor
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0'8 reduces the two curves to the same scale, and
they are hardly distinguishable on the scale of the
figure. To the left is given a scale of seconds of arc
of the moon’s longitude for the lower curve, and to
the right a scale of seconds of time for the upper curve.

8. Summary and conclusion.

The observed longitudes of the sun and Venus,
and the observations of the transits of Mercury,
were compared with the observed longitudes of the
moon. The corrections found to BROWN’s tables of
the moon, after. removing the empirical sire term
10”71 sin (140°0 7" 4 240°7), and to NEWCOMB’s

B.A.N. 124.

tables of the sun, Mercury and Venus, apart from
the irregular fluctuations, are
AL =+ 670+ 4"00 T + 57228 ,
=—0384050(T+ 1)+ 35 22(7+ 1)
AL =+ 189+ 1741 T + 1805
=—o0584+020(7+1)+180(S+ 1)
Ak, =+ 7765 + 7713 T + 6743 S
=—327+4+282(T+1)+643(7+ 1)
A, =+ 3726+ 2"52 T + 2753 S
=—o075+082(T+ 1)+ 2 53(7+ 1)

The large constant terms and factors of 7 are for

FIGURE 4.
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the greater part due to the introduction of the secular
accelerations. The expressions in terms of 7"+ 1 show
that the tables require but small corrections at the
epoch 1800.
The adopted secular accelerations correspond to
zx =4+ 080 + 16
¥ =—012 + 0§
*;, =+ 0’55 + ‘IO
For Venus no independent determination of the
secular acceleration was made. The value of A},
stated above assumes 2, —==x,. If we take x, ==z it
becomes

A, =+ 3736 +2"03 T + 2"93.S
=—0404+007(T+ 1)+ 293(7+ 1)~
The representation of the observations remains
quite as good, except for the first three normal epochs.

If the secular accelerations are ascribed to a retar-
dation of the rotation of the earth by tidal friction,
then z and », should be the same. The probable
errors, which I judge to be a true measure of the
reliability of the determination, do not exclude the
equality. We would then be led to adopt *)

%=z, = + 0'65.

The corresponding terms in the longitudes then
become
+ 1765 .S, + 6795 S,

for the sun, Mercury and Venus respectively.

+ 2”69 S,

*) Taking =4 065, we find from the equations of con-
dition of page 23 »"= — o015, and the coefficient of S in the
moon’s longitude becomes 5"03. The residuals of these equations
then become —+ ‘06, 4 ‘05, + ‘09, — 34, 00. The ratio Qs
becomes 4°37.
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The ratio of the secular accelerations of the sun
and the moon is Q, = (dn.|n.)/(dr'|n). Adopting
% =+ 080 we have

Qs = 4.6.
For » =4 065 we would have O, =44

The value of this ratio derived from the observa-
tions is much larger than would be expected from
the theory of tidal friction as it is usually presented.
It has been shown, however, that the usual treatment
is incomplete, in so far as it neglects the change in
any elements of the moon’s motion other than the
mean distance. If the complete equations are used,

LEIDEN 37

the moon’s orbital momentum is found to be decreased
by an increase of the excentricity. The compensation
by the increase of the mean distance must thus be
larger than with the usual formula, and the ratio O,
is increased. The secular variations of the excentricity
and inclination of the moon’s orbit and the inclination
of the ecliptic needed to account for the observed
ratio are far below the limits of possible detection
by observations.

After the application of the above corrections, there
remain in the longitudes of the moon, the sun, Mercury
and Venus irregular fluctuations. A special investiga-

FIGURE 5.

T

MOON OCCULTNS
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tion by a comparison of the transits of Mercury with
the moon’s longitude showed (section 3) that the dis-
tinction, which has often been made, between the
‘great empirical term’ and the ‘minor fluctuations’ has
no real basis. The fluctuations are much better repre-
sented by a series of straight lines. The adopted
fluctuations of the moon’s longitude are given in
Table 1, page 25.

It was found that the fluctuations of the other bodies
are proportional to those of the moon, the ratio being

1°25 7;/n.

The factor Q = 1°25 was found independently from
the sun, from Venus and from the transits of Mercury,
the interagreement of the different determinations
corresponding to a probable error of + -0z in the

90 1900 10 20

final value of Q. Owing on the one hand to the
remaining uncertainty regarding the systematic errors
of the observations, especially of the sun, and on the
other hand to the interdependence of the factor Q
and the secular acceleration, the true probable error
must be much larger. Nevertheless I consider the
excess of @ over unity as well established. From the
material discussed in this paper I would judge the
true probable error to be about + ‘08, so that e. g.
the chance of the true value being inside the limits
095 and 1'05 would be about 1/23.

