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Motivated by the experimental search for “GHz nonclassical light,” we identify the conditions under
which current fluctuations in a narrow constriction generate sub-Poissonian radiation. Antibunched
electrons gencrically produce bunched photons, because the same photon mode can be populated by
electrons decaying independently from a range of initial energies. Photon antibunching becomes
possible at frequencies close to the applied voltage V X ¢/h, when the initial energy range of a
decaying electron is restricted. The condition for photon antibunching in a narrow frequency interval

below eV/h reads [3,T,(1 = T,)]* <23 ,[T,(1 —

T,)J, with T, an eigenvalue of the transmission

matrix. This condition is satisfied in a quantum point contact, where only a single T, differs from O or 1.
The photon statistics is then a superposition of binomial distributions.

DOI: 10.1103/PhysRevLett.93.096801

In a recent experiment [1], Gabelli et al have measured
the deviation from Poisson statistics of photons emitted
by a resistor in equilibrium at mK temperatures. By cross
correlating the power fluctuations they detected photon
bunching, meaning that the variance Varn = (n’) — (n)?
in the number of detected photons exceeds the mean
photon count {n). Their experiment is a variation on the
quantum optics experiment of Hanbury Brown and Twiss
[2], but now at GHz frequencies.

In the discussion of the implications of their novel
experimental technique, Gabelli et al noticed that a
general theory [3] for the radiation produced by a con-
ductor out of equilibrium implies that the deviation from
Poisson statistics can go either way: Super-Poissonian
fluctuations (Varn > {n), signaling bunching) are the
rule in conductors with a large number of scattering
channels, while sub-Poissonian fluctuations (Varn < (n),
signaling antibunching) become possible in few-channel
conductors. They concluded that a quantum point contact
could therefore produce GHz nonclassical light [4].

It is the purpose of this work to identify the conditions
under which electronic shot noise in a quantum point
contact can generate antibunched photons. The physical
picture that emerges differs in one essential aspect from
electron-hole recombination in a quantum dot or quantum
well, which is a familiar source of sub-Poissonian radia-
tion [5-7]. In those systems the radiation is produced by
transitions between a few discrete levels. In a quantum

point contact the transitions cover a continuous range of

energies in the Fermi sea. As we will see, this continuous
spectrum generically prevents antibunching, except at
frequencies close to the applied voltage.

Before presenting a quantitative analysis, we first dis-
cuss the mechanism in physical terms. As depicted in
Fig. 1, electrons are injected through a constriction in an
energy range eV above the Fermi energy Ep, leaving
behind holes at the same energy. The statistics of the
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PACS numbers: 73.50.Td, 42 50 Ar, 42.50Lc, 73.23-b

charge Q transferred in a tme 7>> i/eV is binomial
[8], with VarQ/e < (Q/e). This electron antibunching is
a result of the Pauli principle. Each scattering channel
n=1,2,..., N inthe constriction and each energy inter-
val 8E = Ii/7 contributes independently to the charge
statistics. The photons excited by the electrons would
inherit the antibunching if there would be a one-to-one
correspondence between the transfer of an electron and
the population of a photon mode. Generically, this is not
what happens: A photon of frequency w can be excited by
each scattering channel and by a range ¢V — Fw of initial
energies. The resulting statistics of photocounts is
negative-binomial [3], with Varn > {n). This is the
same photon bunching as in black-body radiation [9].
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FIG. 1.  Schematic diagram of a constriction in a conductor

(bottom) and the cnergy range of electronic states (top), show-
ing excitations of electrons (black dots) and holes (white dots)
in the Fermi sca. A voltage V drops over the constriction.
Electrons (holes) in an energy range eV — fiw can populate a
photon mode of frequency w, by decaying to an empty (filled)
state closer to the Fermi level.
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In order to convert antibunched electrons into anti-
bunched photons, 1t 1s sufficient to ensuie a one-to-one
correspondence between electron modes and photon
modes. This can be realized by concentrating the current
fluctuations wn a single scattering channel and by restrict-
ing the energy range eV — fiw. Indeed, in a single-
channel conductor and 1n a narrow frequency range w =<
eV /i we obtain sub-Poissonian photon statistics regard-
less of the value of the transmission probability. In the
more general multichannel case, photon antibunching 1s
found 1f [3,7,(1 — T,)* <23 ,[T,(1 = T,)J* (with T,
an eigenvalue of the transmission matrix product z¢1)

