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No. 193.

COMMUNICATION FROM THE OBSERVATORY AT LEIDEN.

The expanding universe. Discussion of Lemaitre’s solution of the equations of the
inertial field, by /2. de Sitter.

1. The differential equations.

In B. 4. N. 185 it was pointed out that neither of
the two possible static solutions of the differential
equations

(1) Gu—ig

‘U.V S wv

can represent the observed facts of a finite density
of matter in space and a systematic velocity of
recession of the extragalactic nebulae proportional
to the distance, and mention was made of the non-
static solution found by Dr. LEMAITRE, which is
compatible with these two observed facts. In the
present article I will discuss some of the consequences
of this solution, and will begin by recapitulating it
in a notation slightly different from LEMAITRE’s own. *)
The conditions of perfect spherical symmetry (iso-
tropy) and perfect homogeneity require the three-
dimensional space to be of constant curvature, the
three-dimensional line-element thus being

(2) R°ds® = R [dy’ + sin®y (A" + sin®§ &6%)].
Further the material energy tensor is assumed to be
Tyi=—¢i2,

where p = p, 4+ 3 is the “relative” density, p, being
the material, or “invariant” density, and p is the
pressure, made up of the ‘kinematical”’ pressure
corresponding to the random motions of the particles,
or “molecules”, of which the matter is conceived to
consist, and the radiation pressure corresponding to
the energy of radiation which may be present.
The four-dimensional line-element then is

ds" = — R*ds" + fdr'.

In LEMAITRE’s solution R and f are taken to be func-
tions of ¢ alone. Since we can always put fds* = c*d*

G-{—lg‘w—l—xfwzo

Tiyy=0, T, =gup

1) A full discussion is also contained in a paper by Professor
EDDINGTON on the instability of Einstein’s spherical world, which
is to appear in the May number of the Mom‘lz[y Nolwes of
the R.A.S.

and use 7 as a new independent variable, we may take
[ = ¢ ¢ being the velocity of light.

The equations (1) then become, if we denote dif-
ferential quotients d[cd? by dots,

2R R .
K+.R2+R2_ _ﬁﬁ
(3) -
R°+R (1+np)

and the equation of energy is

. R
(4) P+3E(P+P):0-
LEMAITRE puts
24
<5) %Po = R‘g ’ 1) —_ '@—

The equation (4) can then be written
@) Ra+38=o0.

The three equations (3) and (4), or (3) and (4') are
not independent of each other: (4') can easily be derived
from (3). We will use the second of (3) and (4').
An assumption regarding «, or 3, must evidently be
added in order to make a complete solution possible.
The total volume of space is w* R3, consequently the
total mass is, by (5), n*afx. This LEMAITRE takes to
be constant, and consequently by (4') (3 is also constant.

LEMAITRE takes 3 = o.
If we put

6) =RV, A+d=oayi, e¢=3B.2,

A being a constant number, which must evidently be
positive, then y, d, ¢ are pure numbers, independent
of the choiece of units.” The equations then become

o 1y 74 —3y°+Ay+ydte
y ==k . —
7) 3 Y
70 +e=o.
It will be shown in article 5 that there is observational
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212 LEIDEN

evidence that d and ¢ are both very small, and A is
supposed to be so chosen that also ¢ itself is small.
LEMAITRE takes A = 2 for reasons which will appear
further on. ‘

The constant A is an absolute constant of the
dimension L—2, and can be made equal to unity by
an appropriate choice of the unit of length. If this
is done, and if 0 and ¢ are neglected, and A = 2 is
adopted, the equation for y becomes

7 '2_.1/3—3'1/—’;_2
(7" V=

2. Integration. ‘ _
Although (7) is probably the simplest form to which
the equations can be reduced, we will use a slightly
more general form, which is derived from the second
equation of (3) by putting
S
E=g
R, being a certain initial value. The equation then
becomes of the form
w1, 2°
(8) Z = g k :}:7,
where Z® is of the fourth degree in 2, the term
in 23 being absent. By an appropriate choice of &, we

~can give the four roots of the equation Z*=o the

values 1 + V—a and — 1 + V'1— 4. We then have

(9) ZP=(*—2z+1+4+a)(s*+25+0)
and

R 3

=3"a=%

« 6(1+a—20)
(IO) -'E;._—-———‘-s——a_b
B (1+a)b

R 3—a—0b"

We will assume provisionally that « and 3, and
consequently also 2 and 4, are constants.
Comparing with (6) we have

2(1 +a—9b) _ (14+a)b
< a_’_é>3/2 | _< a‘-[_&>2 |
I — I —

3 3

thus A =2, d =¢=o0 corresponds to 2 =& —=o. Like
0 and ¢ @ and & are pure numbers, independent of
the choice of units.

