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1. Introduction.

In this paper we show how Galois theory for rings can be applied to the problem of

distinguishing prime numbers from composite numbers. It develops ideas that were first

formulated in [11, Section 8; 12].

A positive integer n is prime if and only if the ring ZZ/nZZ, is a field. Many

primality testing algorithms make use of extension rings A of 2Z/nE that are fields

if n is prime. They depend on known properties of such fields and of the Frobenius

map A -> A that sends every χ e A to its n-th power. If n is composite then

usually one of these properties is found not to be satisfied, and one is finished. If

one does not succeed in proving n composite in this way then the problem suggests

itself how to prove that n is prime. Only after this proof has been completed one

knows that the rings one works with are actually fields; in particular, this fact may

not be used in the proof. It is for this reason that Galois theory for rings rather

than for fields is needed.

Galois theory for rings can be found in [4; 6, Chapter III]. For the convenience

of the reader we prove in Section 2 all facts from this theory that we need, starting

only from basic properties of tensor products, localizations, and projective modules

[1; 2]. In Section 3 we restrict to finite rings and abelian Galois groups, and we

treat the Artin symbol, which replaces the Frobenius map. Section 4 is devoted to a

special class of extensions of Z3/nE, which we call cyclotomic extensions. These play

an important role in primality testing. In Section 5 we prove a result about Gauss sums

that can be viewed äs a generalization of [5, Theorem (7.8)], and we show how to Inter-

pret this result in terms of Artin symbols.

The application to primality testing occupies Section 6. We describe a test that

is closely related to the methods of [3], äs generalized by Williams (see [14] for

references). The second test that we describe is an improvement of the method proposed

in [5]. Finally, we show how the theory presented in this paper can be used to combine

the two tests. It may be expected that this combined method, once implemented, will

perfonn better than any existing primality testing algorithm.

By ring we mean in this paper commutatzve ringr with unit element. The unit element

is preserved by ring homomorphisms, and it is contained in subrings. if R is a ring,

an R-alge£>ra is a ring A together with a ring homomorphism R -v A. A group G is



said to act on an R-algebra A if G acts on the underlying set of A in such a way

that for each σ e G the map A ->· A sending x to σχ is an R-algebra homomor-
j-t

phism. In this Situation we write A for the sub-R-algebra {x e A: σχ = χ for all

σ e G) of A. The unit group of a ring R is denoted by R*. If χ belongs to a

multiplicative group, we write <x> for the subgroup generated by x. The cardinality

of a set S is denoted by 4*S.

2. Galois theory for rings.

In this section R denotes a ring, A an R-algebra, and G a group that acts on A.

(2.1) Definition. We call A a Galois extension of R with group G, or Galois over

R with group G, if the following two conditions are satisfied:

(i) äs an R-module, A is finitely generated projective of constant non-zero rank;

(ii) the A-algebra homomorphism A ® A -*· Π A sending a ® b to ((oa)-b)

R 0 € G er α G
is an isomorphism; here A ® A is an A-algebra via the second factor, and the

R

A-algebra operations on Π Α are componentwise.

ο ε G

Notice that from (i) it follows that the map R -*· A is injective, and that A has

rank =B=G by (ii) . If R ̂  0 then (ii) iraplies that distinct elements of G have

distinct actions on A, so that G may be considered äs a subgroup of Aut (A).
R

(2.2) Remark. Suppose that R is semi-local or, more generally, a ring over which

every finitely generated projective module of constant rank is free [2, II.5.3, Propo-

sition 5]. Then (i) and (ii) imply that there exist z , z , ..., z e A such that

(iii) A = Σ Rz. , and the map R ·*· A is injective;
(iv) t = #G, and det^iJ^G,

 l s i s t
 * A*·

Conversely, (iii) and (iv) imply (i) and (ii) since the z. must be independent: if

t t """Σ
·!=1

 r
i
z
-i

 =
 ° with r. e R then Σ r σζ. = 0 for all σ e G so r. = 0 by (iv) .j- ·* ι ι i i—i 1 1 i

(2.3) Examples. (a) Let A = R for some t > 0, and let G be any group of order t

permuting the coordinates transitively. Then A is Galois over R with group G.

Such a Galois extension is said to be totally decomposed. This example shows that the

group G need not be uniquely determined by R and A.

(b) If κ is a field and L is a finite Galois extension of K with Galois

group G in the sense of field theory, then L is Galois over K with group G in

the sense of (2.1).