The starting point of our quantitative analysis 1s the
general relationship of Ref. [3] between the photocount
distribution P(n) and the expectation value of an ordered
exponential of the electrical current operator:

l d”
P(w) = - Jim 2 F(©) (1)

F(§) = <@exp[§ L ” dwy(wm(wﬂ(w)D 2)

We summarize the notation. The function F(£) =
S0 o(£4/k"){(n*); 1s the generating function of the facto-
rial moments (n*) = {n{n — Dn —2)- - (n — k -+ 1)).
The current operator I = I, — I, 1s the difference of
the outgoing current 7, (away from the constriction) and
the 1ncoming current [, (toward the constriction). The
symbol @ indicates ordering of the curient operators from
left to right in the order Il‘;, Igm, Iow I, The real
frequency-dependent response function y(w) 1s propor-
tronal to the coupling strength of conductor and photode-
tector and proportional to the detector efficiency. Positive
(negative) w corresponds to absorption (emission) of a
photon by the detector. We consider photodetection by
absoiption, hence y(w) =0 for w = 0. Integrals over
frequency should be interpreted as sums over discrete
modes w, = p X 2a/7, p =123, The detection
time 7 1s sent to infinity at the end of the calculation.
We denote y, = y(w,) X 27/7, so that [dwy(w)—
>.pYp- For ease of notation we set i = 1, e = 1.

The exponent 1n Eq. (2) 1s quadiatic 1n the current
operators, which complicates the calculation of the ex-
pectation value. We remove this complication by introduc-
ing a Gaussian field z(w) and performing a Hubbard-
Stratonovich transformation,

F() = <(9<>Xp[¢§ /O ” doy(@)(z(@)I (o)

2 (w)l(w))D. 3)

The angular brackets now indicate both a quantum me-
chanical expectation value of the current operators and a
classical average over independent complex Gaussian
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variables z, = z((up) with zero mean and variance
(2,17 = 1/,

We assume zero temperature, so that the incoming
current 1s noiseless. We may then replace I by I, and
restrict ourselves to energies & 1n the range (0, V) above
Er Let bl () be the operator that creates an outgoing
electron 1n scattering channel n at energy &. The outgoing
current 1s given 1n terms of the electron operators by

loulw) = [ de S b(E)b, (e + o) *)

Energy €, = p X 277/7 15 discretized n the same way as
frequency. The eneigy and channel 1ndices p, n are col-
lected 1 a vector b with elements b, =
(27/7)!/%b,(€,). Substitution of Eq. (4) mnto Eq (3) gives

F(f) — <€17TZ[7€[7TZ”7>. (5)

The exponents contain the product of the vectors
b,bY and a matrix Z with elements Zpn plat =
f'/zé,”,/zl,_l,/ ¥p—p- Notice that Z 1s diagonal 1n the chan-
nel indices n, n’ and lowei-triangular 1n the energy in-
dices p, p'.

Because of the ordering O of the current operators, the
single exponential of Eq. (3) factorizes into the two non-
commuting exponentials of Eq. (5). In order to evaluate
the expectation value efficiently, we would like to bring
this back to a single exponential—but now with normal
ordering N of the fermion creation and annihilation
operators. (Normal ordering means bt to the left of b,
with a minus sign for each permutation ) This 1s accom-
plished by means of the operator identity [10]

l—[eb'/\,b = j\[exp[[yT(l—[eA' - 1>b} (6)

7

valid for any set of matrices A, The quantum mechanical
expectation value of a normally ordered exponential 1s a
determinant [11],

<NebfA17> = Det(l + AB), B, = <b;rb,> (7)

Inour case A = e¢Z' — 1 and B = t/f, with rthe N X N
transmaission matrix of the constriction.

In the experimentally 1elevant case [1,12] the response
function y{w) 18 sharply peaked at a frequency () =V,
with a width A < (). We assume that the energy depen-
dence of the transmission matrix may be disregarded on
the scale of A, so that we may choose an e-independent
basis in which 71 1s diagonal. The diagonal elements are
the transmission eigenvalues T, 7T, ...Ty € (0, 1).
Combining Egs. (5)-(7) we arrive at
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N
F(&) = <[‘[ Det[l + T, (eZeZ" — 1)]>
n=I1
N
= <l—[ Det[(1 — T,)e 2" + T”ez]> (8)
n=1
(In the second equality we used that Dete?' = 1, since Z