If we introduce a new unit of time, by putting

(11) 't:‘/%.ct,

A+0=

© Astronomical Institutes of The Netherlands e
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the relation between z and 1, i. e. between the radius
of the universe and the time, is given by

(12) r—ro:fz—g,—z )

7, being a constant. If we put further
r=z—1, .

(13) B—31b,

X =" 4 4x + B,
the integral (12) becomes

d.
(12) r—r(,:f—(x —|—_I);__x_
. XV +a
which is an elliptic integral of the third kind. In the
case a =0 it can be integrated by logarithms, thus:
r+X—8
r+ X+ B
The first term becomes positively infinite for x = co,
the second term becomes negatively infinite for x—=o,
i.e. 2= 1, R=R,. The radius of the universe thus
increases from R, at #= — oo to infinity at £ =+ oo,
both the initial and the final value being reached
asymptotically. This is the solution of LEMAITRE, who,
however, only considers the case § =0, B=1/3.

)

't
(14) ==l +X+2)+ 5k

3. Special cases.

The condition @ = o is the condition that the equation
Z® = o shall have a double root, which, by the choice
of R,, has the value z, = 1. If a is different from zero
this double root separates into two separate ones
Z, =1+ V—a. If a is negative these are real, and
the larger of the two, 2z, = I + V' — 4, must be taken
as the lower limit of the integral: the radius increases
from R = R, 2, to R = . If a is positive the two
roots are imaginary and the lower limit of the integral
must be taken zero: the radius increases from R = o
to R = . In both cases the upper limit £ = oo is
still reached asymptotically, but the time taken to
reach any finite value R, from the initial value R, z,
or o is finite, and of the order of magnitude of the
radius R, or R,, itself, i. e. of the order of 109 years.
This short time scale would tempt us to assume, as
LEMAITRE does, that the true value of 2 in the actual
universe is zero. It should be remarked, however, that
this does not help us very much. The logarithmic
infinity of —7 does not begin to assert itself until very
near the limiting value z =1, and the time taken by
the radius to increase from any initial value 2z, > 1
to a larger value 2z, is practically the same for all
values of & for which the value z, can be reached at
all. In consequence of (10) the value of & is limited
to —1 4+ &6<la<3—0

The value of 4 has very little influence on the value
of the integral. Evidently, by (10), & lies necessarily
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between the limits 0 and the smaller of the two quantities
3—a and I 4 a. In the actual universe it is probably
very small, of the order of 1075, as will be shown
below in art. 5.

In the accompanying diagram the relation between
7 and z has been plotted for some special values of
@ and 6. These are, 1, being t—7, for z = z,,

