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Motivated by t he experimcntal search for "GHz nonclassical light," we identify the conditions under
which currcnt flucluations in a narrow constriction generate sub-Poissonian radiation. Antibunched
elcctrons gencrically produce bunchcd pholons, because the same pholon mode can be populated by
electrons decaying independently from a ränge of ini t ial energies. Photon antibunching becomes
possible at frequencies close to the applied voltage V X e/K, when the init ial energy ränge of a
decaying electron is restricted. The condition for photon antibunching in a narrow frcquency interval
below eV/K reads [£„7",, (l — Γ,,)]2 < 2£,,[7"η(1 — 7"„)]2, with T„ an eigenvalue of the transmission
matrix. This condition is satisfied in a quanlum point contact, where only a single T„ differs from 0 or 1.
The photon statistics is then a superposition of binomial distributions.
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In a recent experiment [1], Gabelli et cd. have measured
the deviation from Poisson statistics of photons emitted
by a resistor in equil ibrium at m K temperatures. By cross
correlating the power fluctuations they detected photon
bunching, meaning that the variance Vam = (n-) — (n)2

in the number of detected photons exceeds the mean
photon count (n). Their experiment is a Variat ion on the
quanlum optics experiment of Hanbury Brown and Twiss
[2], but now at GHz frequencies.

In the discussion of the implications of their novel
experimental technique, Gabelli et a l. noticed that a
general theory [3] for the radiation produced by a con-
ductor out of equi l ibr ium implies that the deviation from
Poisson statistics can go either way: Super-Poissonian
fluctuations (Varn > (n), signaling bunching) are the
rule in conductors with a l arge number of scattering
channels, whi le sub-Poissonian fluctuations (Varn < (n),
signaling antibunching) become possible in few-channel
conductors. They concluded that a quantum point contact
could therefore produce GHz nonclassical light [4].

It is the purpose of this work to identify the conditions
under which electronic shot noise in a quantum point
contact can generate antibunched photons. The physical
picture that emerges differs in one essential aspecl from
eleclron-hole recombination in a quantum dot or quantum
well, which is a familiär source of sub-Poissonian radia-
tion [5-7]. In those Systems the radiation is produced by
transitions between a few discrele levels. In a quantum
point contact the transitions cover a continuous ränge of
energies in the Perm i sea. As we wil l see, this continuous
spectrum generically prevents antibunching, except at
frequencies close to the applied voltage.

Before presenting a quantitative analysis, we first dis-
cuss Ihe mechanism in physical terms. As depicted in
Fig. l , electrons are injected through a constriction in an
energy ränge eV above the Per m i energy EF, leaving
behind holes at the same energy. The statistics of the

Charge Q transferred in a time τ ϊΐ> Ιϊ/eV is binomial
[8], with Vai'Q/e < (Q/e). This electron antibunching is
a result of Ihe Pauli principle. Each scattering channel
n = \, 2, . . . , N in the constriction and each energy inter-
val 8E = Ιϊ/τ contributes independently to Ihe Charge
statistics. The photons excited by the electrons would
inherit Ihe antibunching if there would be a one-to-one
correspondence between the transfer of an electron and
the population of a photon mode. Generically, this is not
what happens: A photon of frequency ω can be exciled by
each scattering channel and by a ränge eV — Κω of in i t ia l
energies. The resulling statislics of photocounts is
negative-binomial [3], with Varn > (n). This is the
same photon bunching äs in black-body radiation [9].

F.

FIG. 1. Schcmalic diagram of a constriction in a conductor
(bottom) and the energy ränge of electronic states (top), show-
ing excilations of electrons (black dots) and holes (white dots)
in the Per m i sca. A voltage V drops over the constriction.
Electrons (holes) in an energy ränge eV — Ιϊω can populate a
photon mode of frequency ω, by decaying to an empty (filled)
state closer to Ihe Per m i level.
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In order to convert antibunched electrons into anti-
bunched photons, it is sufficient to ensuie a one-to-one
correspondence between electron modes and photon
modes. This can be reahzed by concentratmg the current
fluctuations in a smgle scattermg channel and by restnct-
mg the energy ränge eV — Κω. Indeed, in a single-
channel conductoi and m a narrow frequency lange ω S
eV/h we obtam sub-Poissonian photon statistics regard-
less of the value of the transmission probability. In the
more general multichannel case, photon antibunching is
found if [χ,,Γ,,Ο - Tn)]2 < 2£n[r„(l - Γ,,)]2 (with T„
an eigenvalue of the transmission matnx product tfi)

The starting point of our quantitative analysis is the
general relationship of Ref. [3] between the photocount
distnbution P (n) and the expectation value of an ordered
exponential of the electncal current operator:

