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Abstract

In this paper, based on the lectures by PCH and WvS at this
summer school, we give an introduction to amplitude equations which
describe slow modulations in space and time of patterns occuring in
systems driven out of equilibrium. Emphasis is on general ideas rather
than detailed formalism. The first part introduces the phenomenology
of the well-known Rayleigh-Bénard instability and the basic linear
stability and bifurcation theory used to describe the development of
patterns. In the second part we derive the amplitude equations that
govern the time evolution of patterns and discuss simple solutions of
these equations. In the third part we consider some physical systems
displaying patterns and their amplitude equations. In the fourth and
final part we discuss the physical interpretation of more complicated
solutions of the amplitude equations and compare the theory with
numerical simulations and experiments.

This article appeared in Fundamental Problems in Statistical Mechanics VIII,
H. van Beijeren and M. H. Ernst, eds (North-Holland, Amsterdam, 1994).

NB! Keep in mind that the article is somewhat dated by now; we make it

available as there are not too many introductory articles on the subject. A
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1 Patterns.

1.1 Introduction.

In this paper we present a general theoretical description of the dynamics of
nonequilibrium patterns close to the threshold of the instability that leads
to their formation. As explained in more detail below, such nonequilibrium
patterns occur e.g. in convection, in crystal growth and in reaction-diffusion
systems such as oscillatory chemical reactions.

In Fig. 1 snapshots are shown of crystal growth in a system with a
constant temperature gradient, known as directional solidification. This par-
ticular experiment shows the growth of a nematic phase into the isotropic
phase of a liquid crystal. Each photo is taken at a different value of the
growth velocity. As the picture illustrates, for values of the growth velocity
smaller than some critical value vc, the growing interface (the curve in each
picture) remains straight (topmost picture), while above vc (about 2.5µm/s
in this experiment), the interface develops spatial modulations. The forma-
tion of these periodic patterns is due to a finite wavelength instability at vc.
Note that the modulation is weak close to vc, and that the strength of the
modulation increases with increasing v−vc. The weakly nonlinear behaviour
of this growth pattern close to the instability threshold is an example of the
type of pattern formation we wish to discuss here.

The starting point for the theoretical analysis consists of equations of
motion of the physical system displaying pattern forming behaviour. These
are often a deterministic set of nonlinear partial differential equations:

∂tU(x, t) = G[U, ∂xU, . . . ;R] (1)

where U is the order parameter such as the height of the interface and G
is in general a nonlinear function of U and its spatial derivatives and of R,
which is a control parameter like (v − vc) in our example. These equations
sometimes need to be supplemented by stochastic terms describing noise, but
for a large macroscopic pattern forming system the noise is rather small and
can often be neglected as we will discuss later in section 2.5. A typical class
of equations of interest are so called reaction-diffusion equations of the form

∂tU = D∇2U + f(U,R), (2)

which for f ≡ 0 is the diffusion equation with well known behaviour (U
is in general an n-component vector). A nonzero f models reaction in the
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Figure 1: Directional solidification experiment, in which an isotropic liquid
grows with constant velocity (indicated by the numbers on each panel) in
a constant temperature gradient and freezes into a nematic phase. For in-
creasing velocities (down), the solidification front displays a transition to a
spatially periodic interface pattern, in which nonlinearities become increas-
ingly important as the velocity is increased. After [1].

system, and the behaviour of the solutions of this equation can then be highly
complex. The aim of the theory is to describe the solutions which are likely
to be reached starting from physical initial conditions and to persist for long
times.

In general the nonlinear equations cannot be solved analytically, and one
therefore aims to describe their solutions qualitatively or perturbatively. It
will turn out that patterns typically emerge after a control parameter exceeds
a certain critical value and that often the amplitude of the pattern grows
continuously from zero when the control parameter is increased beyond its
critical value. One then first constructs solutions of the linearized equations
of motion, which are exact in the limit that the control parameter goes to
its critical value. Then one takes into account the nonlinearities that start
to play a role for nonzero amplitude, that is for control parameter above
its critical value, by means of perturbation theory. The perturbation of the
linear pattern is governed by the amplitude equations. In other words: A

large number of pattern forming phenomena can be analyzed perturbatively

by using so-called amplitude equations, which describe slow modulations in

space and time of a simple basic pattern that can be determined from the

linear analysis of the equations of motion of the physical system.

The form of the amplitude equation depends only on the nature of the
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linear instability, but not on other details of the system. The most important
distinction is whether the basic pattern is stationary, leading to the real am-
plitude equation, or intrinsically time dependent, in which case an equation
with complex coefficients describes the amplitude. As noted before the form
of these equations is independent of details of the underlying system, only
the coefficients in the amplitude equations reflect the physical details. The
description in terms of amplitude equations therefore can be used to under-
stand something of the universal pattern forming behaviour displayed by a
number of different physical systems.

One should realize that the amplitude equations are only strictly valid
for weakly nonlinear conditions, i.e. close to threshold. In stronger nonlinear
regimes these equations can at most provide qualitative information. Within
their range of validity, however, the amplitude equations yield an almost1

complete description of the effects that are crucial in pattern formation out-
side of equilibrium.

We will proceed by introducing some pattern forming systems and by elu-
cidating some of the methods used to analyze their patterns. Recently some
review papers2 have appeared both on the amplitude equation approach and
on general aspects of nonequilibrium pattern formation. We will therefore
confine ourselves to introducing and illustrating the main ideas of the ap-
proach and refer to these reviews for further discussion.

1.2 The Rayleigh-Bénard instability.

Probably the most famous pattern-forming system is the Rayleigh-Bénard
experiment, where a horizontal layer of fluid is heated from below. Since the
hot fluid expands, the vertical temperature gradient across the fluid results
in a density gradient. Therefore, we encounter a destabilizing force, the
buoyancy force, since the colder, heavier fluid would like to fall down so as to
minimize the gravitational energy. The viscosity of the fluid has a stabilizing
effect, and for small temperature gradients the fluid remains at rest and there
is only heat conduction in the system. Small perturbations of the stationary
conducting state decay so the conducting state is lineary stable.

However, when the temperature gradient exceeds a certain critical value,

1Exceptions are nonadiabatic effects such as those discussed by Bensimon et.al. [2].
2See section 6.
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the viscosity can no longer balance the buoyancy force and the conductive
state becomes unstable. It is useful to define the so called Rayleigh number
R, which measures the ratio of destabilizing buoyancy force to the viscous
force (CH II A)3, and is the important control parameter of the system. So
when R increases above a certain critical value Rc, small perturbations of
the basic state grow and a so-called convecting pattern emerges. Since not
all the cold fluid can fall down simultaneously, the fluid will start to move up
and down in a certain pattern, and the onset of convection therefore breaks
the homogeneity of the basic conducting state. The simplest ordering of such
a convective pattern consists of parallel rolls, as shown in Fig. 2.

Figure 2: Sketch of parallel convecting rolls in a Rayleigh-Bénard experiment.

The situation sketched above is the simplest way in which patterns are
formed in physical systems. By injecting energy into a system, typically a
homogeneous equilibrium state becomes unstable above a certain threshold;
as a result of this instability space-time patterns emerge above this threshold.
To get an idea of the questions which one faces in pattern formation, let us
take a look at the top view of a Rayleigh-Bénard experiment in a cylindrical
cell.

A number of features of the patterns are visible and some questions im-
mediately arise.

3References to a specific section x of the review paper by Cross and Hohenberg listed
in section 6 are denoted as CH x.
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Figure 3: Top view of a roll pattern in a Rayleigh-Bénard experiment. The
curves indicate the location of the centers of the convecting rolls. After [3].

• In large areas of the cell the patterns consist of almost equally spaced,
parallel rolls like in Fig. 2. The wave vector that describes this period-
icity varies only slowly throughout the cell. Why is this and how can
we understand it?

• The pattern itself may in general evolve slowly in time; how can one
describe this motion?

• In a few places rolls split, merge or end. These so called defects play
an important role in the dynamics of the pattern.

• Due to the rotational symmetry of the system in the plane, there is no
preferential direction of the rolls. However, the rolls apparently try to
align themselves perpendicular to the sidewall, and this has important
consequences for the final pattern.

• If the control parameter is increased far above its critical value, it is
possible that the pattern itself becomes unstable against so called sec-
ondary instabilities. If the control parameter is increased even further,
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the pattern may become chaotic or turbulent, i.e. disordered in space
and time.

In this paper we will not try to discuss all the points raised above, but will
instead focus on the basic theoretical ingredients for describing the dynamics
of the pattern close to threshold. As we will show, in large portions of the cell,
the pattern can be considered as a slow modulation in space and time of a
simple basic structure, in this case parallel rolls. Therefore, the fluid motion
is described as the product of a slowly varying amplitude and an underlying
pattern with faster dependence in space and/or time. This approach leads
to a separation of space-time scales, and to the determination of an equation
of motion for the amplitude that describes the slow evolution of the pattern.

But before we derive the amplitude equation valid in the weakly nonlinear
regime (i.e. R near Rc), we first focus on the linear stability analysis and the
different bifurcations associated with changes in stability.

1.3 Linear analysis.

Although the fluid is not at rest in the convecting state of the Rayleigh-
Bénard experiment in a stationary layer of fluid, the regular basic pattern
that emerges is time independent. In different systems, like for instance
Rayleigh-Bénard convection in a rotating layer of fluid, the basic pattern
may be explicitly time dependent and may consist of traveling waves. The
principle of linear analysis is not different in this case, but for the sake of sim-
plicity we will limit the discussion here to time independent basic patterns.
When the system is rotationally invariant in the plane, the direction of the
wave vector is immaterial, and we can for simplicity take the wavevector par-
allel to the x-direction. In the present section we shall neglect all y-variation,
i.e. we consider one-dimensional patterns. We take the system infinitely long
in the x-direction, so as to avoid studying the effects of lateral boundaries,
and moreover we assume left-right reflection symmetry (x → −x). In this
case we may look for Fourier-mode-like solutions for the linearized equations
of motion of the form

U(x, y, z, t) = F [z]eσt+iqx + c.c., (3)

where c.c. denotes the complex conjugate, U is a vector describing the phys-
ical fields such as velocity and temperature and F [z] is some basic mode in
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the vertical direction whose details are not of interest to us now; the growth
rate σ is a real number for the present case and q is the wave vector of
the mode. Substituting the ansatz (3) into the linearized equations of mo-
tion of the fluid, we find the dispersion relation σ(q). This dependence of the
growth rate on q is sketched for three values of the reduced control parameter
ε = (R−Rc)/Rc in Fig. 4.