I b—=0 a—o 2o — 1 Ty = —
II. b=0 a=—01 z,=11 —3'35
II1. b—0 a—+01 z,—O — 1-80
IV. =0 a—=-—'1 2o = 1°3162 — 205
V. b=0 a=-+"1 2, =0 — 125
VI. =0 a=-—1 o= 2 — 049
VII. é=1 a=o Zo =1 —
5
4 b
3 -
2 L e, - '/
~~~~~~~~~~~~~~~~~~~~~~~ '8
I___==
I
= h's
o) L ! I Il 1
—3 —2 —1I ) +1
Relation between z and ©—7,.

The vertical coordinate is z, the horizontal coordinate is t—7o.

— The cases II, III, IV, V were treated by numerical
integration. The constant of integration t, was so chosen
as to bring the curves into coincidence for large values
of z.

The case VII, e —=o0, 6 =1 gives « = 0. This is
thus a universe filled with radiation, but without any
material mass. The integral (12) is in this case

(15)

It will be seen that the expansion of the radius of
this universe from R = R, to R = o takes place in
almost exactly the same way as in the case I, which
is a universe filled with matter but without any radiation
(or other pressure). ‘

The case VI, a = —1, b =0, givesa =0, 3 =0,

T—T, = g V(z—l) (g4 1).

LEIDEN 213

i.e. an entirely empty universe, without either matter
or radiation. The integral in this case is
(16) 1—1, = lg (s + Ve —4),
which is equivalent to
2z = 2cosh (t—1,),
or
(16") R =R, cosh (t—1,), R, =2 R,
This is identical to the solution (B), viz:
(17) ds* = — R.” [dp* + sin? p(d)? + sin* § 26%)] +
+ R.” cos®p du.
By the transformation
sinp = cosh 7. siny
tanh # = tanh 7. sec yx
the line-element (17) is transformed into
(17") ds* = — R,”cosh® t[y? + sin?® y (d{? + sin*$ @6*) | +
+ R,* dr.
We have in this case, by (10), R, A =
consequently, by (11), R,dt = cdt. ) :

3, and

4. Determination of the constants.

The radius vector is » = Ry. Consequently the radial

velocity is
v . .
—= Ry + yR.

If the coordinate y has no systematic motion, which
will be shown below to be the case, the systematic radial
velocity is proportional to the radius vector. Thus:

v_&_;

(18) v Rz

We have found in B. A. V. 185 that the extra-
galactic nebulae do show a systematic radial velocity
proportional the distance, and we have determined
the ratio

14 I
iy Ry = 2000 A.
By (8) and (18) we have thus
1 rZ°
(19 R~ 3ar

the suffix 1 denoting the values at the present moment.
In EINSTEIN’s solution (4) we have, on the other
hand ?) '

2
E:x (Po+4p))

1) The solution (B) can thus be considered as a static or a
non-static solution at will. That this is. possible is due to the
fact that in it the four-dimensional space is isotropic and of
constant curvature.

2) See DE SITTER, On Einstein's theory of gravitation and
its astronomical consequences, third paper, M. V. Ixxviii (1917),
p. 21, footnote. It should be noted that the quantity called g,
in the formulas of that footnote is our p==po+ 3 2.
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which, with p, = 2.1072% gr.cm~3, p = o, gives
= 2300 4
and consequently, by (5) and (10),

. 3(1+a—06)z,+2(1+a)d
RA 32,4

(20)
Eliminating 4 from (19) and (20) we find for 2, the
equation of the fourth degree
(21)  Z° —(.z'I —28,+1+4a) (g2 +22,+6)=
[3(1 +a—0)z,+2(1+a)b]

If we put 6 =o0, the equation becomes of the third
degree, viz:

(21) 23— (3—a)z + <2—-3R )(1+a)_o,

and substituting the value of R4/Rz=1'15, or very
nearly

Ri _ 4
Rs* ™ 3
we find
(21 23—32,—2+a(s,—2)=0,
from which
(22) 2, = 2,

independent of the value of . This is an accidental
circumstance. If we had taken any other value of
R,’[R5® the value of 2z, would, of course, depend on a.
Then from (19) or (20) we can find A, and then &,
from the first of (10). If we take 4 =0 we have

1 2,3

T1+a RS

(23) 3(+a) +a) RS
RS = =

3—a 313

Now, if R4°|R5s" is not too small, the preponderating

terms in (21') are
. 14 a)
R32 ( ’

233

or )
RS Ry
N —————~ )
23 3(1+4+a)

and consequently

(23) XNRBz, R,

The values of 1 and R, thus depend almost entirely
on Rp, and not on R4, as might be suggested by (23).
It has been already remarked in B. 4. V. 185 that
the uncertainty of the adopted value of Rp is probably
not more than corresponds to a probable error of a
fourth or a fifth of the amount, while &4 which

R
3—a’

LEIDEN
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depends on 1/p,, may be uncertain by a factor of 10,
or more. The product R.* 1 is, of course, independent
of both R4 and Rp.

