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Ehrenfest-Time-Dependent Excitation Gap in a Chaotic Andreev Billiard
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A semiclassical theory is developed for the appeaiance of an excitation gap in a ballistic chaotic
cavity connected by a point contact to a supeiconductor Diffraction at the pomt contact is a Singular
peiturbation in the hmit h — <· 0, which opens up a gap £gap in the excitation spectrum The time scale
K/Egv

 K or~' InÄ (with a the Lyapunov exponent) is the Ehrenfest time, the charactensüc time scale of
quantum chaos
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The density of states m a noimal metal is suppressed
near the Feimi eneigy when it is brought into contact
with a superconductoi The history of this pioximity
effect goes back to the 1960s [1] It was undeistood early
on [2] that the eneigy lange of the suppiession is the
inveise of the typical life time TC of an electron 01 hole
quasiparticle m the noimal metal This hfetime is finite
(even at zeio tempeiatuie) because an election is con-
verted into a hole by Andieev leflection at the inteiface
with the supeiconductoi [3] The eneigy scale Ec = K/TC,
known äs the Thouless energy, is the pioduct of the mean
level spacing δ in the normal metal and the dimensionless
conductance of the contact to the superconductoi (Foi
example, Ec = N8 foi coupling via an ./V-channel balhs-
tic pomt contact) The appeaiance of an excitation gap of
the oidei of the Thouless eneigy is the essence of the
traditional proximity effect

Some yeais ago it was leahzed [4-9] that the pioxim-
ity effect is essentially different if the noimal metal
becomes so small and clean that scattenng by impunties
can be neglected This apphes to a quantum dot in a two-
dimensional electron gas [10], and because of the resem-
blance to a bilhard (cf Fig 1) one speaks of an "Andieev
bilhaid" [11,12] Dependmg on the shape of the bilhard,
the classical dynamics vanes between mtegiable and
chaotic No excitation gap is mduced by the pioximity
effect m an mtegiable bilhaid [4,8] An excitation gap
does appeai m a chaotic bilhaid [4,6], but its magnitude is
given by the Thouless eneigy only if the chaos sets in
sufficiently lapidly [5,9]

The chaiactenstic time scale of quantum chaos is the
Ehienfest time TE = α~] ln(L/AF), defined in teims of
the Lyapunov exponent a (bemg the täte at which neaiby
tiajectones diveige exponentially in time) and the lelative
magnitude of the Feimi wavelength ΛΡ = 27r/kF and a
typical dimension L of the bilhaid [13] Chaotic dynam-
ics lequnes a~' <3< rc, but rE could be eithei smallei 01
laigei than rc In the legime TE « rc the excitation gap is
set äs usual by the Thouless eneigy Estabhshed tech-
mques (landom-matiix theoiy, nonhnear σ model) pio-
vide a complete descuption of this legime [4,14-16]
The opposite legime TE :» rc has no analog in the con-

ventional pioximity effect Random-matrix theory is
helpless and this legime has also shown a frustiatmg
lesihence to solution by means of the ballistic σ model
[9] In particular, no mechamsm has yet been demon-
strated to pioduce the haid gap at K/TE conjectured by
Loddei and Nazarov [5]

Heie we lepoit an attack on this pioblem by an alter-
native approach, staiting fiom the semiclassical Andreev
appioximation to the Bogohubov-De Gennes (BdG)
equation [3] The hmit TE —»· oo yields the Bohi-
Sommeifeld appioximation to the density of states [4-6],

2 (£c/4£)2cosh(£c/4£)
ς u2/·!-· / Λ Γ Λ 'ö smh (EC/4E)

(1)

which is gapless (cf Fig 1) We have found that diffraction
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FIG l Solid cuive Density of states pBS of a chaotic
Andieev bilhaid (inset), which is gapless accoidmg to the
semiclassical Bohr-Sommeifeld appioximation (1) The dashed
line mdicates schematically the phenomenon that we seek to
descnbe in this papei The opening of a gap at the inveise
Ehienfest time äs a lesult of diffiaction at the contact with the
supeiconductor
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at the contact with the superconductor is a singular
perturbation to pBg that opens up a gap at the inverse
Ehrenfest time, and provides an intuitively appealing
mechanism for the gap phenomenon.

We recall the basic equations. The electron and hole
components M (r) and v(r) of the spinor wave function
satisfy the BdG equation

H Δ
Δ* -Η

= E\ (2)

which contains the single-particle Hamiltonian H =
-V2 + V (r) — Ep (with confining potential V) and the
pair potential Δ (r) (vanishing in the normal metal and
equal to Δ0 in the superconductor). The energy E is
measured relative to the Fermi energy EP = kp, in units
such that h2/2m = 1. (In these units the mean level
spacing <5 is related to the area Λ of the billiard by δ =
47r/JzL.) We assume that the motion inside the billiard is
ballistic (V = 0) and that the interface with the super-
conductor is a ballistic point contact of width W » AF (so
that the number of channels N = 2W/ÄF » l and the
Thouless energy Ec = Νδ » δ). We work in the regime
Δ0 » Hvp/W (which also implies Δ0 » Ec), to ensure
that the excitation spectrum is independent of the proper-
ties of the superconductor.