(c) Suppose, in the Situation of (b), that K and L are algebraic number

fields, with rings of integers A„ and A . Let I be an ideal of A that is
K. j-j i^

relatively prime to the discriminant of L over K. Then A./IA is Galois over
L· L·

A
K
/ I with group G.

(d) if A. is Galois over R with group G., for i = 0, l, then A ® A
l l U K l



is Galois over R with group G. * G..

(2.4) Base change and localization. Let B be any R-algebra. Then the action of G

on A induces an action of G on the B-algebra A ® B, and if A is Galois over
R

R with group G then A ® B is Galois over B with group G. In particular, if
Σ\

A is Galois over R with group G then A is Galois over R
p
 with group G, for

every prime ideal P of R. Conversely, if A is Galois over R
p
 with group G

for every prime ideal P of R, and A is finitely generated äs an R-module, then

A is Galois over R with group G (cf. [2, II.5.2, Theoreme 1]).

(2.5) Proposition. The R-algebra A is Galois over R with group G if and only if

there exists an R-algebra B such that:

(i) äs an R-module, B is finitely generated projective of constant non-zero rank;

(ii) A ® B is a totally decomposed Galois extension of B with group G.
R

Proof. For the "only if-part it suffices to take B = A. For the "if'-part, we need

from (i) only that B is faithfully flat over R (see [2, 1.3.1 and 1.2.4(1)3) and

from (ii) only that A ® B is Galois over B with group G; the assertions then
R

follow from [2, 1.3.6, Proposition 12 and 1.3.1, Proposition 2]. This proves (2.5).

(2.6) Proposition. Let A be Galois over R with group G. Then we have:

(a) A G = R;
rj

(b) if H is any subgroup of G, then A is Galois over A with group H;
r»

(c) if H is any normal subgroup of G, then A is Galois over R with group G/H.

Proof. If the Galois extension is totally decomposed it is straightforward to verify

these assertions. In the general case one chooses B äs in (2.5) to reduce the proof
o

to the previous case. It then remains to verify that the natural map A ® B -»·
H ^

(Ά ® B) is an isomorphism. To do this, one considers the exact sequence of R-
H

modules 0 -*- A ·*· A ->· Π Α in which the last map sends a to (a - oa) „· Since
O t H ·"· CT £ H

B is flat over R, the sequence remains exact upon tensoring with B over R, äs

reguired. This proves (2.6).

(2.7) Proposition. Suppose that A is Galois over R with group G. Let I be an

ideal of A and H = {σ e G: σ ΐ = ΐ } . Then we have:
H H

(a) A/I is Galois over A /(I n A ) with group H;
Tt

(b) äs an ideal, I is generated by I D A ;

(c) if A/I ĵ  0, then distinct elements of H have distinct actions on A/I.

u

Proof. Since A is Galois over A with group H, we may äs well assume, by change

of notation, that G = H and R = A . Further, by localizing with respect to prime

ideals of R containing I n R, we may assume that A is free äs an R-module. Let

Z j , z 2, ..., zfc e A be äs in (2.2)(iii), (iv). Then (2.2)(iii), (iv) i s also valid

with R, A, z. replaced by R/(I n R ) , A/I, (z^ mod I ) , and (a) follows.



Assertion (c) is generally true for non-zero Galois extensions, äs we noted after (2.1).

To prove (b) , let J be the ideal of A generated by I n R. Then there is a sur-

jective map A/J -> A/I. Since A/J and A/I are free over R/(I n R) of the same

rank, this map must be an isomorphism, so J = I. This proves (2.7) .

(2.8) Proposition. Suppose that R / 0, and let A be a Galois extension of R with

group G,, for i = 0, 1. Let f : A_ ·*· A. be an R-algebra homomorphism such that

for every σ e G, there exists τ € G with ίτ = af. Then for every a e G there

exists a unique τ e G. with fx = of , and the map ψ: G. -*- G_ that maps σ to τ

if fr = of is a group homomorphism. Moreover, the image of f is equal to A ,

and this is a Galois extension of R with group ψ[θ.].

Proof. The uniqueness of τ for given σ follows from (2.7) (c) , with A = A , I =

ker f. It is trivial that ψ is a group homomorphism, and that fC
A
rJ i

s
 contained

in A
 e r
 . From (2.7) (a) , with R and G replaced by Αϊ.

 1
 and ψ[θ<], we see

that f [ A ] is Galois over f[A*
[ G i : l

] with group ψ Ε ο . But R c flf
G
^'] c

 A
°

J

Q
 group .