Figure 4: Growth rate σ as a function of the wave number for various ε.

The homogeneous basic state is stable if there is no q such that the growth
rate is positive, and this is clearly the case for ε < 0. If the control parameter
passes through zero, there starts to emerge a small band of wave numbers
around qc that correspond to growing modes, therefore the homogeneous
state becomes unstable and a pattern with wave numbers inside the band
around qc emerges.

Since the fluid equations are relatively complicated, it is useful to intro-
duce a simple model equation which illustrates the linear instability sketched
above. The linear part follows immediately from Fig. 4 and the x → −x
symmetry, so we find an equation of the form ∂tu = εu − D(∂2

x + q2
c )

2u+
nonlinear terms. If the ansatz u(x, t) = eσt+iqx + c.c. is substituted into this
equation, we find that σ = ε−D(q2

c−q2)2, so indeed the growth rate behaves
as sketched in Fig. 4.
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Let us require that this model equation be invariant under a change of
sign of u, then the simplest nonlinearity is a cubic one. If we include a
cubic term of the form −αu3 (α > 0), we find the so-called Swift-Hohenberg
equation [6]:

∂tu = εu− (∂2
x + q2

c )
2u− u3. (4)

Here we have used the fact that with a proper rescaling of space and u, α
and D can be put equal to one. Note that this equation is much simpler
than the fluid equations to be discussed below. For instance u is meant to
be a single real function of x and t, whereas in the equations of motion for
the Rayleigh-Bénard experiment we have a vector velocity and temperature
field depending on x, y, z and t.

Now that we have a simple model to describe the instability of the homo-
geneous state in a one-dimensional Rayleigh-Bénard experiment, we can ask
ourselves whether this model also describes the birth of the convecting state.
In the next section we will show that when the homogeneous u = 0 state
becomes unstable, a new periodic state emerges which describes the periodic
pattern found in the Rayleigh-Bénard experiment.

1.4 Instabilities.

It should be noted that since one in general cannot define a free energy
for pattern forming systems and since there is usually no thermodynamic
limit involved, the transition to convection is not a phase transition, but is
associated with a qualitative change in the behaviour of solutions of a set of
equations, which occurs when a control parameter is varied. This is called
a bifurcation. Above threshold, i.e. for ε > 0, it turns out that generally
there exists a continuous family of solutions, e.g. periodic roll patterns with
wavelengths in a band. This is another difference between the bifurcations
found in pattern forming systems and phase transitions, where the transition
is between two thermodynamically different states.

1.4.1 Bifurcations.

We will proceed by analyzing the bifurcation that occurs for the Swift-
Hohenberg model when ε passes through zero. From the linear stability
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analysis we know that the fastest growing mode has wave number qc, and so
we attempt to find a solution of the Swift-Hohenberg equation of the form

u(x, t) ∼ cos(qcx) + h.h., (5)

where h.h. denote higher harmonics which we need to include because the
nontrivial solutions of the Swift-Hohenberg equation cannot be written down
in closed analytic form.

If we substitute Eq. (5) into the full (including nonlinearity) Swift-
Hohenberg equation (4), it is found that for small ε we can construct a
solution of the form

u(x, t) =

√

4ε

3
cos(qcx + φ) +O(ε3/2) cos(3qcx) +O(ε3/2) cos(qcx), (6)

with φ arbitrary. It can be shown that this solution is stable for small ε.
We will interpret this periodic state as the analogue of the convecting state
in the Rayleigh-Bénard experiment. If we now sketch the amplitude of the
“conducting” u = 0 and “convecting” u ∼ cos(qcx) solutions as a function
of the control parameter and denote the linear stability of these solutions
by continuous (stable) and dashed (unstable) curves, we obtain a so called
bifurcation diagram.

We now focus on the types of bifurcations that are important in the study
of patterns. In Fig. 5 we sketch the bifurcation diagrams of a supercritical
(forward) pitchfork bifurcation as found in the Swift-Hohenberg equation and
in the Rayleigh-Bénard experiment, and of a subcritical (backward) pitchfork
bifurcation as found for instance in the Rayleigh-Bénard experiment in binary
fluid mixtures (see sec. 3.1.2).

In the supercritical case, when we increase ε through zero, we find that
the homogeneous u = 0 state becomes lineary unstable at ε = 0 and a new
solution bifurcates from the u = 0 state. For ε > 0 the system will be pushed
from the unstable “conducting” state (by infinitesimally small perturbations
such as noise) and end up in this “convecting” u 6= 0 state. Note that
for this supercritical bifurcation the amplitude of the “convecting” pattern
grows like a square root above onset, and when we let the control parameter
pass through zero, the amplitude of the stable and therefore experimentally
observed mode varies continuously. In that sense the supercritical bifurcation
is reminiscent of a second order phase transition.
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Figure 5: Supercritical and subcrical pitchfork bifurcations. Solif lines refer
to stable solutions, dashed lines to unstable ones (see CH II A 2).

The subcritical bifurcation diagram, on the other hand, describes a dif-
ferent situation. If ε is increased through zero, the u = 0 state loses stability
and the system will make a jump and will end up on some u 6= 0 branch. If
we now decrease ε again, the system will remain on this branch untill ε < ε1

and then jump back to the u = 0 state. This hysteresis and discontinous
change of the amplitude is similar to a first order phase transition. Subcriti-
cal bifurcations occur for instance in Rayleigh-Bénard experiments in binary
fluid mixtures, and considerably complicate the analysis, because one in gen-
eral cannot make an expansion for small ε and u, as can and will be done
below for the supercritical case.

Having introduced the distinction between supercritical and subcritical
bifurcations, we will add another concept; a bifurcation is called stationary
if the resulting basic pattern is time independent as in the Swift-Hohenberg
equation, and it is called oscillatory (also known as Hopf bifurcation) if the
critical mode is time-dependent. For oscillatory instabilities with nonzero
wave vector the basic pattern is a traveling wave mode of the form exp[i(qx−
ωt)]. Note that the distinction between these two types is independent of the
bifurcation being sub- or supercritical. Although as mentioned above the
fluid is in motion in the Rayleigh-Bénard experiment, the basic roll pattern
is stationary just above threshold, and the onset of convection occurs via a
stationary supercritical (pitchfork) bifurcation. We will later see examples
of equations and physical systems with Hopf bifurcations.
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1.4.2 Convective and absolute instabilities.

The question of linear stability or instability is slightly more complicated if
there is a mean flow in the system. Suppose we are looking at the flow of
a liquid through a pipe. The simple homogeneous state then corresponds
to laminar flow. Now suppose that this flow becomes unstable, because we
increase the velocity of the fluid. Thus, small perturbations of the laminar
state will grow in time. However, when perturbations are advected away
by the overal fluid velocity faster than they grow, then at a fixed position
the perturbations will eventually die out, as shown in Fig. 6a. In this
case the instability is called convective. When perturbations grow faster
than they are advected away, or more precisely, if there exists a position
in the lab frame such that some infinitesimal perturbations do not decay,
then the instability is called absolute (Fig. 6b). Note that the definition of
convective and absolute instability is frame-dependent. A system undergoing
a Hopf bifurcation to travelling waves is convectively unstable in the lab frame
immediately above threshold (CH VI C 1).

Figure 6: Convective and absolute instabilities.

1.4.3 Gradient dynamics.

Although for pattern forming systems one cannot in general define a free
energy whose minima determine the solution at long times, for the Swift-
Hohenberg equation there exists a so called Lyapunov function F which be-
haves like a free energy: this F will not increase during the time evolution of
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the equation, and the dynamics tends to drive the solutions toward a local
minimum of F . To be more specific, the Swift-Hohenberg equation (4) can
be written as

∂tu = −δF
δu
, (7)

where

F [u] :=
1

2

∫

dx
{[

(∂2
x + q2

c )u
]2 − εu2 +

1

2
u4
}

. (8)

From this it follows that the dynamics decreases F , because

dF

dt
=
∫

dx
δF

δu

∂u

∂t
= −

∫

dx

(

δF

δu

)2

≤ 0. (9)

Therefore the dynamics is “downhill” and is sometimes called gradient dy-
namics. Note that the precise time evolution of u is not easily determined
from the Lyapunov function, but its importance is that final states can be
obtained by finding minima of F . We should stress again that this sort of
gradient dynamics is the exception, not the rule.

Now that we have explained how one can understand the birth of pat-
terns via instabilities, we proceed in the next section to derive the so called
amplitude equations which describe these patterns near threshold.
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2 Amplitude equations.

2.1 Derivation of amplitude equations.

In this section we will explicitly demonstrate how an amplitude equation is
derived from a given set of starting equations showing a finite wavelength
instability. To fix the ideas, one could think of Rayleigh-Bénard convection
restricted to patterns of parallel rolls, therefore only allowing for modula-
tions in one direction, so that the amplitude equation is one-dimensional.
In section 2.4, we shall briefly discuss the extension to the two-dimensional
case. We will indicate how such a derivation is performed, but to minimize
technical details we will only illustrate the explicit calculation for the afore-
mentioned Swift-Hohenberg equation (4). The principles of the derivation of
amplitude equations are the same for many types of pattern forming systems.
The method consists of an expansion of the solution U of the full equations of
motion in the control parameter ε, writing the leading term of this expansion
as the product of a slowly varying amplitude and a basic pattern which is the
critical solution of the linearized equations of motion; in the Rayleigh-Bénard
case this basic pattern consists of parallel rolls of wavenumber qc. The goal
is to derive an equation of motion for the slowly varying amplitude.