For a semiclassical description one substitutes (u, v) =
(ü, v)Ae's, with HS the action along a classical trajectory
at the Fermi energy. The wave amplitude A is related to
the classical action by the continuity equation V ·
(A2VS) = 0, while 5 itself satisfies the Hamilton-Jacobi
equation |VS|2 = Ep — V (so that KV S is the momentum
along the trajectory). The BdG equation takes the form

-2ikF^s + δH Δ γ Μ
Δ* 2ikFds-SHj\v

= M
v (3)

with SHü = -A~lV2(Aü). The derivative ds =
kpl(VS) · V is taken along the classical trajectory. The
Andreev approximation consists in neglecting the term
δΗ containing second derivatives of the slowly varying
functions A, ü, v.

We consider a classical trajectory that Starts äs an
electron at a point q 6Ξ (0, W) along the interface with
the superconductor, making an angle φ £Ξ (—ττ/2, ττ/2)
with the normal (cf. Fig. 1). The product b = q cos^> is the
"impact parameter." The trajectory returns to the inter-
face after a path length €, and then it is retraced in the
opposite direction äs a hole. The coordinate s G (0, €)
runs along one repetition of this trajectory. We count
trajectories with measure dqdsinφ = db αφ, corre-
sponding to a uniform measure in phase space.
Equivalently, we can sum over scattering channels « =
1,2, ...N, related to φ by n ~ N\ sin<£|.

If we ignore the term δΗ in Eq. (3) we recover the
Bohr-Sommerfeld density of states [4-6]. Indeed, with-
out δΗ the solution of the eigenvalue problem is

innTS/2(
Em = e, (4)

with m= ± l, ±3, ±5 ... running over positive and nega-
tive odd integers. The path length i in a chaotic billiard
varies in a quasirandom way upon varying the initial
conditions q and φλ with an exponential distribution
P(C) = Γ1 exp(-€/€). (The mean path length is l =
47rkp/Ec [17].) The density of states

p(E) = δ[Ε - (5)
m=l,3,5

then evaluates to the PBS of Eq. (1).
The key assumption that will enable us to go beyond the

Andreev and Bohr-Sommerfeld approximations is to as-
sume that the amplitude A varies more slowly in space
than the spinor components ü and v, so that we can
approximate δΗ by —V2 (neglecting derivatives of A).
The characteristic length scale LA for the spatial depen-
dence of A is set by the smoothness of the confining
potential V, while the characteristic length scale for
ü, v is the contact width W. By assuming LA » W we
consider the case that diffraction occurs predominantly at
the interface with the superconductor, rather than inside
the billiard. Since A depends on the shape of the billiard,
this is the regime in which we can hope to obtain a
geometry-independent "universal" result.

To investigate the effect of 8H we restrict the dimen-
sionality of the Hubert space in two ways: First, we
neglect any mixing of the W scattering channels. (This
is known to be a good approximation of the diffraction
that occurs when a narrow constriction opens abruptly
into a wide region [18]; it does not require smooth corners
in the contact.) Second, since we are interested in excita-
tion energies E « Ec, we include only the two lowest
eigenstates m = ± l of the zeroth-order solution (4). [The
contributions from higher levels are smaller by a factor
exp(-£c/2£·).] We need to include both Et and £_b

although the excitation spectrum contains only positive
eigenvalues, because of the (virtual) transitions between
these two levels induced by δΗ. With these restrictions
we have for each scattering channel a one-dimensional
eigenvalue problem. The effective Hamiltonian J~Ceff
is a 2 X 2 matrix differential operator acting on func-
tions of b.

We write 3~C ̂  — 3~Co + 3~C \ , where 3-C$ corresponds
to the Andreev approximation and 3~C\ contains the dif-
fractive effects. The zeroth-order term is diagonal,

0

0 (6)

The relation between € and b is determined by the differ-
ential equation d f / d b = g(b) exp(/c€), which expresses
the exponential divergence of nearby trajectories (in
terms of a Lyapunov exponent κ = a/vF given äs inverse
length rather than inverse time). The preexponential g(b)
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is of order unity, changing sign at extrema of €(£>). Upon
Integration one obtains

= - ln\Kb\ + 0(1), \xb\ (7)

where we have shifted the origin of b such that b = 0
corresponds to a local maximum €max » € of ((b). [The
logarithmic singularity is cut off at \xb\ ^
exp(—/c€max).] Therejs an exponentially large number
JV(€) <x exp(/c£ - €/€) of peaks around which Eq. (7)
applies.