Consequently R, and A are known within narrow
limits of uncertainty. The present radius R, = R, 2.,
depends on R4, and is much less certain.

Taking R,’|Rs’ = 4/3 we find for some of the special
cases considered in the preceding article

I RiPA=1 ,3::—=2 , Ro=8164,) =15 .1064"*
0°997 2 811 1°515
(24) III ~ 1'003 2 819 1485
VII: I's 1623 877 1'950

For the case VI, 6=0, a=—1, we have p,+4p=0,
and the formulas of the present article are not applic-
able. They would lead to A = », R, = o, which is
devoid of meaning. -

If we take another value for p,, and consequently
for R,°|R5", the values of z,, R, and A are changed,
R, A remaining the same. For the case I (2 =0, 6=0)
taking p, = 2.107%°, R4°|Rz’ = 400/3, we find
(24') 2:.=749, R,=11264,

By (23') the maximum value of R, (for very small p,)
is L Rpy/3=11554.

As a compromise it is perhaps convement to adopt
an intermediate value, which gives &, = 10004,
A=10"%4—* for case I. This value is

Ry
(25) 52—72’

A=o0787.10 4=

o= 3'73.107%9.

The time scale depends on A, one division in the

figure on page 213 corresponding to
t/r = 1°057 V/(3/#).10° years.

The present position on the curve is given by z,.
The unit of the vertical coordinate in the figure is R..
For the value (25) of R, /Rs* we have, for some of
the curves of the series VI-IV-II-I-III-V..... , all of
which have & — o, while a varies from — 1 to + 3:

a=+o01(V): 2,=3129, R,—10584, é: 1850 y*

o (I 3'064 1000 1830 -
(26) —o1 (II) 2998 967 1800
— 05 2676 802 1585

The total material mass of the universe is
27 I4a—2b
Tz 1—L(a@a+b’
the numerical factor being 2 n*/x = 1'060.10%® gr.cm™*,
and is thus of the order of 105 grams.

RO)

5. Discussion of the pressurve. Transformation of
matter into radiation.

The stars — or the galactic systems (nebulae) into
which they are congregated — are continually radiating

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1930BAN.....5..211D&amp;db_key=AST

DBAN ;I 5: [ZL1DC

rt

B. A.N. 193.

away energy, by which their mass is diminished.
According to the formulas (15) and (16) of B.4./V. 185
the absolute magnitude (visual) of the spiral nebulae
is — 15'56 and of the elliptical nebulae — 16-06. The
Jatter number is too uncertain to merit any confidence.
If we adopt the former, the difference in absolute
magnitude with the sun is — 204, and the radiation
from one spiral consequently is 1-5 X 10® times that
of the sun, or 2.10°® grams per year. The assumed
mass was 2.10% grams. Thus, if we chose the unit
of time so as to make ¢=1 corresponding to our
unit of distance of 14 = 10°* cm, i. e. approximately
a million years, the rate of conversion of matter into
energy would be:

& —IO0
(27) S= o

The radiation may have been underestimated, as
we have neglected the reduction from visual to bolo-
metric magnitude for the spirals, but, so far as the
stellar radiation from the spirals is involved, this can
hardly amount to more than one or two tenths of a
magnitude, and also other radiations — penetrating
radiation, etc. — cannot contribute much. The uncer-
tainty on this account does probably not amount to
more than a factor of 2. On the other hand the mass

may have been overestimated. Perhaps on the whole |

109 may be thought more probable than the value
(27). This. would correspond closely to the rate of
generation of energy by a dwarf of somewhat later
type than the sun.

We can measure the rate of conversion of matter
into radiant energy against the rate of expansion of
the universe, by putting

o R
(28) 2=V B
y being positive. The value (27) of «fx gives for the
value of y at the present moment *) y = 2.1077. It
is not probable that y will be a constant throughout
the evolution of the universe, but as its true value
for the distant past and future is unknown, the best
we can do is to treat it as a constant. Consequently

a = o, R—Y )
and consequently
- —_— ao
(29) #Po = iy

1) In a paper (Proc. Nat. Acad. of Sci., Washington, April
1930), which comes to hand while the present note is being
prepared for the press, R. C. TOLMAN gives an approximate
solution of the equations (3), which leads to the value y =3
(Z.c. p. 331). This seems inadmissible. See also the last article
of the present paper.
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Then (4') gives