We will start our derivation by showing how from the linear stability
analysis the slow scales can be obtained. Therefore, return to Fig. 4 showing
the linear growth rate σ as a function of the wavenumber q for three values
of the control parameter ε. For small ε, only wavenumbers close to qc are
important, and one finds to lowest order in ε and (q − qc) that

σ =

(

∂σ

∂ε

)

0

ε+
1

2

(

∂2σ

∂q2

)

qc

(q − qc)
2 + . . . , (10)

so, according to linear theory, only modes with wave vectors in a band around
qc of width ≈ √ε are growing. These are the modes which play the dominant
role in the long time behaviour of the full nonlinear equations of motion. The
following trivial observation explains why this long time behaviour can be
described by slow modulations of the critical mode, at least in the bulk of
the system: If a solution of the full equations of motion contains a mode with
x-dependence eiqx, we can write this as ei(q−qc)xeiqcx, and since all dominant
modes have |q − qc| ≤ ε1/2, the x-dependence of the full solution can indeed
be approximated as the product of a slow spatial modulation ei(q−qc)x and
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the critical mode eiqcx. When for these dominant modes the phase factor
(q−qc)x changes by an amount of order unity, the spatial scale on which this
happens goes like 1/(q− qc) ∼ ε−1/2. We therefore expect the length scale of
the modulations to scale like ε−1/2.

The growth rate of the relevant modes varies lineary in ε, and from an
analogous argument it is found that the characteristic time scale of the mod-
ulations is proportional to ε−1. Finally, from the shape of the bifurcation
curve (Fig. 5a) it follows that the amplitude grows as ε1/2. We therefore
expect solutions of the fully nonlinear equations to be of the form

U = ε1/2A(X, T )Ulin + c.c.+ h.o.t. (11)

where X := ε1/2x and T := εt are the explicit slow scales, Ulin is the crit-
ical solution of the linearized equations of motion and h.o.t. denotes higher
order terms. For the present discussion we confine ourselves to one spatial
dimension. Our task is to find an equation for the amplitude A. As we shall
see, the higher order terms arise naturally in this expansion as well, but their
amplitude is driven by the amplitude A; this is called slaving.

To derive the amplitude equation, we construct a weakly nonlinear ex-
pansion of the full equations of motion, by assuming

U = ε1/2U0 + εU1 + ε3/2U2 + . . . , (12)

where it will turn out that the leading order term U0 can be written as
A(X, T )Ulin as in (11). If we substitute this expansion into the equations of
motion, we naturally arrive at a separation of fast and slow scales.

To see how this works in practice, let us now apply the scheme to the
Swift-Hohenberg equation (4) in one dimension:

∂tu = εu− (∂2
x + q2

c )
2u− u3 := εu− Lu− u3, (13)

by substituting the ansatz (12) into this equation. When derivatives are
taken of products of the form (11) in the ansatz, the chain rule shows that
we need to replace ∂t and ∂x as follows:

∂t → ε∂T , ∂x → ∂x + ε1/2∂X , (14)

where in the expression for ∂x, the x on the LHS acts on spatial dependence
on all length scales, and on the RHS x only acts on the fast spatial dependence
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of the e±iqcx terms, while ∂X acts on the slow spatial variable. Carrying out
this separation of scales we find for the linear operator L

L = (∂2
x + q2

c )
2 → (∂2

x + q2
c

︸ ︷︷ ︸

L

+2ε1/2∂x∂X + ε∂2
X)2 (15)

= L2 + 4ε1/2L∂x∂X + ε(2L+ 4∂2
x)∂

2
X +O(ε3/2), (16)

where for notational convenience, L is defined as ∂2
x+q2

c . If we now substitute
this together with the ansatz for u into the Swift-Hohenberg equation, we
find

{

L2 + 4ε1/2L∂x∂X + ε(∂T − 1 + (2L+ 4∂2
x)∂

2
X) +O(ε3/2)

}

×
{

(ε1/2u0 + εu1 + ε3/2u2 +O(ε2)
}

+ ε3/2u3
0 +O(ε2) = 0. (17)

When we collect orders in ε this leads to a hierarchy of equations of which
the lowest is

O(ε1/2) : (∂2
x + q2

c )
2u0 = 0, (18)

so at leading order we find an equation whichdetermines the linearized solu-
tion

u0 = eiqcxA0(X, T ) + e−iqcxA∗
0(X, T ), (19)

where it should be noted that the complex amplitude function A0 can be
completely arbitrary at this level, since the linear operator (∂2

x + q2
c )

2 only
acts on the fast scales. At the next order we find

O(ε) : 4(∂2
x + q2

c )∂x∂Xu0
︸ ︷︷ ︸

=0

+(∂2
x + q2

c )
2u1 = 0, (20)

where the first term is zero because Lu0 = 0. Analogous to the previous
order, it therefore follows that

u1 = eiqcxA1(X, T ) + c.c., (21)

where A1 also can be chosen arbitrarily at this level. It can however be
determined from higher equations in the hierarchy. The previous equation
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does not help us, but at the next order we will find an equation of motion
for A0, the leading slow amplitude. We find

O(ε3/2) : L2u2 + 4L∂x∂Xu1
︸ ︷︷ ︸

=0

+(∂T − 1 + 2L∂2
X

︸ ︷︷ ︸

→0

+4∂2
x∂

2
X + u2

0)u0 = 0,(22)

which by eliminating the zero terms and expanding the nonlinear term leads
to

L2u2+
[

eiqcx(∂T − 1− 4q2
c∂

2
X + 3|A0|2)A0 + c.c.

]

+(e3iqcA3
0+c.c.) = 0.(23)

From this it follows that u2 is of the form eiqcxA2 + e3iqcxB2 + c.c., where A2

and B2 are slow amplitudes which are not determined at this level. However,
the crucial point is the following: L2u2 does not contain any eiqcx dependence,
since LAeiqcx = 0 for all slow amplitudes A. So, in order to satisfy Eq. (23),
the coefficient of eiqcx in (23) must vanish, i.e. A0 must satisfy

∂TA0 = A0 + 4q2
c∂

2
XA0 − 3|A0|2A0. (24)

This is the amplitude equation we wanted to derive. By a simple scaling
of X and A0 by a constant factor, we can eliminate the constants 4q2

c and
3. The ultimate justification for having chosen the scales of space, time and
amplitude as ε−1/2, ε−1 and ε1/2, respectively, follows from the self consis-
tency of the above expansion. Indeed this form of the amplitude equation is
independent of ε.

The calculation of amplitude equations for more complicated systems
with a forward stationary bifurcation is technically more involved, but the
principles are the same: by separating in the equations of motions all deriva-
tives into a slow and a fast part (i.e. ∂x → ∂x + ε1/2∂X) and assuming for
U an expansion of the form (12), a systematic expansion of the equations of
motion is obtained. The first equation in this hierarchy corresponds to the
linearized equation of motion and therefore does not tell us anything about
the amplitude A0. The second equation is also of no help, but the third
equation is in general of the form

LfU2 = RHS[A], (25)

where Lf is the fast part of the linear operator of the starting equation. The
above relation has a solution if and only if the RHS is orthogonal to the zero
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space of the linear operator Lf ,
4 and this condition gives us the general

amplitude equation:

τ0∂tA = ξ2
0∂

2
xA+ εA− g0|A|2A, (26)

which now is written down for the fast scales x and t.
Although the coefficients τ0, ξ0 and g0 can be calculated from the full

equations describing the physical problem under study5, for convenience we
can scale them out by a suitable choice of space, time and amplitude scales.
Note that we cannot scale away the sign of g0, because for positive g0 the
nonlinear term is stabilizing and we have a supercritical bifurcation, while a
negative g0 gives rise to a destabilizing effect on the amplitude and the bifur-
cation is subcritical; higher order stabilizing nonlinearities are then necessary
to obtain a stationary solution. We now assume a supercritical bifurcation
as in Rayleigh-Bénard convection, and after the aforementioned scaling we
obtain

∂tA = ∂2
xA+ εA− |A|2A. (27)

We prefer to keep ε explicit in (27), so as to avoid a control parameter
dependent rescaling. This will make it easier to consider what happens when
ε goes through zero.

Equation (27) arises naturally near any stationary supercritical bifurca-
tion when the system is translationally invariant and reflection symmetric
(x→ −x). The latter symmetry dictates that the second order term ∂2/∂x2

arises as the lowest order spatial derivative, while the form of the cubic term
is prescribed by the requirement that the equation be invariant upon multi-
plying A by an arbitrary phase factor exp(iφ): this corresponds to translating
the pattern by a distance φ/qc, so translational invariance implies that the
equation for A has to be invariant under A→ Aeiφ.

Equation (27) has the form of the Ginzburg-Landau equation for super-
conductivity in the absence of a magnetic field and is often refered to as the
Ginzburg-Landau model. To distinguish it from the amplitude equation for
traveling waves given below, we will refer to it as the real Ginzburg-Landau
equation (RGL), since the coefficients in this equation are real. Note that the

4According to the Fredholm theorem, discussed in appendix A of CH.
5From the equation for the linear growth rate (10) it follows that τ−1

0
= ∂σ/∂ε and

ξ2
0τ−1

o = −(1/2)∂2σ/∂q2.
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amplitude itself is a complex valued function in order to take proper account
of the translational symmetry.