The observational evidence is brought together in
figure 4. The scale of seconds of arc at the left hand
side of the figure refers to the moon’s longitude. The
scale of time at the right hand side gives the correc-
tions to the time corresponding to the observed

e
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corrections to the longitudes, multiplied by 125 in the
case of the moon. Figure 5 gives the fluctuations after
1835 on an enlarged scale.

The large value of Q found from Jupiter’s satel-
lites in B.A.N. 117, viz.: 0 =2'62 £ 020 — 0'55 %,
thus becomes well nigh impossible. With z = + o0-80
it would become Q= 2'18 which is still entirely in-
admissible. The determination from the satellites rests
on the epochs 1750, 1783, 1891, 1902—3 and 1913—24.
The first of these is the epoch of DAMOISEAU’s tables,
which were based on observations of eclipses, the
second depends on a new reduction of eclipses of
Satellite III. The epochs 1891 and 1901—2 depend
on heliometer observations and 1913—24 on photo-
graphic plates. If the different kinds of observations
were not comparable, the evidence for the large value
of Q would loose its force, for it may well be possible
to represent the interval 1891—1924 by 0 =1-25. We
may, of course, always have recourse to the expla-
nation, which, however, should only be invoked in
the extreme necessity, that the system of Jupiter has
its own fluctuations, independent of those in the moon
and the planets or of the rotation of the earth. I will
not discuss this point further at the present moment.

The observed longitudes of the moon, the sun and
Venus and the transits of Mercury have been discussed
apart from any reference to an explanation. The striking
parallelism between the fluctuations of the different
bodies, and the equality of the factor @ derived
independently from the sun and the two planets, make
it very difficult to escape the conclusion that the

B. A.N. 124.

origin of the fluctuations, as well as of the secular
acceleration, is in the rotation of the earth. In art. 7
we have seen that all observed facts can be satisfac-
torily explained by the hypothesis that the actual
fluctuations arise from the superposition of the effects
of two causes. The first of these is a series of abrupt
changes in the rate of rotation of the earth caused by
changes of the moment of inertia due perhaps to expan-
sions and confractions of the earth, and the other a
variability of the coefficient of tidal friction. The first
cause corresponds to the factor ¢ = 1, the other to
Q = Q. The combination of the two causes gives
rise to an apparent factor Q = 1-25. The representation
of the observations by this hypothesis is shown in
figure 3. .

If we accept this hypothesis, then the ‘astronomical
time’, given by the earth’s rotation, and used in all
practical astronomical computations, differs from the
‘uniform’ or ‘Newtonian’ time, which is defined as the
independent variable of the equations of celestial
mechanics. The correction to be applied to astrono-
mical time in order to get uniform time consists of
two parts. One is a secular term

At = + 4338 S,

where S = 72 4 133 7 — 0'26. The coefficient cor-
responds to the adopted value x = + o0-8o. If we adopt
» = + 065 it becomes 40%2.

In addition to this there are irregular corrections,
which for the period 1640 to 1926.5 are given in the
following table. From 1640 to 1917 the representation
of art. 7 has been adopted, after 1917 the Greenwich
meridian observations of the moon were used.

TABLE 5. CORRECTIONS FROM ASTRONOMICAL TO UNIFORMLY ACCELERATED TIME.

z ALt z A2 ¢ Al ¢ Al ¢ At ¢ A,
1640 | —385 1| 1720 | — 06| 1800 | +297 1 1840 | +124| 1880 | —237 | 1918 — 230

50 | —367 30 |+ 58 o5 | 4278 45 | + 99 85 | —284 20 | =233

60 — 348 40 | +12°3 10 | + 259 50 | + 74 Q0 | — 327 22 — 231

70 | —3TI'9 50 | + 183 15 | + 238 55 | + 47 95 | —360 24 | —269

80 | —25.8 60 | + 242 20 | + 217 60 | + 19} 1900 | — 359 255 | — 283

90 | — 196 70 | + 283 25 | + 195 65 | — 18 o5 | —327 265 | — 282
1700 | — 134 80 | + 320 30 | +17°2 70 | — 96 10 | —289g

10 | — 70 90 | +33°5 35 | +149 75 | —176 15 | —24'9

The total correction from astronomical to uniform
time is '
Al = A 2+ AL

If we wish to adopt » == + 0'65, »’ = —o0'I5, then

the coefficient of S in A,# becomes 40%2 instead of
43*8, and to the fluctuations B’ we must add 0”19 5,
in consequence of which 0%4 .S must be added to the
values of A,# as given in table 5. From the sum
Al = A, + A,¢ we must thus subtract 3%2 5.
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