= R, so f[A * ] = R, and the rings f[A
Q
3 and A are both Galois over R

with the same group ψ[α. ] ss G /ker ψ.
ker Φ

To prove that f[A
n
] = A. it now suffices to show that if A" and A" are

Galois over R with the same group G, and there is an inclusion A"
 c
 A" respecting

the G-action, then A' = A". By a base change äs in (2.5) this is reduced to the case

that both Galois extensions are totally decomposed, and by localization to the case

that R has no idempotents except 0 and l, and 0 j4 1. Then each of A' and A"

has precisely 2 idempotents, so all idempotents of A" lie in A'. Since A",

äs an R-module, is spanned by its idempotents this implies that A' = A". This proves

(2.8).

(2.9) Proposition. Suppose that R has no idempotents except 0 and l , with 0 ̂  l ,

and that A is Galois over R with an abelian group G. Then any R-algebra homomor-

phism τ: A ·*· A satisfying τσ = στ for all o e G belongs to G.

Proof. First suppose that the Galois extension is totally decomposed. Then we may

identify A with Π R, the G-action on the latter algebra being given by

p e G
σ ((r ) ) = (

r
 ) , for σ e G. Considering the idempotents of A one easily

P P e G ρσ p e G
proves that any R-algebra homomorphism τ: A ·* A is given by τ ((r )

 e
 Q)

 =

(
r
ftr.\) ~r for some set-theoretic map ft G -»· G. If moreover το = στ for all σ
r ι p / p £ G

e G then f commutes with right multiplication by σ, for any σ, so f(p) = f(l-p)

= f(l)-p. Then f is left multiplication by f(l), and since G is abelian this

implies that τ = f (1) e G.

In the general case we choose B äs in (2.5) such that the rank of B is äs

small äs possible. Suppose that B s= B * B. for certain rings B . Then each B..̂

is a finitely generated projective R-module, and by our assumption on R it is of

constant rank [2, II. 4. 3, Corollaire 2 to Proposition 15]. Also, A β Β.̂  is totally



decomposed over B., for i = 0, 1. Our minimality assumption on the rank now implies

that one B. equals B and the other is zero. Hence the ring B has exactly two

idempotents, and the first part of the proof applies. This proves (2.9).

(2.10) Galois extensions of finite rings. In the sequel we are only interested in the

case that R is finite, for example R = Z/nE for some positive integer n. In this

case the Galois extensions have been completely classified. Since we do not need this

classification we give it without proof.

First let R be a finite field, for example R = ZZ/nZZ with n prime, and de-

note by L an algebraic closure of R. Let G be a finite group, and fix an element

τ e G. Define the subring A of Π L by

# R p e G

A = Ux ) „: χ = χ for a l l p £ G}.
p p £ G τρ ρ

Notice that A, äs a ring, is isomorphic to the product of =#G/<t> copies of a field

of order (*t=R) . We let G act on A by σ((χ ) ) = (
χ

βσ
) _

 £ G
- Then A is

Galois over R with group G. Moreover, if τ ranges over all elements of G, up to

conjugacy, then all Galois extensions of R with group G are obtained in this way,

up to isomorphism.

Next let R be a finite local ring, with maximal ideal M; for example, R =
]ς

E/n2Z where n = r with r prime and k ä l, in which case R/M £= ZZ/rE. If A

is Galois over R with group G, then A/MA is Galois over the field R/M, by

(2.4). Conversely, if B is Galois over R/M with group G, then there is a Galois

extension A of R with group G, unique up to isomorphism, such that A/MA s B äs

Galois extensions of R/M.

Finally, let R be an arbitrary finite ring. We can write R äs the product of
k (r)

finitely many finite local rings R , see Cl, Chapter 8]. For example, if n = Π r ,

with r ranging over a finite set of primes and k (r) > 0 for each r, then ZZ/nS
k (r)

είΠ 7l/ τ 2Ζ. Now the Galois extensions A of R with group G are uniquely of the

form Π Α., where each A. is Galois over R. with group G.

3. The Artin Symbol.

In this section R denotes a finite ring, and A a Galois extension of R with an

abelian group G.