If the instability is to traveling waves, i.e. if the pattern which emerges is
intrinsically time-dependent, the resulting amplitude equation generalizes to
the complex Ginzburg-Landau equation (CGL). Still the principle of deriva-
tion is the same, but since the solutions of the linearized equations of motion
are traveling waves of the form ei(qcx−ωct), where ωc is the critical frequency,
we write the lowest order solution as U0 = ei(qcx−ωct)A0(X, T ) + c.c. Since
there is now both fast and slow time dependence, ∂t transforms to ∂t + ε∂T .
Performing the ε expansion and scaling away superfluous constants, we find
as amplitude equation the complex Ginzburg-Landau equation (CGL):

∂tA + vg∂xA = (1 + ic1)∂
2
xA + εA− (1− ic3)|A|2A, (28)

where c1 and c3 are real coefficients, and vg is the group speed. Naively, one
would expect (1 + ic0) in front of the εA term, but unlike c1 and c3, c0 can
be transformed away by going to a rotating frame, i.e. setting Ã = e−ic0tA.
Solutions of the CGL equation are qualitatively different for different values
of c1 and c3. These coefficients can be calculated from the basic equations of
motion by performing the same expansion as in the real case.

We have written only one CGL equation for a single amplitude, i.e. we
have broken the symmetry under reflection (x→ −x). If the starting system
is itself symmetric both left- and right-moving traveling waves can exist. For
such systems, one actually obtains two coupled CGL equations, one for the
amplitude of the left-moving waves and one for the amplitude of the right-
moving waves. Depending on the nonlinear interaction terms, one can either
have a situation in which standing waves are favoured, or one in which one
wave suppresses the other in the bulk of the system. In the latter case, one
can effectively use a single CGL equation like (28), at least in an infinite
or periodic system, and the vg∂xA term can be eliminated by a Galilean
transformation; we then end up with:

∂tA = (1 + ic1)∂
2
xA+ εA− (1− ic3)|A|2A, (29)

which is the form of the CGL equation we will use most often. In the limit
c1, c3 → 0 we recover the RGL equation.
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2.2 Comparison between the RGL and CGL equations.

To derive both amplitude equations, the only essential assumption we used
was that there is a supercritical bifurcation with wave number unequal to
zero. If this is the case, the amplitude equations are generically the real
or the complex one, depending on whether the bifurcation is stationary or
oscillatory. Therefore, these equations describe the weak nonlinear regime
of many physical systems, and are in a sense universal. For systems with
subcritical bifurcations the situation is more complicated; if the amplitude
of the bifurcating mode is small, one can still do perturbation theory and
derive amplitude equations, but in general this is not sufficient and higher
order terms must be added, so amplitude equations can, at most, give qual-
itative behaviour. When the instability occurs for qc = 0, then the form
of the amplitude equations is different, but for supercritical bifurcations an
amplitude description can still be given (CH IV A 1).

At first glance the real and the complex equation look rather similar,
but it turns out that the behaviour of solutions of these equations is very
different.

It is easy to check that the RGL equation (27) can be written in the form

∂A

∂t
= − δF

δA∗
, with F =

∫

dx





∣
∣
∣
∣
∣

∂A

∂x

∣
∣
∣
∣
∣

2

− ε|A|2 + 1

2
|A|4



 , (30)

from which it follows that dF/dt ≤ 0. Thus, F plays the role of a ‘free energy’
or Lyapunov function,6 and many aspects of the dynamics of patterns can
be simply understood in terms of the tendency of patterns to evolve towards
the lowest free-energy state. In this sense, the dynamics of (27) is very
thermodynamic-like and is called relaxational.

For c1, c3 6= 0, the CGL equation can not be derived from a Lyapunov
function and it displays a much richer variety of dynamical behavior than the
real equation (27). In fact, in the limit c1, c3 → ∞ the equation reduces to
the Nonlinear Schrödinger equation, which is not only Hamiltonian but also
integrable (it has the well-known soliton solutions). The fact that the CGL
equation reduces to an equation possessing a Lyapunov function in one limit
and to a Hamiltonian equation in another limit makes it very interesting from

6When c1 = −c3, the CGL equation can, after going to a rotating frame setting Ã =
eic1tA, be written as ∂tÃ = (1 + ic1)(∂

2
xÃ + εÃ− |Ã2|Ã) = −(1 + ic1)

δF

δÃ∗
.
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a theoretical point of view. In addition, these two limits can be exploited as
starting points for perturbation expansions.

2.3 Phase winding solutions and secondary instabili-

ties.

We now proceed to discuss simple solutions of the real and complex Ginzburg-
Landau equation. In the last chapter of these notes we will consider more
complicated solutions, but in general these cannot be written down in closed,
analytic form. To get a grip on these solutions, we first discuss the so-called
phase winding solutions which can be found easily.

The RGL equation admits plane waves in space of the form A = aeiqx,
with q2 = ε−a2. These phase winding solutions describe steady state periodic
patterns with total wave number slightly bigger (q > 0) or slightly smaller
(q < 0) than qc.

For the CGL equation, there exists a band of traveling wave solutions
A = ae−iωt+iqx with Im(ω) = 0. Just as q measures the difference between
the wave number of the pattern and the critical wave number, ω measures
the difference between the frequency of the pattern and the frequency of
the critical mode, ωc. Note that the RGL equation does not permit these
traveling wave solutions.

When we substitute the ansatz A = ae−iωt+iqx into Eq. (29), we obtain

ω = c1q
2 − c3a

2 , q2 = ε− a2 . (31)

The expression for ω illustrates that c1 is the coefficient which measures the
strength of the linear dispersion, i.e. the dependence of the frequency of the
waves on the wave number, while c3 is a measure of the nonlinear dispersion.

So, the RGL equation admits spatially periodic solutions eiqx with wave
vector −ε 1

2 < q < ε
1

2 , and the CGL equation admits travelling waves e−iωt+iqx

with condition (31). What is the stability of these solutions? The linear sta-
bility analysis is quite straightforward but especially for the CGL equation
algebraically involved. The stability analysis consists of simply substituting a
trial function which is the sum of the phase winding solution and a suitable
periodic perturbation into the corresponding amplitude equation and lin-
earizing the reponse to the small perturbation. This results in a growth rate
for the perturbation, which determines whether the phase winding solution
is lineary stable or unstable (CH IV A).
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Figure 7: Illustration of the stability of phase winding solutions of the one-
dimensional real and complex Ginzburg-Landau equations. (a) The stability
diagram for c1 = c3 = 0 (left) and for c1c3 > 1 (right). (b) Sketch of three
roll patterns in a Rayleigh-Bénard cell for q close to the left edge of the band
of allowed solutions, for q ≈ 0, and for a q close to the right edge of the band.

When a phase winding solution becomes unstable, this is a secondary

instability since the solution itself emerged via an instability of the homoge-
neous A = 0 state. These secondary instabilities tend to make the patterns
more complex and account for some of the complexity found in real experi-
ments, as we will see in sec. 3.1.1. For the real case the qualitative answer is
well-known; consider the left part of Fig. 7a. For a given ε > 0, the values of q
for which steady state solutions exist fall within the solid line. However, only
the solutions within the dashed lines are stable — solutions corresponding to
values of q in the hatched region, close to the edge of the band, are linearly
unstable. This instability is called the Eckhaus instability. Intuitively, one
may understand it as follows. A wave number q close to the left edge of the
band corresponds to a smaller total wave number of the pattern, and hence
a larger wavelength. When the wave vector is too small, as illustrated for
a roll pattern in a Rayleigh-Bénard cell on the left of Fig. 7b, the pattern
is unstable because a roll is so wide that it will split into three. Likewise, a
q near the right edge amounts to a pattern which is unstable because three
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Figure 8: Illustration of the dynamical process by which phase winding solu-
tions with too large |q| go unstable. In (a) the complex envelope A is plotted
as a function of x for three different times. Note that the plane perpendicular
to the x-axis is a complex plane. In (b) the dynamics of |A| is sketched; at
time t2 the phase slip occurs.

narrow rolls like those in the right part of Fig. 7b merge into one. Only pat-
terns with wavelength close enough to the critical one (those in the center
of Fig. 7b with q ≈ 0) are stable. Now in the Rayleigh-Bénard example of
Fig. 7b the phase difference of Aeiqcx between two points, divided by 2π, is
equal to the number of pairs of rolls between these two points7. Thus when
three rolls merge into one or when one roll splits into three, the number of
phase windings of A over a certain distance changes by one. But since the
phase of A is well defined and continuous whenever |A| is nonzero, the only
way the number of phase windings can change discontinuously in a localized
region is if at some point in time and space |A| = 0. At that point the phase
is undefined, and so can “slip” by 2π. These points are called phase slip
centers. Fig. 8 illustrates the rapid variation of the phase and the decrease
in modulus |A| which lead to such behavior.

For the CGL equation, the stability analysis is more complicated, since
one has two free parameters (c1 and c3) which can be adjusted. Just as in the
Eckhaus instability it is found that within the range of possible phase winding
solutions, a smaller band of these solutions is stable; if one leaves this band,
one encounters the so-called Benjamin-Feir instability8, which corresponds

7The phase will be discussed in more detail in sec. 4.1 and 4.2.
8This instability is analogous to the Eckhaus instability of the RGL equation, but in
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to a wave becoming unstable by resonant excitation of sidebands. The size
of this band is a complicated function of c1 and c3, but one important feature
can be caught in a simple formula: If the so-called Newell criterion

c1c3 > 1 (32)

is valid, all phasewinding solutions are lineary unstable! This remarkable
result leads to expectations that in this case chaos will occur, as is indeed
observed in numerical simulations (see sec. 4.3.1).

2.4 Two-dimensional amplitude equations.

In a realistic Rayleigh-Bénard experiment as shown in Fig. 3 the pattern is
explicitly two-dimensional so an extension of the amplitude equation consid-
ered above is needed to describe the pattern. We will show that the ampli-
tude equation for isotropic (i.e. rotationally invariant) systems is anisotropic,
whereas for anisotropic systems the corresponding amplitude equation can
take an isotropic form. The reason for this somewhat paradoxical situation
is that a periodic roll pattern breaks the rotational symmetry in an isotropic
system, so transverse and longitudinal variations are qualitatively different,
whereas in the anisotropic system they can be made the same by a simple
scale change.