15 a lower-triangular matiix ) The 1emaining average 1s
over the Gaussian vat1ables z,, contained 1n the matiix Z

Since the intetesting new physics occuts when ) 1s
close to V, we simplify the analysis by assuming that
y(w) = 0for @ < V/2 For such a 1esponse function one
has Z? = 0 (This amounts to the statement that no elec-
tron with excitation eneigy € < V can produce moie than
a single photon of fiequency w > V /2 ) We may thetefote
teplace ¢Z — 1+ Z and e™4' — 1 —Z" 1 Eq (8) We
then apply the matiix identity

Det(l + A+ B) = Det(l — AB) 1f A>=0= B?,

©)

and obtain

N
F(¢&) = [‘[% [dlz,,e—wl A ] Detll + T,(1 = T,)éX]
r n=1

(10)

We have defined £X = ZZt and wiitten out the Gaussian
average The Hermitian mati1x X has elements

X]]]) = Zzp—(/zl;/—q’)/p—q’)/p/-z] (11)
q

The 1ntegets p, p’, g 1ange fiom 1 to V7 /27

The Gaussian average 1s easy 1f the dimensionless shot
noise power § =% T,(1 —T,) 15 > 1 We may then do
the integials of Eq (10) in saddle-point appioximation,
with the result [13]

T 1%
nF(§) = —%ﬁ) doln[l — £Sy(w)(V — w)]  (12)

The logaiithm InF(&) 1s the geneiating function of the
factorial cumulants ({(n*)), [14] By expanding Eq (12) 1n
powets of ¢ we find

(@i = =115 [ dalsy@)(v = @f 13

Equations (12) and (13) 1eptesent the multimode supei-
position of independent negative-binomial distiibutions
[9] All factorial cumulants ate positive, in patticulat, the
second, so Vain > {n) This 1s supei-Poissonian 1adiation

When S 1s not > 1, e g, when only a single-channel
contiibutes to the shot noise, the result (12) and (13)
rtemains valid 1if V. — Q > A This was the conclusion
of Ref [3], that nairow-band detection leads genetically
to a negattve-binomial distribution However, the saddle-
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point appioximation bireaks down when the detection
frequency () appioaches the applied voltage V. For V —
Q) = A one has to calculate the integials in Eq (10)
exactly

We have evaluated the generating function (10) for a
tesponse function of the block form

fV-A<w<V,
’y(a)):{go 1 w

if w <<V —A,
with A < V/2 The tiequency dependence for w >V 1s
utelevant In the case N = 1 of a single channel, with
ttansmission probability Ty = T, we find [15]

(14)

InF(§) = % fV_A dwln[l + £y,T(1 — T)V — w)]

A (I +A)In(l +2a) —a

21 A (1)

with x = &y,T(1 — T)A Thuis 1s a super position of bino-
mial distributions The factorial cumulants are

iy, = (cpe D72

The second factoi1al cumulant 1s negative, so Vain << (n)
This 1s sub-Poissonian 1adiation

We have not found such a simple closed foim expies-
sion 1n the mote general multichannel case, but 1t 1s
stiaightfor watd to evaluate the low-oide1 factorial cumu-
lants from Eq (10) We find

[T(1 = D)y (16)

A 1
<71>:“;-7;7’0A551y 7
A 1
(o) =2 (poAP5(S] 282, (18)

TA 1
<<”3>>t = E;(YOAVEGS? = 158,85, + 1553) (19)

with S, =3 [T,(1 — T,)]” Antibunching theiefore 1e-
quues $7 <285,

The condition on antibunching can be generalized to
atbitiary fiequency dependence of the tesponse function
v(w) 1n the 1ange V — A < w <V of detected fiequen-
cies For A < V/2 we find

T \4 1%
Vain —(n) = P ] dw’y(w’)f do(V — w)
V-—-A '

X [ZS% — 48, = (V — 0)§? %}y(w)
(20)

We see that the antibunching condition S} < 2S5, derived
for the special case of the block function (14) 1s moile
generally a sufficient condition for antibunching to occut,
provided that dy/dw = 0 1n the detection 1ange It does
not matter 1f the 1esponse function diops off at w >V,
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ptovided that 1t incieases monotonically 1n the range
(V—A,V) A steeply increasing tesponse function in
this range 1s more favorable, but not by much For ex-
ample, the power law y(w) = (w — V + A)? gives the
anttbunching  condition  §% <28, X[1 + p/(1 + p)],
which 1s only weakly dependent on the powei p