To obtain the diffractive correction 3~C\, in the regime
that δ H — —V2, we express the Laplacian in the local
displacements ds and db for fixed φ. The functional form
of the transformation is

χ = , b), (8)

where \φ(ί, b) is the classical trajectory specified by the
initial (i.e., s = 0) direction φ and impact parameter b.
The resulting partial differential operators are äs follows:
(i) ö2, which has a prefactor of order 1; (ii) dsdb, which
has a prefactor proportional to (ö^x^ · dbx</,); and (iii) d2,
which has a prefactor proportional to |θ^χ^,|~2 — e~2i".
The first term ö2 is a small correction to the zeroth-order
density of states. The second term has a prefactor that is
rapidly fluctuating with i and has zero average, thus will
be subdominant. The third term, in contrast, is a Singular
perturbation because it associates a kinetic energy with
the variable b. The resulting zero-point motion implies a
nonzero ground state energy, and hence it is responsible
for the opening of an excitation gap. Projecting 3~Cl (with
dH = — e~2i"d|) onto the space spanned by the two low-
est eigenfunctions n — ±1 of Eq. (4), and retaining only
the leading order terms in l//c€, we find

·— i db

The effective Hamiltonian can be brought into a more
familiär form by the unitary transformation 5~Totf —>
e~"T''rr/43-[ette

ia''^4 (with σ, a Pauli matrix), followed
by the change of variable χ = Kb — xb \n\xb\ (in the
ränge \x\ < 1). We work again to leading order in
and find

-ed2 -//ln|jc|

(10)

This effective Hamiltonian has the same form äs the BdG
Hamiltonian (2), for a fictitious one-dimensional System
having V = EF and having a pair potential A(JC) that
vanishes logarithmically α 1/1η|χ| at the origin (cf.
Fig. 2). The kinetic energy e d2 gives a finite excitation
gap, even though e <3C 1. Let us now compute this gap.

Since e"72'"'/43-{2

tte~'a~2'n~/4 is a diagonal matrix,
the spectrum of 3-Left is given by the scalar eigenvalue
problem
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FIG. 2. Low-energy density of states p(E) of the effective
Hamiltonian (10), related to ρ(ω) of the biharmonic Eq. (14)
by Eq. (18). The plot is for | lne| = 10 and has been smoothed
with a Lorentzian. The inset shows the loganthmic pair
potential appearing in 3~Cefi, the ground state of which is the
excitation gap (dashed line).

dx2 (—y\7TkfK J
ψ(λ-). (H)

The ground state energy is the excitation gap Zsgap. To
generate an asymptotic expansion of Egap for small e, we
first multiply both sides of Eq. (11) by a factor Z2 and then
substitute χ = X-JeZ. This results in

dX2 + iU ZLV,
rrkfKj

(12)

(13)
IneZ [_ IneZ

We now choose Z such that Z2 = — ln3eZ and obtain the
biharmonic equation

(d4/dX4 + 161η|Χ|)Ψ = ω Ψ, (14)

ω = (ZE/TTkFK)2 - 4Ζ2/3 + (15)

The ground state of Eq. (14) is at ω0 = 14.5.
Substituting in Eq. (15), and using Z2//3 = | lne| —
|ln| lne| + 0(1 /Ine), we arrive at

_
gap

| lne|

31n|lne|

2|lne| 8|lne|
0(lne)

"l
(16)

Only the leading order term is significant in view of the
approximations made in Eq. (10). Restoring the original
variables we have

237002-3 237002-3



VOLUME 89, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 2 DECEMBER 2002

-gap (17)

The Ehrenfest time TE = a ' ln(L/AF) contams the clas-
sical length L — vF/a, which is of the oider of the linear
dimension of the bilhard

The density of states ρ(ω) of the biharmomc Eq (14)
can be calculated numencally [19] The density of states
p (E) neai the gap is lelated to ρ(ω) by

P(E) = - 1)1

(18)

and is plotted in Fig 2 for | lne| = 10 The factor ^V <*
e\p(TrkPK/ESäp — Ec/ES!ip) counts the number of peaks m
•C(b) around which 3~Csif applies The Bohr-Sommerfeld
approximation (1) conesponds to the large-ω asymptote
ρ(ω) = ^exp(<y/16) Since ω — ω0 » l imphes
£/£gap- l » l/ | lne |, the width Δ.Ε =* Egap/| lne| of
the energy lange above the gap in which the Bohi-
Sommeifeld appioximation breaks down is small com-
paied to the gap itself

Because ^/"etf has or|ly a fgw levels m the lange A.E,
the density of states p(E) oscillates stiongly in this lange
The levels aie highly degenerate (by a factoi 5V) in our
appioximation Tunneling between the levels will remove
the degeneracy and smooth the oscillations (A small
amount of smoothing has been inserted by band in
Fig 2 ) These density of states oscillations with a penod
set by the Ehrenfest time aie lemimscent of those found
by Aleiner and Larkm in the energy level coirelation
function of a normal metal [13]

In conclusion, we have analyzed a mechanism for the
"gap phenomenon" m the proximity effect of chaotic
Systems Diffiaction at the contact with the superconduc-
tor is descnbed by an effective Hamiltoman 5/eff that

contams (i) a kmetic eneigy which vamshes m the clas-
sical hmit and (π) a pan potential with a loganthmic
piofile The resultmg excitation gap E£ap (being the
giound state eneigy of 3~Cttf) vamshes loganthmically
äs theiatio of the Fei mi wavelength and a classical length
scale (set by the Lyapunov exponent) goes to zeio The
time scale fi/Esap is the Ehienfest time, providing a
mamfestation of quantum chaos m the supeiconductmg
proximity effect
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