The term in the amplitude equation which is different from the one-
dimensional case is the spatial derivative term, which we can find by looking
at the linear growth rate of plane waves. Suppose we have an isotropic
system and that the basic pattern has a wavevector ~q0 in the x-direction.
Then the growth rate σ of modes with wavenumber ~q = ~q0 + ~k is given by a
generalization of Eq. (10) of the form

σ(q) = τ−1
0 (ε− ξ2

0 |~q − ~q0|2) ≈ τ−1
0 (ε− ξ2

0(kx + k2
y/2q0)

2), (33)

where we have kept the lowest order terms in each of kx and ky in expanding

|~q− ~q0|2 for small ~k. Note that the difference in scaling in the two directions
reflects the inherent symmetry breaking of the instability, which was here
chosen with wave vector in the x-direction. The amplitude equation is now
found to have the form

τo∂tA = εA+ ξ2
0(∂x − (i/2q0)∂

2
y)

2A− g0|A|2A, (34)

the context of the CGL equation it is usually referred to as the Benjamin-Feir instability.
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Figure 9: Stability balloon for states with wavevector ~q = (q0 + k)x̂ in the
two-dimensional RGL equation. Within the curve N phase winding solutions
exist. E and Z denote the Eckhaus and zig-zag instabilities.

in the real case and its usual extension in the complex case. These equations
correctly describe the variation of the pattern on a slow scale ε1/2 parallel to
the roll wave vector and ε1/4 perpendicular to the wave vector. An impor-
tant limitation of this amplitude equation therefore is that it only describes
situations in which the rolls are almost everywhere parallel to a particular
direction, here labeled the x-direction. The slow reorientation of the roll
pattern over large angles commonly observed in experiments (see e.g. Fig.
3) cannot be accounted for by the present theory.

If the system is not invariant under rotations in the plane the amplitude
equation takes the form

τ0∂tA = εA+ ξ2
x∂

2
xA+ ξ2

y∂
2
yA− g0|A|2A, (35)

in the real case, and again the usual extension in the complex case. By a
rescaling of the x or y-coordinate one can bring the anisotropic equation into
the isotropic form

τ0∂tA = εA+ ξ2(∂2
xA+ ∂2

yA)− g0|A|2A. (36)

These two-dimensional equations also have phase winding solutions, but
the new feature is the occurence of the so-called “zig-zag” instability for
negative values of kx, which is a modulation of the phasewinding solutions
parallel to the rolls, hence in the y-direction (Fig. 9).
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2.5 Noise.

In deriving the amplitude equations we assumed that the noise in the un-
derlying physical system could be neglected. However, one should be careful
with this. If the system is close to threshold, small stochastic terms have
a potentially important effect. For instance, if the Rayleigh-Bénard system
is just above threshold, perturbations of the conductive state grow and lead
to the convective pattern. However, it is clear that the amplitude of these
noisy perturbations determines how quickly a convecting state is reached,
and without noise one in principle could remain in the unstable conducting
state forever (see sec. 3.5). As a simple model to study the influence of
noise, one can supplement the aforementioned amplitude equations by an
additive Langevin (white) noise term. The prefactor of this term then has to
be determined from a more detailed study of the underlying physical system.
Although we will not go into detail on how to do this9, we note that at the
very least any physical system is subjected to thermal fluctuations, and in
sec. 3.6 we quote the strength of this thermal noise in various systems.

9The strength of the noise term in the amplitude equation can be determined by pro-
jecting the noise term in the original equations onto the slow mode. See sec. 3.5.
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3 Physical examples.

3.1 Rayleigh-Bénard convection revisited.

So far we have concentrated on the onset of convection in the Rayleigh-
Bénard experiment for simple, isotropic liquids. The hydrodynamic equa-
tions describing this system are the Navier-Stokes equation supplemented
with the heat equation and the mass conservation law. We are interested
in the situation where a temperature difference is maintained between two
horizontal plates. In general the parameters of the Navier Stokes equation
like viscosity and thermal conductivity depend on temperature and density,
and taking this coupling into account makes the equations very complicated.
However, in the weakly nonlinear regime the temperature difference is typi-
cally of the order of 1K, so this coupling is not very important. The so-called
“Boussinesq approximation” [4] only includes the temperature dependence
in the all important buoyancy force term, and otherwise assumes an incom-
pressible fluid with constant material parameters. In this approximation the
fluid equations are:

(∂t + ~u · ~∇)~u = −~∇(P/ρ) + ν∇2~u− gαT ẑ, (37)

(∂t + ~u · ~∇)T = κ∇2T, (38)

~∇ · ~u = 0, (39)

where g is the acceleration of gravity, ν is the viscous diffusivity, κ is the
thermal diffusivity, α is the thermal expansion coefficient, ρ is the density
and ~u, P and T denote fluid velocity, pressure and temperature. These
equations in principle should be supplemented by stochastic noise terms,
reflecting the small scale degrees of freedom of the molecular constituents of
the fluid. These terms are however very small (as discussed in sec. 3.5, for
ordinary Rayleigh-Bénard convection they typically turn out to be of relative
order 10−9).

For the present discussion we shall neglect the stochastic forcing. To treat
the onset of convection, we write down perturbation equations, perturbing
around a state of steady conduction. We first rewrite the hydrodynamic
equations in the Boussinesq approximation (37) - (39) in dimensionless units,

(
1

σ
∂t −∇2)~u+ ~∇P − θẑ = − 1

σ
(~u · ~∇)~u, (40)
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(∂t −∇2)θ −Ruz = −(~u · ~∇)θ, (41)

~∇ · ~u = 0, (42)

where ∆T is the temperature difference between lower and upper plate, R :=
gα∆Td3/κν denotes the Rayleigh number, σ := ν/κ is the Prandtl number
which measures the ratio of thermal and viscous diffusivities [σ should not be
confused with the growth rate (10)] and θ is the deviation of the temperature
from its equilibrium distribution. If R is increased a pattern of parallel rolls
emerges in simple cases. In a realistic experiment the horizontal layer of
fluid extends in both x and y directions, so modulations close to onset can
be described by the isotropic two-dimensional real amplitude equation (34).

We will proceed by describing what happens in more complicated situa-
tions. First we indicate what may happen if the Rayleigh number is not close
to onset, and secondly we will describe convection in binary fluid mixtures
and in the anisotropic case of a nematic liquid crystal.

3.1.1 Busse balloon.

We have seen that the simple phase winding solutions of the amplitude equa-
tions can become unstable against secondary instabilities, and an obvious
extension is to the situation further away from threshold, as described by
Eqs. (40) - (42). These equations are simple enough for the stability of the
periodic roll structure to be described in detail. In a series of papers, Busse
and coworkers [5] gave a complete classification of the secondary instabili-
ties which occur in Rayleigh-Bénard convection in pure fluids. The simplest
secondary instability is the Eckhaus instability, the well known modulation
of the wave number of the pattern that is already found in the amplitude
equation. Besides the Eckhaus instability a whole zoology of secondary in-
stabilities is obtained, with exotic names like “zig-zag” (modulation of the
pattern parallel to the rolls) and “skewed-varicose” (roughly a combination of
zig-zag and Eckhaus). If we sketch the boundaries of the region in the space
of wave number and control parameter where parallel rolls are stable, we ob-
tain the so-called “Busse balloon” whose detailed form depends on Prandtl
number only (Fig. 10). Inside this balloon the periodic roll structure is lin-
eary stable, but if we cross one of its boundaries, the rolls are destabilized
by a secondary instability. It is worth noting that only the Eckhaus and the
zig-zag instabilities are found in the amplitude equation, showing the limited
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range of validity of this equation. The other instabilities are only found if
one includes higher order terms resulting from the full system (40) - (42). It
is interesting to note the complexity of the destabilising scenarios which can
occur in real fluids for higher Rayleigh numbers.

Figure 10: Busse balloon for σ = 7, appropriate to water, where the different
names for the various curves indicate the secondary instabilities that occur
there. N denotes the neutral curve, E the Eckhaus instability, Z stands for
the zig-zag instability and SV stands for the skewed-varicose instability. K
and CR denote the “knot” and “cross roll” secondary instabilities, which
are not discussed in the text. The Eckhaus instability is to the right of the
cross-roll boundary in this case and is thus not shown. After [5].

3.1.2 Convection in binary fluids.

If one uses instead of a pure fluid a mixture of two fluids in the convection
experiment, new phenomena appear. The important new feature is that
apart from a concentration flow induced by ordinary diffusion, temperature
differences also induce a concentration flow. The hydrodynamic equations
(37) - (39) have to be supplemented by equations for the concentration c of
one of the components:

∂tc = −~∇ · ~Jc, (43)

~Jc = −Dc(~∇c + ψ~∇T ) + c~u, (44)
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where Dc is the diffusion coefficient of the component in question. The
coupling between temperature and concentration flow is known as the Soret
effect and the dimensionless coefficient which measures the strength of this
effect, ψ, is called the separation ratio; ψ can be both positive and negative,
depending on the average concentration of the mixture. One can imagine that
this effect is important in convection; if the sign of ψ is such that the heavier
fluid component flows to relatively hotter regions it has a stabilizing effect,
whereas if the heavier component flows to colder regions it has a destabilizing
effect.

Since the dynamics of the concentration is in general on a different time
scale than the dynamics of fluid motion, the resulting behaviour can be quite
rich. The ratio of time scales is given by the Lewis number L := Dc/κ
which is typically very small (10−2) for liquids. The most interesting point
is that it turns out that for negative separation ratios (destabilizing), the
onset of convection occurs via a Hopf bifurcation, so the roll pattern is time
dependent, and consists of traveling waves. This is our first example of a
physical system described by the CGL equation, and therefore Rayleigh-
Bénard convection in binary fluids has been the object of intense study in
the last few years.