In conclusion, we have piesented both a qualitative
physical pictute and a quantitative analysis for the con-
vetsion of election to photon antibunching A simple
criterton, Eq (18), 1s obtained for sub-Poissonian photon
statistics, n terms of the ttansmission eigenvalues 7, of
the conductor Since an N-channel quantum point contact
has only a single Ty differtent fiom O ot 1, 1t should
genetate antibunched photons 1n a fiequency band
(V — A, V)—iegaidless of the value of Ty The statistics
of these photons 1s the supeiposition (15) of binomial
distiibutions, inherited fiom the electionic binomial dis-
tribution Theie aie no stringent conditions on the band
width A, as long as 1t 1s <V/2 (in oider to pievent multt-
photon excitations by a single electron [16]) This should
make 1t feasible to use the ciross-coiielation technique of
Ref [1] to detect the emission of nonclassical miciowaves
by a quantum point contact
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Foundation NWO/FOM

[1] J Gabelli, L-H Reydellet, G Feve, ] M Berromu,
B Plagais, P Roche, and D C Glattli, Phys Rev Lett
93, 056801 (2004)

[2] R Hanbuiy Brown and R Q Twiss, Nature (London) 177,
27 (1956)

[3] CW JBeenakker and H Schomerus, Phys Rev Lett 86,
700 (2001)

[4] Sub-Poissoman radiation 1s called “nonclassical” be-
cause 11s photocount statistics cannot be interpreted 1n
classical tetms as a superposition of Poisson processes
See L Mandel and E Wolf, Optical Coherence and
Quantum Optics (Cambiidge Unmiversity, Cambridge,
1995)

I3

096801-4

(3]

(6l

(7]

(8]
[9]

[10]

tn

[12]

[13]

[14]

[15]

[16]

J Kim, O Benson, H Kan, and Y Yamamoto, Nature
(London) 397, 500 (1999), C Santori, M Pelton,
G Solomon, Y Dale, and Y Yamamoto, Phys Rev
Lett 86, 1502 (2001)

P Michlet, A Imamoglu, M D Mason, PJ Caison, G F
Stiouse, and S K Buratto, Nature (London) 406, 968
(2000), P Michler, A Kiraz, C Bechet, WV Schoenfeld,
P M Petioff, L Zhang, E Hu, and A Imamoglu, Science
290, 2282 (2000)

Z 1. Yuan, B E Kaidynal, R M Stevenson, A J Shields,
CJ Lobo, K Cooper, N S Beattie, D A Ritchie, and
M Pepper, Science 295, 102 (2002)

L S Levitov and G B Lesovik, JETP Lett 58, 230
(1993)

The negatwve-binonual  distuibution  P(n) « (”*l',“)x
[v/{n) + 1]7" counts the number ol partitions of n bo-
sons among v = 78w/27r states in a fiequency interval
8w The binomal distiibution P(n) « vn[v/{n) — 1] *
counts the number of pattitions ol n fermions among v
states

Equation (0) 1s the multimatiix generalization of the
well-known 1dentity exp(bTAb) = N exp[bl(e* — 1)b]
K E Cahill and R J Glauber, Phys Rev A 59, 1538
(1999)

R Aguado and L. P Kouwenhoven, Phys Rev Lett 84,
1986 (2000)

The saddle pomt 15 at z, = 0, so to mtcgrate out the
Gaussian fluctuations around the saddle point we may
Iineatize the determinant in Eq (10) [],Detl + T, (1 —
T)EX] = exp[£STIX + O(X?)] The result 1s Eq (12)
Factorial cumulants aie constructed fiom factorial mo-
ments 1n the usual way The hist two aie (1)), = {n)
{n?)y, = (1Y) —{n)*> = Vain — (n)

Using computer algebra, we find that In{Det[1 + £7T(1 —
XD =5M 1 + méyyT(1 - T)2m/7)], for each
mattix dimensionality M that we could check We are
confident that this closed form holds for all M, but we
have not yet found an analytical proof Equation (15)
follows 1n the limit M = 7A /27 — oo upon conversion
of the summation into an 1ntegration

Muluphoton excitations do not contribute to Varn 1f
7, €{0 1/2 1} for all n [cf Ref [3], Eq (19)] For a
quantum point contact, one finds that antibunching pet-
sists when A > V/2 provided that Ty(1 — Ty) > 1/6

096801-4