(3.1) Let M be a maximal ideal of R. Then A/MA is Galois over R/M with group

G, and the map τ: A/MA -»· A/MA defined by τ(χ) = χ is an R/M-algebra endomor-

phism of A/MA that commutes with all elements of G. Frorn (2.9) we therefore see

that τ belongs to G. This element is called the Artin symbol of M, notation: φ ·

"
We have φ χ β χ ' mod ΜΑ for all χ e A, and this property characterizes φ äs

an element of G. (It does not in general characterize φ äs an element of Aut (A).)
M R

The Grothendieck group G (R) is defined by generators and relations. There is one

generator [Q] for each finite R-module Q, and one relation [Q] = [Q>] + [g"] for



each exact sequence 0 -*· Q
1
 ·> Q ·*· Q" ->· 0 of finite R-modules. Each finite R-module

Q has a sequence of submodules Q = Q_ => Q. => ... => Q = {0} such that for each i

with 0 < i < k there is a maximal ideal M of R for which Q./Q. S R/M. Using

this fact one proves that G (R) is a free abelian group with independent generators

[R/M], one for each maximal ideal M of R.

We conclude from the above that there is a unique group homomorphism φ: G (R) ->· G

for which φ ( [ R / M ] ) = φ,, for each M. We call φ the Artin map, and its image
M

in G the decomposition group of the Galois extension, notation: D. This is

a subgroup of G. The element φ ([R]) of D is called the Artin symbol of the Galois

extension, notation: φ .

R

(3.2) Examples. (a) Let n be a positive integer. We are mainly interested in the case

that R is equal to the ring ZZ/nZZ, which we denote by n. The set of primes r

dividing n is in bijective correspondence with the set of maximal ideals M of n,

by M = rrt. This allows us to identify G (n) with the multiplicative subgroup of φ*

generated by the primes dividing n, so that [Q] e G (n) is identified with =B=Q e φ*,

for each finite W-module Q. With this convention, we write φ instead of φ(χ),

so that φ = φ and φ = φ .T
r
 ψ

τη
 τ

η R

(b) Let n and n be äs in (a) , and let L be a quadratic number field whose

discriminant Δ over φ is relatively prime to n. Denote by A the ring of inte-
L·

gers of L, and A = A„/nA
T
. From (2.3) (c) we see that A is Galois over n with a

L L

group G of order 2; let this group be identified with {±1}. One easily checks that

for χ e G(n) we have φ = (— ) ; here (— ) is the Kronecker symbol, extended to G(n)
Χ Λ * Λ

by multiplicativity. In particular we have φ^ = (— J .

(c) Let n and s be two positive integers with gcd(n, s) = l, and n = TL/rtfL.

Denote by ζ a primitive s-th root of unity in an extension field of φ. By (2.3) (c)
S

the ring A = ζ[ζ ]/ηΕ[ζ 3 is Galois over n with group (E/sZZ)*, where (x mod s)
s s

€ (ffi/sE)* acts on A by raising ζ to the power x. For χ e G(n) we have φ =
S X

(x mod s); even for non-integral x this is a well-defined element of (2Z/s2Z)*,

since x is built up from primes not dividing s. In particular we see that D is

generated by {r mod s: r is a prime dividing n}, and that φ = (n mod s).

(d) Suppose that A. is Galois over R with abelian group G., for i = 0, 1.

Denote by φ : G(R) ·*· G, the Artin map and by φ e G. the Artin symbol. Then for

the Galois extension A = A ® A, of R with group G = G χ G the Artin map φ:

(0) (l ) u i

G (R) -> G is given by φ (x) = (φ (x) , Φ (x) ) , and the Artin symbol φ e G equals
(Φ

( 0 )
, Φ

( 1 )
)T

R '
 Ψ
Ε ' '

(3.3) Remark. Suppose that R = E/nE for some positive integer n. If we wish to

calculate the Artin symbol φ of a Galois extension from its definition, then we need

to know the prime factorization of n. But there are cases, such äs examples (b) and

(c) above, in which one can calculate φ without this Information . It would be inter-

esting to know how generally this can be done.



(3.4) Proposition. Let R be a finite non-zero ring, and A. a Galois extension of R

(i)
 1

with an abelian group G., for i = 0, 1. Denote by φ : G(R) -> G. the Artin map,

(i)
 X

by D. the decomposition group in G,, and by Φ
0
 e D. the Artin symbol, for i =

i i R i

0, 1. Let f: A. ·*· A. be an R-algebra homomorphism such that for every a e G there

exists τ e G with ίτ = af, and let ψ: G -»· G. be the group homomorphism from

(2.8). Then we have

Φ
( 0 )
 = Ψ°Φ

(1)
, D

0
= * [

D l
] , Φ<°> = Ψ(Φ

κ

υ
).