There are two major problems, however, with the amplitude approach
for this system. Due to the smallness of the Lewis number it turns out that
an amplitude expansion can only be valid for very small amplitudes of the
pattern. Moreover, the bifurcation turns out to be subcritical (g0 is nega-
tive), so small amplitudes are quite exceptional and in general a perturbative
approach is not valid (CH IX A).

3.1.3 Electrohydrodynamic convection.

Nematics are liquids, usually formed of long anisotropic molecules with prop-
erties characterized by a single anisotropy axis, called the director. The di-
electric constant for instance is coupled to this director and as a consequence
electrical forces couple to the fluid flow. In addition the anisotropy of the con-
duction may be important, leading to charge build up, which in turn couples
to electric fields. If a strong enough electrical field is applied across the ne-
matic, electrohydrodynamic instabilities occur which produce roll patterns
analogous to Rayleigh-Bénard convection. The destabilizing forces are in
general much larger then the buoancy forces in ordinary convection systems,
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and consequently the size of the rolls is much smaller.
The typical geometry of an electrohydrodynamic convection experiment

consists of a thin layer of nematic between two parallel plates separated by
10-100 µm, across which a voltage is applied. The plates are treated to favor
the alignment of the director in a particular orientation in the plane of the
plates, so that the homogeneous quiescent state consists of the fluid with
director pointing in one direction (say the x-direction) and no fluid flow.
The instability develops when the voltage exceeds a certain critical value.
The most familiar instability is a supercritical stationary bifurcation to a
spatially periodic roll state normal to the x-direction; in this state there is
fluid circulation coupled to the tilt of the director in the x−z plane. Because
of the anisotropy of the system, the amplitude equation can, by a constant
scaling of the x and y directions parallel to the plates, be brought into the
isotropic form (36).

The main advantages of electrohydrodynamic convection are the ability
to control the flow by electromagnetic means and the small spatial scale of the
convection rolls, which makes it possible to study systems with many rolls,
so as to minimize the influence of lateral boundaries; in addition fluctuation
effects can more easily be studied in such systems. The major disadvantage
is that the electrohydrodynamic equations are very complicated.

3.2 Taylor-Couette flow.

This systems consists of two concentric rotating cylinders with fluid in be-
tween. If we rotate the cylinders the fluid also starts to rotate, and a pressure
gradient emerges because of the centrifugal forces. We are then in a situation
which is similar to the Rayleigh-Bénard experiment, and one again looks at
the balance of destabilizing centrifugal forces and viscosity which acts as a
stabilizing force. The dimensionless control parameter measuring this ratio
is the Reynolds number which depends on the radii and rotation rates of the
cylinders and on the viscosity. Since both cylinders are allowed to rotate,
we have two Reynolds numbers. If the rotation is sufficiently fast, the ho-
mogeneous fluid motion becomes unstable against a roll structure with wave
vector parallel to the axis of rotation of the cylinders. This bifurcation to
the so called Taylor vortices is a stationary one when the cylinders co-rotate,
but when the cylinders counter-rotate the bifurcation can be oscillatory (Fig.
11). Often the patterns which occur are cylindrically symmetric, so in this
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case the anisotropy of the system leads to a description in terms of a one-
dimensional amplitude equation.

Figure 11: Stationary (ω0 = 0) and Hopf (ω0 6= 0) bifurcations for the
Taylor-Couette experiment. Ro is the Reynolds number Ωoro(ro − ri)/ν of
the outer cylinder of radius ro, Ri is the Reynolds number Ωiri(ro − ri)/ν of
the inner cylinder with radius ri, and Ωo and Ωi are the rotation rates of the
two cylinders.

3.3 Parametric surface waves.

If we oscillate a shallow layer of fluid in the vertical direction, this results
in a modulation of gravity. For large enough modulations, the surface starts
to develop waves of half the driving frequency. Because the instability oc-
curs via a modulation of one of the parameters of the system it is called
a parametric instability. From an experimental point of view, this system
has the advantage that one can tune two parameters, the driving frequency,
which sets length and time scales for the waves, and the driving amplitude.
However, because dissipation is rather small in these systems, the patterns
can be very complicated and transients die out slowly.

3.4 Directional solidification.

The regularity of the shapes produced by crystals growing into a supercooled
or supersaturated environment is a well known phenomenon. The beautiful
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feathery patterns with the hexagonal symmetry of ice, photographed in se-
lected snowflakes give an example of the possible richness of crystal growth.
The tendency towards pattern formation in solidification is demonstrated by
the instabiliy of a plane front of the solid phase growing in the supercooled
liquid. This instability, known as the Mullins-Sekerka instability, can be un-
derstood as follows. When the liquid freezes, it has to transport a certain
amount of heat, the so-called latent heat, into the supercooled liquid. The
larger the temperature gradient at the solid-liquid interface, the faster the
latent heat is conducted away and iso-temperature lines are squeezed (Fig.
12). So around a bulge in the interface the solid phase can grow faster and
the bulge therefore grows. Small fluctuations of the surface will thus also be
unstable. If this were the only mechanism, it would mean that perturbations

Figure 12: Sketch of the diffusion mediated instability occuring for growth
of a crystal into an undercooled melt. In front of a bulge, the isotherms
are squeezed, leading to better conduction of the latent heat away from the
interface, and as a result to enhanced growth. For directional solidification
the diffusion field associated with impurities accumulating in front of the
interface gives rise to a similar instability. a) Flat interface. b) Effect on
isotherms of distortion of the interface.

on all length scales would grow, leading to irregular, fractal like patterns as
in diffusion limited aggregation. However, due to surface tension very steep
interfaces will be damped. In the case of free growth of an interface into a
supercooled region the instability does not saturate at small amplitudes, so
that an analysis based on the Mullins-Sekerka instability is only qualitatively
useful, for example in identifying characteristic length scales.
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In Fig. 1 we showed an example of a directional solidification pattern in
a liquid crystal phase growing with constant velocity in an applied external
temperature gradient. Note that when the system is just above threshold
the pattern is very close to being sinusoidal in that case. However, when we
move away from threshold, the amplitude grows, nonlinearities become more
important and the sinus is deformed by higher harmonics. Eventually, in the
last picture we see that the discrete translational symmetry parallel to the
interface is broken, and that little drops of the melt are isolated in the solid,
indicating strongly nonlinear behaviour. In liquid crystals the bifurcation is
supercritical and the weakly nonlinear behaviour close to threshold can be
described by an amplitude equation.

3.5 Thermal noise.

As we mentioned in section 2.5, thermal fluctuations may play a role near
onset. In this section we shall list some results for the strength of the noise
in various physical examples. We first consider the Rayleigh-Bénard system
near threshold [6], for which the strength of the thermal noise is estimated
as follows: At equilibrium, Landau and Lifshitz [7] have shown that noise
can be taken into account by adding to the hydrodynamic equations (37)
and (38) Langevin forces whose spectrum is white and whose strength is
determined by a detailed balance condition. We furthermore assume that
the noise does not change away from equilibrium, since its origin is in the
molecular degrees of freedom which should be unaffected by macroscopic
forcing. It is then straightforward to show [6, 8, 9] that in a large system one
is led near threshold to the stochastic amplitude equation

τ0∂tA = εA+ ξ2
0(∂x − (i/2q0)∂

2
y)

2A− g0|A|2A+ fA(x, y, t), (45)

where fA is a white noise source whith correlations

< fA(x, y, t)fA(x′, y′, t′) >= 2FAξ
2
0τ0δ(x− x′)δ(y − y′)δ(t− t′). (46)

We will write the dimensionless noise strength in the form

FA = Q0Q1(σ), (47)

where

Q0 =
kBT

ρdν2
(48)
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is the basic small parameter measuring the ratio of the thermal energy kBT
to the characteristic dissipative energy of convection (ρd3)(ν/d)2. For a layer
of water of depth 1 cm. we have Q0 ≈ 10−9. The quantity Q1 depends on
parameters of the system (here on the Prandtl number σ), and can be shown
[9] to be

Q1 = σd4/ξ2
0τ0κ ∼ σ2/(σ + const.). (49)

For the Taylor-Couette system the ratio of energy scales Q0 is equal to
kBT/2πroρν

2, whereas Q1 is a function depending on the radius ratio of the
outer and inner cylinders ro/ri and on the Reynolds number Ro of the outer
cylinder [10].

For binary fluids the ratio of energies Q0 is the same as in the Rayleigh-
Bénard case, but Q1 is a function of the Lewis number, the separation ratio
and the Prandtl number [11].

In most cases the dimensionless noise strength is extremely small and
effects of noise are thus difficult to study experimentally. One system where
noise is enhanced is convection in gases (since ν is smaller), and another one
is electrohydrodynamic convection in nematics, since very thin layers can
be used. The corresponding amplitude equation is the anisotropic one (34),
with a noise term of the form (46) and (47) with

Q0 =
kBT

K‖d
, (50)

K‖ being an orientational elastic constant. The quantity Q1 has been re-
cently calculated by Treiber and Kramer [12], and it depends on Prandtl-
number-like parameters representing ratios of time scales for relaxation of
the momentum, the charge and the nematic director.

3.6 Noise sustained structures.

Even when the noise is very small, its effects can be important in systems
which are convectively unstable. Let us consider the one-dimensional stochas-
tic amplitude equation

τ0(∂tA+ s0∂xA) = ε0A + ξ2
0∂

2
xA− g0|A|2A+ fA, (51)
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in a half-space x ≥ 0, with constant control parameter ε0 > 0, group velocity
s0 and the boundary condition A(x = 0) = 0. Such a model describes for
example Taylor-Couette flow with axial throughflow [13, 10].