oy N
= () + BN R!—/,
p=F 3(1—y)

and consequently

_ By I
(30) xp_ﬁ+m.ﬁ—+~,’.

The second term is the pressure of the radiation
produced by the radiating matter. If we suppose that
there is no radiation in the universe not emanated
from matter, then the first term represents the kine-
matical pressure, corresponding to the random motions
of the extragalactic nebulae, considered as the molecules
of a gas. According to HUBBLE, and to our own finding
in B. A. V. 185, these random motions are of the order
of 150 kmy/sec, or 0'5.1073. The ratio p!p, *) between
the kinematic pressure and the density is equal to the
square of this, or 1.107% Consequently, if we neglect
the second term ‘of (30), we have by (10) for the
present moment:

_’(I—-I-ll)b — 1 106,
6(t+a—b8z"7 4

It follows that & is of the order of magnitude of
10~% or 1075,

Neglecting the second term of (30), i.e. treating «
and 3 as constants, we have -

2 _ const.
(31) 0= R
and consequently the random motions should decrease

as 1[y/R.
. Turning now to the second term of (30), we find
that the total amount of radiation pressure in the
universe, so far as it originates from the radiation of
the stars and other matter, is n? R3p, or

T A,y

% 3(1—y)
and consequently, since y is positive, the total amount
of radiation decreases as a consequence of the con-
version of matter into radiation. The explanation
of this paradox is simple. By the adiabatic expansion
of the universe the pressure is diminished, and this
more than counterbalances the increase by the conver-
sion of matter into radiation. This can easily be
verified by making up the account of loss and gain
of energy. If we denote the total amount of radiative
energy in the universe by £, and the total material
mass by M, the change of energy is

E=FE, +E,

R—7

b

1) Strictly speaking we should use the ratio p/(po + 4 2)
(see EDDINGTON, Mathematical theory of relativity, p. 122).
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where E, is the gain by the conversion of matter, thus

: . R
E=—M=yMZ,

and £, is the loss by degradation consequent on the
increase of wavelength corresponding to the receding
velocities by Doppler’s principle. Thus, by Planck’s
equation £= /v, we have

£ s R
E“ v R’
as will be shown in the next article. Consequently
| R
or, since M =mn*R3p,[2, by (29)
ER+RE':7MR:§;¢° y]?—“/j?,
from which

(32) E=T 21

R,
% I—'}'

which, by n® R3 pf/a =1 E is identical with the second
term of (30).

The new theory thus incidentally gives an answer
to the old question what becomes of the energy that
is continually being poured out into space by the
stars. It is used up, and more than used up, by the
work done in expanding the universe. Nevertheless
it would not be correct to say that the universe is
expanded 4y the radiation pressure. It would expand
just the same if y were zero, ie. if no radiation
was emitted by matter. The expansion is due to the
constant A

In the integration of the differential equation for
ER we have omitted to add a constant of integration.
This would in (32) give an additional term

E,

—.E ’
which represents the initial energy of radiation, if
any, not emanated from matter, and forms part of
the first term of (30). This, like the kinematical
pressure, diminishes proportional to 1/R by the adiabatic
expansion of the universe.

It should be kept in mind that the approximation

y = constant is not supported (nor contradicted) by
any observational evidence. The formulae derived in
the present article can thus only be considered as
describing the state and rate of change of the universe
at the present moment, and must not be used for
extrapolation into the distant past or future,

B. A.N. 193.

6. Rays of light.

We have seen in the preceding article that a is
very small. We can thus, in discussing the phenomena
in the actual universe at the present moment, as a
good approximation treat « and (3, and consequently
also @ and &, as constants, as was already done above.
Also we can, with sufficient approximation, take 4 — o.

For a ray of light ds = o, and therefore do—cd?|R.
The equation of a ray travelling between two points
characterised by the coordinates o and o, is thus

%

N 3 dz
(33) G'x—G—Cf’R‘—l/m 7