Proof. Suppose first that R is a field. Then φ *" (χ) = x for all χ e A., so

£
Φη

 =
 Φ,-,

 f
-

 B
Y
 t n e

 Definition of ψ this means that ψ (φ ) = φ .

R R t i \

In the general case, let M be a maximal ideal of R and denote by φ the

Artin symbol of M in G.. By the previous case, with R/M in the role of R, we
have ψ(φ )=Φ . The assertions of (3.4) now follow immediately. This proves (3.4).

M M

(3.5) Corellary. Let H c G be a subgroup. Then the composite of the Artin map G (R)

·*· G and the natura

R with group G/H.

IT

G and the natural map G -»· G/H is the Artin map for the Galois extension A of

H
Proof. Apply (3.4) to A = A and A. = A, with f: A

n
 -> A the inclusion map. This

~~~~~~~ U l U l

proves (3.5).

(3.6) Remark. Let H be a subgroup of G
f
 If R is a field, or a local ring, then

the decomposition group for the Galois extension A of A
H
 with group H is equal to

H n D. For general R the group H n D may be bigger. It is true in general that the

H

Artin symbol Φ
Α Η
 for the Galois extension A of A with group H is equal to

#G/H

*R

The following proposition explains the name "decomposition group".

H

(3.7) Proposition. Suppose that R ? 0. Let H be a subgroup of G, and B = A .

Then the following three assertions are equivalent:

(i) D c H;

(ii) the Galois extension B of R with group G/H is totally decomposed;

(iii) there is an R-algebra homomorphism B -»· R.

Proof. The implication (ii) ·» (iii) is obvious. To prove (iii) ·» (i) one applies (3.4)

to A.. = B and A. = R. Then one finds that the decomposition group D_ is trivial,

so (3.5) iinplies that D c H.

Finally we prove (i) -» (ii). By change of notation we may assume that A = B, so

that F is trivial. By (i), the group D is trivial äs well.

First assume that R is a field, and let N be a maximal ideal of A. Since D

is trivial we have χ = x for all χ e Ά., so the field A/N satisfies #=A/N < #R.

It contains R, so A/N &. R. From (2.7)(b) one deduces that the natural map A ->

Π Α/σΝ = Π R is injective, so by a counting argument it is bilective. This
σ e G σ e G

proves (ii) if R is a field.



Next let R be a local ring with a nilpotent maximal ideal M. We claim that each

idempotent of A/MA can be lifted in a unique way to an idempotent of A. To prove

this, let (e mod MA) e. A/MA be idempotent. Since A is finite there exist integers
k £ ok oi, k Ä,

k, l with k > 2, ä 0 for which e 2 = e 2 . Then e ~ is idempotent, and e 2 ~2

3 3 2
» e mod MA. If e_ and e. are idempotent then we have (e. - en) = e. - 3e,en +

•̂  ~ U l l U l l U

36^- - e = e. - e ; if also e_ E e mod MA then this implies e. - e = 0, because

MA is nilpotent. This proves our Claim.

By the case already dealt with there is an isomorphism A/MA s Π R/M of R/M-

algebras. Let the idempotents corresponding to this decomposition be lifted to A. By

the uniqueness Statement this gives rise to a collection of idempotents that annihilate

each other, are transitively permuted by G, and add up to 1. Hence A s=Π R'

for some R-algebra R' . Since the map R -*· A is injective the same is true for R -*·

R'. By a counting argument we now have R s R' äs R-algebras, and (ii) follows.

Since any finite ring can be written äs the product of finitely many local rings

with nilpotent maximal ideals, see [l, Chapter 8], the general case follows immediately.

This proves (3.7) .

(3.8) Proposition. The ring A is a field if and only if R is a field and G = <
Φ

Κ

>
·

Proof. The "only if'-part is easy. To prove the "if"-part, let N be a maximal ideal

of A. From φ χ = x*
R
, for all χ e A, we see that φ N = N, so by (2.7) (b) the

R Q * *

ideal N is generated by N n A = N n R . Hence N = 0 and A s= A/N is a field.

This proves (3.8).

4. Cyclotomic extensions.

In this section we fix an integer n with n > 1. We denote the ring Z/nZZ by n,

and we use the notation introduced in (3.2) (a). Further, we let t be a positive inte-