Any fluctuation in the system will grow since ε0 > 0, and will be advected
away so long as the state A = 0 is convectively unstable (0 < ε0 < s2

0τ
2
0 /4ξ

2
0).

Without noise the unstable A = 0 state will be maintained, but if there
is a constant source of noise, as in (51), then fluctuations are continually
created and allowed to grow as they advect downstream. At some distance
x0, which depends on the noise strength FA and on s0, the order parameter
grows to macroscopic size and eventually saturates to its bulk value |A0|2 =
ε0/g0. Thus a measurement of x0 can yield information on FA, if the other
parameters in (51) are known. Note that it is essential that translational
invariance is broken in the system, otherwise the advection term s0∂xA could
be transformed away by a change of reference frame.

In a recent experiment on Taylor-Couette flow with througflow, Babcock
et al. [13] were able to fit their data to a complex generalisation of Eq. (51),
and to determine the small noise strength FA ≈ 5× 10−9, which is however
larger than the estimate for thermal noise [10] by a factor of roughly 200.
The origin of this discrepancy is at present unknown.

Recently, Schöpf and Rehberg have performed measurements of the ther-
mal noise strength in a binary fluid convection experiment in the convectively
unstable regime [14]. In this case, the measured and theoretically predicted
strengths of the thermal noise are in very good agreement.
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4 Beyond the phase winding solutions.

In the previous sections, we have derived the amplitude equations and in-
dicated their validity for a number of physical systems. These equations
provide us with a proper starting point for answering some of the questions
we posed in section 1.2 in the context of Rayleigh-Bénard convection. Some
specific theoretical issues are:

• Which (near) periodic patterns out of a continuum of possibilities nat-
urally emerge above threshold, i.e. what is the mechanism of “pattern
selection”? Initial conditions and boundary conditions play an impor-
tant role in this. This question arises especially for the RGL equation
and for the CGL equation with |c1|, |c3| � 1.

• To what extent is the long-time dynamics dominated by structures
like defects or other elementary objects (often refered to as coherent
structures — see below).

• In addition, for the CGL equation with the Newell criterion (32) sat-
isfied, chaotic solutions are expected. What are the proper quantities
to characterize these solutions in large systems where many degrees of
freedom come into play10?.

These questions are at the heart of modern research on nonequilibrium pat-
tern formation. From a theoretical point of view one may start by attempting
to understand various types of solutions of the amplitude equations, their sta-
bility, and their basins of attraction (i.e. the set of initial conditions from
which they are reached).

Providing a comprehensive overview of our present understanding of these
issues is far beyond the scope of this chapter. We will therefore content our-
selves in this last section with giving some flavor of recent work on these
problems by showing some examples. The reader interested in a more thor-
ough discussion should consult the relevant sections of the review by Cross
and Hohenberg cited in sec. 6 and the references therein.

We shall start by showing a simulation of the evolution of a two-dimensional
pattern from an Eckhaus unstable to a stable state in the RGL equation. This

10Actually, this question may also be relevant in regimes where c1c3 < 1, as studied in
[15], in which spatio-temporal chaos also arises.
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naturally leads to the subject of defects. We then briefly show some of the
new phenomena which arise in the complex equation. This will lead to the in-
troduction of coherent structures in the one-dimensional amplitude equation,
structures which are closely related to the defects mentioned above.

4.1 The Eckhaus instability

The two-dimensional RGL equation (35) for anisotropic systems with ξ0 and
g0 scaled out as in equation (27), admits plane wave solutions of the form
A = aeiqx with wavevector parallel to the x-axis. These waves exist for q2 < ε
and are Eckhaus stable if q2 < ε/3. If we prepare the system in a plane wave
state with ε/3 < q2 < ε, it will be Eckhaus unstable, and we might expect
it to evolve into a state inside the Eckhaus stable band. This is indeed
what happens as illustrated in Fig. 13, which shows a simulation of the
two-dimensional RGL equation. In large parts of the pattern, the variations
of the modulus of the amplitude are relatively small, so the pattern can be
described by the phase φ of A, which is defined by writing A = aeiφ. For a
phase winding solution of the RGL equation we have φ = qx, a = constant.
The phase variable φ occurs naturally when one looks at nearly periodic
patterns. For instance, in the picture of a Rayleigh-Bénard experiment in
Fig. 3, the phase of the signal was used to depict the pattern. In Fig. 13
the black curves indicate regions where the phase is 0, and the white curves
regions where the phase is π, say.

Figure 13: Four subsequent stages in the simulation of the two-dimensional
amplitude equation (35), evolving from an Eckhaus unstable to an Eckhaus
stable phase winding solution. After [16].

The simulations we show were done with the RGL equation with ε scaled
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out, which amounts to setting ε = 1. The system was prepared in an Eckhaus
unstable initial state with q = 0.7. In panel (a) we see a weakly modulated
periodic pattern. These modulations grow in strength, and in panel (b) we
see that some of the equal phase curves merge, reducing the average wave
number. Where such curves merge, the phase becomes singular, and if A is
smooth it has to go through zero. This is analogous to our previous discussion
of phase-slips in section 2.3. In this two-dimensional case the singularities in
the phase are associated with topological defects, and they play an important
role in the selection of final states of patterns. In panel (c) many of the defects
have annihilated and the pattern is close to a periodic Eckhaus stable state
with lower wave number, which is finally reached in panel (d). For a more
thorough discussion of the Eckhaus instability we refer the reader to (CH IV
A 1 a ii).

4.2 Topological defects

The previous discussion on the Eckhaus instability introduced defects in a
somewhat sketchy way. We sharpen our formulation by considering a two-
dimensional pattern in which over some large closed loop C the phase φ varies
slowly, but for which the integer valued integral

(1/2π)
∮

C

~∇φ · ~dl (52)

is equal to 1. It is not difficult to see that this is not consistent with a slow
variation of the phase everywhere: If we smoothly shrink the contour, the
integer value of the integral remains smooth if the phase is smooth. The
integral is therefore a nonzero constant for arbitrarily small loops, which
clearly contradicts the assumption of smoothness of φ. Thus a non-zero
value of an integral of the form (52) necessarily implies the existence of at
least one topological point defect inside the loop, where the assumption of
slow variation breaks down. Such a defect is called topological, because a
smooth deformation of the phase field does not influence its existence. The
motion of a defect depends both on the pattern in its neighbourhood and on
the long-range interaction with other defects (CH V B).

The notion of a topological defect is related to broken symmetries (CH IV
B 2). As an example we may look at the onset of convection in a Rayleigh-
Bénard experiment. Below threshold the system is uniform and arbitrary
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translations do not change the solution, so they are all symmetry transfor-
mations. Above threshold when a periodic pattern has emerged, arbitrary
translations are no longer symmetries of the system. If we apply a translation
to a periodic pattern we obtain in general a different, but entirely equiva-
lent, pattern. The different patterns that can be generated by applying all
continuous symmetries of the system below threshold, in this case all trans-
lations, can be labelled by phase variables. In the case of a periodic pattern
this is simply an element of SO(2). A spatially uniform change of any of the
phase variables produces a new solution and therefore no dynamics. A slowly
varying spatial change of the phase variables is expected to relax slowly in
time, and therefore phase variables can be used to describe the dynamics of
slow spatial variations of the basic pattern. This remains true further above
threshold as well. We will not go into this subject in more detail, but refer
the reader to (CH IV A 2).

4.3 The Benjamin-Feir instability

The local structures discussed above have a topological origin, but there also
exist local structures which do not have topological significance. In partic-
ular, as illustrated below, coherent structures in the one-dimensional ampli-
tude equation show features reminiscent of defects in two dimensions when
viewed in a two-dimensional space-time plot (compare Fig. 14c). However,
there is not necessarily a topological charge associated with such structures,
even though both types of solutions have similar behaviour.

In many situations local structures seem to be long lived, and are therefore
important for the selection of final states, as was illustrated by the defects
in the simulation of the Eckhaus instability of the RGL equation in Fig. 13.

The stability diagram for phase winding solutions of the CGL equation is
very similar to the one for the RGL equation (Fig. 7a) as long as |c1|, |c3| � 1.
In this parameter range the dynamics following the initial state of Fig. 13
would qualitatively resemble that of the RGL, except for the fact that the
near-periodic pattern now corresponds to traveling waves. As we saw in
section 2.3, however, when the product c1c3 increases the band of stable phase
winding solutions shrinks, and if we satisfy the Newell criterion c1c3 > 1,
there are no stable phase winding solutions of the form A = ae−iωt+iqx left.
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4.3.1 Spatio-temporal chaos.

Figures 14a and 14b in which the amplitude |A| is plotted vs. x at regular
time intervals, illustrate the chaotic behaviour typically observed when c1c3 >
1. From these figures we see that in the limit where both c1c3 � 1 and c3 � 1,
intermittent structures that we will refer to as “pulses” are found. In Fig.
14c, a grey-scale space-time plot of the phase φ is shown for a simulation
with c1 = 2, c3 = 1. The simulation started with random initial conditions,
but the long-time dynamics illustrated here is qualitatitvely independent of
the initial conditions. In this figure, lines where φ = 0 are white and lines
where φ = π are black, say. Moving up along the vertical time axis shows
the behavior of the phase φ at a fixed position x as a function of time. The
defect-like points where two black or two white curves merge correspond to
phase slip events in space-time.

This chaotic behaviour brings up a number of new questions. The under-
standing of chaotic systems with only a few degrees of freedom, for which the
complex behaviour occurs in the time evolution only, has greatly increased
the past 20 years. The situation in spatially extended systems on the other
hand, such as the CGL equation, which have a large or even infinite number
of degrees of freedom, is much more complicated and far less well understood.
Since the state at a fixed time can be very complex, this behaviour is often
referred to as spatiotemporal chaos.