/>(«)=! lim ^-
n\ ί— ι άξ"

(1)

(2)

We summanze the notation. The f u n c t i o n Γ(ξ) =
ΧΓ=ο(£λ Α')(«Α)ι is the generatmg function of the facto-
nal moments (nk)i = (n(n — \)(n — 2) · · · (n — k + I)}.
The current operator I = 7out — 7U1 is the difference of
the outgoing current 7out (away from the constnclion) and
the incoming current 7m (toward the constuction). The
symbol 0 indicates ordermg of the cunent operatois from
left to nght in the order Im, 7̂ ,,, 7ollt, 7ln The real
frequency-dependent response function γ(ω) is propor-
tional to the coupling strength of conductor and photode-
tectoi and proportional to the detector efficiency. Positive
(negative) ω corresponds to absorption (emission) of a
photon by the detector. We consider photodetection by
absoiption, hence γ(ω) = 0 for ω Ä 0. Integrals over
frequency should be interpreted äs sums over discrete
modes ωρ = p Χ 2 π/τ, p = l, 2, 3, . . The detection
time τ is sent to infinity at the end of the calculation.
We denote γρ = γ(ωρ) Χ 2ττ/τ, so that f αωγ(ω) —+
ΣρΎρ· F°r ease °f notation we set h = l, e = 1.

The exponent in Eq. (2) is quadiatic in the current
operators, which comphcates the calculation of the ex-
pectation value. We remove this complication by mtroduc-
mg a Gaussian field ζ(ω) and performing a Hubbard-
Stratonovich tiansformation,

F(i) = άωγ(ω)(ζ(ω)Ιϊ(ω)

(3)

The angular brackets now indicate both a quantum me-
chanical expectation value of the current operators and a
classical average over independent complex Gaussian

variables zp = ζ(ωρ) with zero mean and variance

(\z„\2) = i/r„.
We assume zero temperature, so that the incoming

current is noiseless. We may then replace 7 by 7ollt and
restnct ourselves to energies ε in the ränge (0, V) above
Ep Let &,ΐ(ε) be the operator that creates an outgomg
electron in scattermg channel n at energy ε. The outgoing
current is given in terms of the electron operatois by

= Γ ds\bl(s)bl,(e +ω)
/ n *--*

(4)

Energy ερ = p Χ 2ττ/τ is discretized in the same way äs
frequency. The eneigy and channel indices p, n aie col-
lected m a vector b with elements bpl, =
(2ir/T)l/2b„(e ). Substitution of Eq. (4) into Eq (3) gives

(5)

The exponents contain the product of the vectors
b,b^ and a matrix Z with elements Zpn p/„/ =
ξί/2δηιιιζρ_ριγρ_ρι. Notice that Z is diagonal in the chan-
nel indices n, n' and Iowei-triangulär in the energy m-
dices p, p1.

Because of the ordermg O of the current operators, the
smgle exponential of Eq. (3) factonzes into the two non-
commuting exponentials of Eq. (5). In order to evaluate
the expectation value efficiently, we would like to bring
this back to a smgle exponential—but now with normal
ordermg N of the fermion creation and annihilation
operators. (Normal ordermg means b^ to the left of b,
with a minus sign for each permutation) This is accom-
phshed by means of the operatoi identity [10]

\eA< - l M (6)

vahd foi any set of matnces A, The quantum mechanical
expectation value of a normally ordered exponential is a
determmant [11],

{Web>Ab) = Det(l + AB), B„ = (b]b,) (7)

In oui case A = ez<?zt - l and B = trf, with t the N X N
transmission matnx of the constnction.

In the expenmentally lelevant case [1,12] the response
function γ(ω) is sharply peaked at a frequency Ω < V,
with a width Δ «: Ω. We assume that the energy depen-
dence of the transmission matnx may be disregarded on
the scale of Δ, so that we may choose an ε-mdependent
basis m which tfi is diagonal. The diagonal elements are
the transmission eigenvalues T\, T2,... TN & (0, 1).
Combining Eqs. (5)-(7) we arrive at
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„z*

(8)

(In the second equahty we used that Detez1 = l, smce Z
is a lowei-tiiangulai matnx) The lemaimng average is
over the Gaussian vanables zr contamed in the matiix Z

Smce the inteiesting new physics occuis when Ω is
close to V, we simplify the analysis by assummg that
γ (ω) = 0 foi ω < V/2 Foi such a lesponse function one
has Z2 = 0 (This amounts to the Statement that no elec-
tion with excitation eneigy ε < V can pioduce moie than
a single photon of fiequency ω > V/2 ) We may theiefoie

leplace e7· —>· l + Z and e~^ —> l - Zf in Eq (8) We
then apply the matiix identity