where 2z, and z are the radii of the universe, in R,
as unit, at the times when the light travelled through
the points @, and o respectively. In the case I of art.
3 (¢ =0, =0) we have thus

I 4+ X—V3

o':‘/ke21

(34) o, —

S

Consider two successive light pulses leaving ¢ at
a time interval d# From (33) we have

o, 61,‘_0
R, R
or

L R,
0t v, A R
where v and A are the emitted, v, and 1, the observed

frequency and wavelength, if the source and the
observer are at ¢ and ¢, respectively. Therefore

Mh—A R —R  s,—=z

from which we can find the radius 2z, if 2, is given.
The emitted wavelength 1, of course, is a constant
for every particular kind of radiation. The formula (35)
thus gives the displacement towards the red (A, >0
for light travelling from the past towards the future
(¢. > 2). For relatively short intervals we can take

R,—R=0R=R.cOt = R.r,

» being the distance travelled. Further we then have,
by Doppler’s principle,

Z )

c %
and consequently

vV _ R
(18) e

For larger intervals the distance computed by (18)
will be much smaller than the correct value found
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from (33) with the value of z derived from (35).
For the case I (@ = o) of art. 3 we have the following
comparison between ¢’ = #/R computed by (18) and
—a by (35) and (34). For 2, we have taken 5, = 3
and to convert T into years we have used the corre-
sponding factor 1850 *), 7 itself being computed by (14).

V_BX , _ z
“ c A ’ +e T 109 years
I 2 1'342 ® |— 0 | — o
1:05 1857 1246 | 3900 |—2°971| — 549
I'1 1636 1°098 | 2232 |—1°980| — 366
I'g I 0671 | 0843 |— ‘083 — 182
2 0’5 0'335 | 0369 | — ‘514 —0°95
25 02 0'134 | 0140 |— ‘220 —0'41
3 o) o) o o ¢}
3’5 (—o143) (0096) | 0090 |+ -167| + 031
o |(—1 ), (0671) | 0607 |+ oo +

When the distance — o given in the fourth column
exceeds m = 3'141, the light has travelled entirely round
the world before reaching us. It will be seen that light
emitted after the epoch corresponding to the radius &,
which makes ¢, —¢ = in (33) with &, = o, can never

complete the circuit of the world, the expansion being |

too quick for light to overtake it by a complete circuit.

For the case I this value is 2 = 1°0728. For the
case - II light which is emitted at the origin of time
(¢ = 1°1) can never travel a further distance than
068 T (2, = ), which is reached asymptotically for
t = oo

It is important to note that the velocity of light is
independent of the space-coordinates. In the coordinates
7% b, 0 the rays of light are geodesics described with
constant velocity. It follows that on triangles formed
by rays of light the ordinary spherical trigonometry
is applicable. Consequently the parallax is given by

_a
2= Gn z’
and the apparent diameter by
_ 4
sin y

The intensity of light is given by
_ jo
Tosinzy
Consequently the diameter and the magnitude still
follow tke same law, log sin y taking the place of log »
in the formulas of B. 4. V. 1835, as well for log 7 as
log 7.

*) This corresponds to po == 4°10—29, Rj/]?; — 20/3, instead
of (25).
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7. Motion of a material particle.

The equations of motion of a material point under
the influence of inertia alone in the expanding world
can easily be derived. The Christoffel symbols for the
coordinates y, ¢, 0, ¢ are:

22 . .
= — sin y cos y sin* ¢

—sin y cos 3313

-t3)-
b

==

=cos y {33§ =—sinycosy 32331 =cot{
[51=%

{2E:RR i?‘: RR sin® y, ;343‘: RR sin* y sin* §

We can, as always, suppose ¢ = £ 7, d{/ds =0, and
consider the coordinates y, 6 only. The equations for
the geodesic then become

ary . anN: R dy d(ct)
dsg—SlnX COSX(ZY) = — 2E$—E
a’26 dy db R dod(ct)
d T2 I T T R A s
Puttmg
. _ (a7 dy AN
v =(a) =) + ()
., db
I'=sin® 75
we derive the two equations
a9 __ R .4
ds R 7T ds
dU R d(c)
&R 4
from which we find easily
o I‘O
‘P - _(P‘ ’ F — R2 ’

corresponding to the integrals of energy and areas
in the stationary universe.

Eliminating ds, we have for the differential equation
of the track:

? dy? + sin? sin® y 46 49°
"™ sintyd6*
giving :
(36) tan y cos (8 — 6,) = tan y,,

= const. = cosec? y,,

which is the equation of a geodesic (great circle) in
three-dimensional space. To find the velocity, we
must introduce the time instead of the interval dJs.