It has been suggested that the limit of an infinite system, i.e. extensive

chaos, might be described using concepts borrowed from statistical mechan-
ics and critical phenomena. In particular, the chaotic behaviour shown in
Fig 14c has been analyzed in terms of correlation functions of the phase [15],
but studies along these lines have only just begun. It has recently been sug-
gested that some phase correlation functions in these chaotic regimes might
be related to the behaviour of interface growth models [17]. We also note
that some experiments on Rayleigh-Bénard convection in binary mixtures
in an annulus [18] show chaotic behaviour reminiscent of that in the left
two pictures of Fig 14, but a detailed comparison between simulations and
experiments has not been made.
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Figure 14: Time evolution of a chaotic state of the one-dimensional CGL
equation. (a),(b) Simulations of the amplitude equation for a case with
c3 → ∞ (after rescaling, the limit c3 → ∞ amounts to setting the real part
of the prefactor of the cubic term in the CGL equation equal to zero, so that
it reads i|A|2A) and c1 = 100 in (a) and c1 = 1 in (b); the initial condition
was white noise with spatial average |A|2 = .01. After [19]. (c) Grey scale
plot of the phase in a simulation of the CGL equation with c1 = 2 and c3 = 1,
which started with random initial conditions. After [15] .

4.4 One-dimensional coherent structures.

As Fig. 14 illustrates, in the region c1c3 > 1 the dynamics of the CGL
equation displays spatiotemporal chaos. In other regions of parameter space,
one often finds that part of the dynamics is governed by well-defined regular
solutions which we will refer to as coherent structures (some of them also
exist in the RGL equation). Coherent structures are solutions that are either
themselves localized or that consist of domains of regular patterns connected
by localized defects or interfaces. It is important to understand the existence
and stability of these coherent structures as a first step towards an analysis
of the dynamics of more complicated patterns. We shall now give a brief
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overview of what has been learned in the past few years about the four
coherent structures of the one-dimensional CGL equation shown in Fig. 15.
All the solutions we shall discuss are uniformly translating, i.e. are solutions
of the CGL equation (29) of the form

A(x, t) = e−iωtÂ(x− vt). (53)

Figure 15: Schematic representation of coherent structures of the one-
dimensional complex amplitude equation.

4.4.1 Sources and sinks.

Let us first consider solutions which connect one phase winding solution
on the left to another one on the right. We will call them domain wall
or shock type solutions. In a space-time plot like that of Fig. 14c, these
solutions would appear like “grain boundaries” between domains of different
wave number. Since a traveling wave has a nonzero group velocity vgr, there
are several possibilities depending on whether the group velocity of each
phase winding solution points away from or towards the localized structure
connecting the two asymptotic states. It is useful to use the group velocity ṽgr

relative to the velocity v of the localized structure ṽgr ≡ vgr − v. Thus ṽgr is
the velocity of a small perturbation of a phase winding solution in the frame
moving with the domain wall. If the relative group velocity points away from
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the localized structure on both sides, the latter has the properties of a source,
while if ṽgr points inwards on both sides, we will call the domain wall a sink

[20],[21]. In principle, solutions with the relative group velocities pointing in
the same direction on both sides of the wall might also be possible, but one
can show [21] that such solutions do not exist in the cubic CGL equation.
They do, however, exist in higher-order extensions, such as the quintic CGL
equation mentioned below. In the RGL equation, most of the dynamics of
domain walls can be understood in terms of the tendency of walls to move in
the direction of lower “free energy” [see the discussion in 2.2]. The behavior
of sinks and sources in the CGL equation is more complicated.

Sinks are in a sense rather dull objects, since the very fact that the relative
group velocities point inwards means that the phase winding solutions that
are connected must originate in some other regions of space. One then tends
to focus on the dynamics in these regions. Nevertheless, the velocity of sinks
is important during transients because it determines which regions shrink and
which ones expand. In the one-dimensional CGL equation, there is typically
a two-parameter family of sinks for not too large velocities [21]. This means
that if we select two arbitrary asymptotic phase winding solutions, one on
the left and one on the right, with group velocities pointing inwards, there is
always a sink solution with some uniquely determined velocity v that connects
these two states. The stability of sinks has to our knowledge not been studied
in detail, although one expects them to be stable over a range of parameters.

Sources send out waves, and so may determine the large-time asymptotic
dynamics. On the basis of an analysis of the ordinary differential equations
that can be derived for the function Â in Eq. (53) one generically expects
the existence of a v = 0 source, as well as a discrete set of v 6= 0 sources [21].
In other words, one expects that in addition to the v = 0 solutions there
are only sources with particular values of the velocity and asymptotic wave
numbers. Surprisingly, however, Bekki and Nozaki [22] found a continuous

family of exact source solutions of the CGL equation. The existence of a
family rather than a discrete set of sources was interpreted by van Saarloos
and Hohenberg [21] as a hint that there might be some hidden symmetry or
some accidental nongenericity in the cubic CGL equation for all parameter
values. Support for this point of view comes from recent work by Popp
em et al. [23], who discovered that if a small perturbation is added to the
CGL equation, the stability of these solutions depends sensitively on the sign
and strength of the perturbation. For certain ranges of the parameters c1
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and c3, the Bekki-Nozaki source solutions seem to play an important role
in the chaotic dynamics of the CGL equation [23]. Recently, Lega et al.

[24] observed holes reminiscent of the Bekki-Nozaki type solutions in a low
Prandtl number convection experiment.

4.4.2 Pulses

The work on pulse type solutions of the type sketched in Fig. 15b was moti-
vated largely by observations of localized convective regions in experiments
on binary mixtures (CH IX A 2). Since the instability to traveling waves in
this system actually corresponds to a subcritical bifurcation (compare sec-
tion 1.4.1), this motivated a number of groups to study the following quintic
extension of the CGL

∂A

∂t
= (1 + ic1)

∂2A

∂x2
+ εA+ (1 + ic3)|A|2A− (1− ic5)|A|4A . (54)

Note that the real part of the prefactor of the cubic term is now positive, so
that this term is destabilizing instead of stabilizing. The quintic term now
plays the stabilizing role, giving rise to the subcritical behaviour sketched in
Fig. 5. Perturbation expansions about both the relaxational limit (ci → 0)
and the Hamiltonian limit (ci →∞) [21] have shown that there exist stable
pulse solutions with zero velocity in large subcritical (ε < 0) ranges of the
ε, c1, c3, c5 parameter space. Pulse solutions can become unstable by splitting
into two fronts which move apart. The long time properties of each front are
then given by that of a single front like the one shown in Fig. 15a, so one
can get information on the range of existence of pulses by analyzing the
dynamics of a single front. Pulse solutions of (54) are stationary in the
frame moving with the group velocity of the traveling waves; in principle, if
one considers an amplitude expansion near a weakly subcritical bifurcation
(meaning that the prefactor of the real part of the destabilizing cubic term
is small), nonlinear gradient terms will arise in the same order as the quintic
term |A|4A, thus leading to a drift velocity for pulses slightly different from
the group velocity. Experimentally, however, pulses are found to have a drift
velocity much smaller than the group velocity [25]. Although this can be
accounted for on an ad-hoc basis by adjusting the coefficient of the nonlinear
gradient term to be large, a more fundamental analysis [26] attributes the
small drift velocity of pulses to the coupling of the amplitude A to the slow
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concentration field. This represents a correction to the amplitude expansion
due to the existence of an extra slow variable.

4.4.3 Fronts

The dynamics of fronts in the cubic CGL equation for ε > 0 is relatively well
understood in terms of so-called marginal stability selection criteria (see [21]
and references therein). Because of its importance for the stability of pulse
solutions, front propagation has recently been studied in great detail[21] in
the quintic equation (54) for both ε > 0 and ε < 0. It turns out that an exact

nonlinear front solution can be found, whose dynamics plays an important
role in the selection of patterns. Together with a set of rules and conjectures
a fairly complete picture of the stability of pulses and of the dynamics of
fronts has emerged. Some of the surprising findings are:

(i) In some ranges of the parameters, pulses can remain stable in the limit
ε ↑ 0. In these regions, fronts only advance into the state A = 0 for ε > 0, and
dynamically the distinction between the supercritical and subcritical cases
seems to have blurred.

(ii) For uniformly translating fronts to propagate into the A = 0 state,
the net nonlinear dispersion has to be relatively small, i.e. c3 ≈ −c5.

(iii) It is possible to have fronts whose edge propagates with a well-defined

velocity v∗ = 2
√

ε(1 + c21) for ε > 0, that are not uniformly translating, i.e.
not of the form (53).

(iv) There are subcritical regions of parameter space where chaotic pulses
spread; these are sometimes refered to as “slugs”.

(v) In the limit where the ci →∞ there are dynamically important front
solutions which cannot be obtained perturbatively from the Hamiltonian
limit ci = ∞.

5 Concluding remarks.

In the bulk of this chapter we have focused primarily on the derivation of
amplitude equations for pattern forming systems. The amplitude equation
approach brings out the common features of patterns in different systems
near threshold. Even if the starting equations describing a particular system
are not well known or too complicated, one expects on general grounds that
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near the threshold of a finite wave number instability (which itself could
be a secondary instability), the amplitude equation will capture the essential
behaviour both qualitatively and quantitatively. Of course, the reader should
keep in mind that the behaviour away from threshold is much richer than
that predicted by amplitude equations, as illustrated by the Busse balloon
of Fig. 10 for the case of the Rayleigh-Bénard instability.

6 Suggested further reading

• M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equi-
librium”, Rev. Mod. Phys. 65, 851 (1993). For a shorter introduction,
see
P. C. Hohenberg and M. C. Cross, “An introduction to pattern forma-
tion in nonequilibrium systems”, in Fluctuations and Stochastic Phe-

nomena in Condensed Matter (Springer Verlag, NY), 55 (1987).

• A. C. Newell, T. Passot and J. Lega, “Order parameter equations for
patterns”, Ann. Rev. Fluid Mech. 25, 399 (1993).
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