Det(l +A + B) = Det(l -AB) if A2 = 0 = B2,

(9)

and obtain

(10)

We have defined ξΧ = ΖΖ^ and wi itten out the Gaussian
aveiage The Heimitian mati ix X has elements

PP / ζρ-<ιζ η!-α (Π)

point appioximation bieaks down when the detection
fiequency fl appioaches the apphed voltage V Foi V —
Ω :£ Δ one has to calculate the mtegials in Eq (10)
exactly

We have evaluated the geneiatmg function (10) for a
lesponse function of the block foi m

if V - Δ < ω
if ω < V - Δ,

V,
(14)

with Δ < V/2 The fiequency dependence foi ω > V is
melevant In the case N = l of a single channel, with
tiansmission piobability T] = Γ, we find [15]

InF(f) = ~ Γ άω 1η[1 + ξγ0Τ(1 ~ T)(V - ω)]
2.TT Ιν-Δ

τΔ (1 +λ)1η(1 + λ) - Α

2ττ Α
(15)

with χ = ξγ0Τ(] — Τ1) Δ This is a supeiposition of bino-
mial distnbutions The factonal cumulants aie

(16)

The second factonal cumulant is negative, so V am < (n)
This is sub-Poissoman ladiation

We have not found such a simple closed foi m expies-
sion m the moie geneial multichannel case, but it is
stiaightfoiwaid to evaluate the low-oidei factonal cumu-
lants fiom Eq (10) We find

o
2.ΊΤ

— S\,
Z

(17)

The mtegeis p, p', q lange fiom l to ντ/2ττ
The Gaussian aveiage is easy if the dimensionless shot

noise powei 5 = ]Γ;ΙΓ,,(1 — Tn) is » l We may then do
the mtegials of Eq (10) in saddle-pomt appioximation,
with theiesult [13]

2ττ
- ξ5γ(ω)(Υ ~ ω)] (12)

The loganthm InF(^) is the geneiatmg function of the
factonal cumulants {{nA))| [14] By expanding Eq (12) in
poweis of ξ we find

2ττ
(13)

Equations (12) and (13) lepiesent the multimode supei-
position of mdependent negative-bmomial distnbutions
[9] All factonal cumulants aie positive, in pait iculai , the
second, so V am > (n) This is supei-Poissoman ladiation

When S is not » l , eg , when only a smgle-channel
contnbutes to the shot noise, the lesult (12) and (13)
lemams valid if V — Ω » Δ This was the conclusion
of Ref [3], that nanow-band detection leads geneucally
to a negative-bmomial dis t i ibut ion Howevei, the saddle-

6

- Tn)]p

5Ϊ-252), (18)
J

- 155,5, + 1553), (19)

Antibunching theiefoie ic-with Sp = Χ,,[
qunes S2 < 2S2

The condition on antibunchmg can be geneiahzed to
aibitiaiy fiequency dependence of the lesponse function
γ(ω) m the lange V — Δ < ω < ν ο ί detected fiequen-
cies Foi Δ < V/2 we find

V am — (n) =
27Γ V-Δ

άω'γ(ω') j daj(V - ω)

(20)

We see that the antibunchmg condition Sl < 2S2 denved
foi the special case of the block function (14) is moie
geneially a sufficient condition foi antibunchmg to occui,
piovided that dy/άω S 0 m the detection lange It does
not mattei if the lesponse function diops off at ω > V,
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piovided that it mcieases monotonically m the lange
(V — Δ, V) A steeply increasmg lesponse function in
this lange is moie favoiable, but not by much Foi ex-
ample, the powei law γ (ω) <* (ω — V + Δ)/; gives the

antibunchmg condition S1? < 2S2 X [l + p/(\ + p)],
which is only weakly dependent on the powei p

In conclusion, we have piesented both a qualitative

physical pictuie and a quantitative analysis foi the con-
veision of election to photon antibunchmg A simple
cntenon, Eq (18), is obtamed foi sub-Poissoman photon
statistics, in teims of the tiansmission eigenvalues T„ of
the conductoi Smce an ./V-channel quantum pomt contact
has only a single 7^ diffeient fiom 0 01 l, it should
geneiate antibunched photons in a fiequency band
(V — Δ, V)—legaidless of the value of TN The statistics
of these photons is the supeiposition (15) of binomial
distubutions, inhented fiom the electionic binomial dis-
tnbution Theie aie no stungent conditions on the band
width Δ, äs long äs it is <V/2 (in oidei to pievent multi-
photon excitations by a single electron [16]) This should
make it feasible to use the cioss-conelation technique of
Ref [1] to detect the emission of nonclassical miciowaves
by a quantum pomt contact
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