We have

(%)=

do
1+ R <E>_1 + R
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Thus, putting

o (Y i (Y = ()

., db
G = sin X (7((,'_[)_ )
we have
_d(c) . d(c)
=vg 0 TECT
The velocity v is thus given by
Rv)= ——(fi—
(37) ( ‘Z/) Rz + cPoz

The random velocities are thus decreasing, and unless
9 is very large, are practically proportional to 1/R.
This is in contradiction with the result-found in
art. § (formula'(31), page 215) that the random velocities
decrease as 1/)/R. The formula (31), of course, supposes
o« and f3 to be constant, of which assumption the
present result is independent. But this can hardly be
the complete explanation of the paradox. The question
must be left open for the present. \

For a ray of light we have, of course, ¢, = o, and
(37) gives v =1/R, as has been found already (art. 6).

It should be noted that the results of this article
are entirely independent of the integration of the
differential equation for R, and of the assumption
that « and (3 are constant.

8. Miscellaneous vemarks.

In an interesting paper,*) which was published
while the present communication was being prepared
for the press, Professor R. C. TOLMAN independently
derives the same equations that are used by LEMAITRE.
If in his equations (34) R.e!¢ is called R, they become
identical with our equations (3). Using the notation
of the present paper, TOLMAN’s solution is R = R, ¢*.
If to (3) we add the condition £ = constant, or

a: R R
awERN=F—m=°
they can be completely integrated. We find easily
(with the help of (4'), if desirable)

a:6R—4(3°R3

"=, R*— R*?
(38) ol
3k + .= A

If we add the further condition, as TOLMAN does,

1) The effect of annihilation of matter on the wave-length of
light from the nebulae, Proceedings Nat. Acad. Sci. Wash.
16, 320 (April 1930).
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that B=o0 for #=¢, R—=LR, we have 3,=1/R.?
and, for the same ¢#—=1¢,,

()=

The set of formulas (38) does not look very attrac-

- tive. The point is that R/R naturally is of the same
| order of magnitude as (R/R)"‘, and, since only (R|R)

and not R|R itself occurs in the equations, we can

| not expect to get a good approximation by simply
| putting R/R = K°|R>.

The important point is that we must have a zon-

' static solution of the differential equations of the inertial

field. This leads to an expanding world, the radius of
curvature being a function of the time, e.g. one of the
curves of the diagram of page 213. There is nothing
in our observational data to determine the choice of
any particular curve for the representation of the
history of the universe. The selection must remain a
matter of taste, or of philosophical preference. The
case I gives a logarithmically infinite time elapsed since
the beginning of the expansion. In any of the other
cases, however, the same end can easily be obtained
by introducing another time variable, such as

r__ R'_Ro . 3 21 (ZI—ZO)

t_/e/gm, ,é_\/—):. —z
the factor £ being determined by the condition
dt'ldt =1 for R=R,.

Also, if « and 3 are not treated as constants, the
integral (12), taken between the limits 2z, and 2z, can
easily be made infinite, by so choosing one of the para-
meters, which must occur in the expression of « (or 3)
as a function of z that 2z, is a double root of the
equation Z,° = o. Here also, however, the infinity
would be only logarithmic.

If 2 is negative, i.e. if we have one of the curves
like II or IV in the diagram, we can, of course, also
suppose that the radius, being infinite for # = -— o, has
begun to shrink, passing though a minimum value R,
about at the time of the birth of our planetary system,
and is now increasing to become infinite again at
¢ = + oo. Although this would have some advantages
from the point of view of the collision theory of the
origin of the planetary system, by making the distances
small and the velocities large [by (37)] at the time
when the collision is required, it does not, on the
whole, look very probable.

It should also be kept in mind that many simplifying
assumptions have been introduced, which, though
perfectly legitimate for the present moment, may make
extrapolation to the distant past or future unsafe.
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