ger with gcd(t, n) = l and we let u be the order of (n mod t) in the group

(ZZ/t.ZZ)*. By Φ we denote the t-th cyclotoraic polynomial.

(4.1) Definition. A t-th cyclotomic extension of n is an n-algebra A together

with an automorphism σ of A and an element ζ of A, such that the following con-

ditions are satisfied:

(i) A is Galois over n with group generated by σ;

(ii) <E>
t
(O = 0 and σζ = ζ";

(iii) σ" = id .
A

It is well-known that such extensions exist for any t if n is prime. If <n mod t>

= (ZS/tZZ)*, then A = 2Ζ[ζ 3/ηΕ[ζ 3 is a t-th cyclotomic extension of n, with ζ =

U
t
 mod n) and σς = ς

η
. These observations are generalized in the following prop-

osition.



(4.2) Proposition. A t-th cyclotomic extension of n exists if and only if for each

divisor r of n there exists an integer i with r « n mod t. Moreover, if A, σ,

ζ constitute a t-th cyclotomic extension of n, then we have:

(a) σ equals the Artin symbol φ^ of the extension, and a has Order u;

(b) if r e G

(c) A = η[ζ].

i i

(b) if r e G(n) c g)*, and i e TL, then r E
 n
 mod t if and only if φ = o ;

Proof. To prove the "if"-part, suppose that (r mod t) e <n mod t> for all divisors r

of n. Then the decomposition group D_ of the Galois extension A - ΖΖ[ζ ]/ηΖΖ[ζ ]

of M with group (Z/tZZ)* eguals <n mod t>, see (3.2)(c). By (3.7) there is now a

ring homomorphism B = A
n
 -> n. Let A = A

A
 ®

D
 n and ζ the image of ζ in

U U D i*

A. Since A_ is Galois over B with group <n mod t> the same is true for A over

n. It. follows that A, together with the action of (n mod t) and the element ζ e A,

is a t-th cyclotomic extension of n.

Conversely, let A, σ, ζ be äs in (4.1) (i), (ii) , (iii) , and let A Q be äs above.

The ring homomorphism f : A_ -> A sending (ζ mod n) to ζ then satisfies the con-

ditions of (2.8), with A = A, and the group homomorphism φ: <σ> ->· (E/tZZ)* from

(2.8) maps σ to (n mod t). Fron (4.1) (iii) we now see that ψ is injective and

that σ has Order u. By (2.8) the injectivity of ψ implies that f is surjective,

which is (c). Further, (3.4) and (3.2)(c) imply that ψ(φ ) = (n mod t) = ψ(σ), so σ
n
 ^

= φ . This proves (a) . Finally, in the Situation of (b) the assertions r E
 n
 mod t

and φ^ = σ
1
 are both eguivalent to ψ (φ ) = ψ (σ)

1
. This proves both (b) and the

"only if-part of the first assertion.

This proves (4.2).

From (4.2) we see that the existence of a t-th cyclotomic extension implies the ex-

istence of a t^th cyclotomic extension for each divisor t. of t. One can also

prove this directly by raising ζ to the power t/t. and applying the following result.

(4.3) Proposition . Let A be an n-algebra, σ an automorphism of A and ζ an el-

ement of A such that conditions (i) and (ii) of (4.1) are satisfied. Then η[ζ], to-

gether with the restriction of σ to η[ζ] and the element ζ, is a t-th cyclotomic

extension of. n.

Proof. This easily follows from (2.8) with A
n
 äs above, A. = A, and f (ζ mod n) =

- U l t

ς. This proves (4.3).

(4.4) Proposition. Let A be a Galois extension of n with a cyclic group <σ> of

order u. Suppose that for each prime divisor g of t there exists α = α e A

such that σα = α and such that

α i ΓΑ, „ - i i
 r A

(
 U
- l ) /

 q

for each prime r dividing n. Put ζ = Π α
 / q

 , where m(
q
) j_

s t
^

e nu
mber

of factors g in t. Then A, σ, ζ is a t-th cyclotomic extension of n.
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Proof . First let g be fixed, and α äs in the proposition. Let I = aA. From σα =

α i t follows that σΐ c i,
 S
o σΐ = I because σ has finite order. By (2.7) (d) this

implies that I = dA for some divisor d of n. But I <f. rA for each prime r di-

viding n, so d = l and α e A*. In the same way one proves that α
 q

 - l e

A*. From σα = a and σ = id it follows that α = α, so α = 1 because

*
α e A*. The element g = α

 / Η
 now satisfies

m(q)
 q

 m(q)-l

ß q = 1 , ß q - l e A*,

q q
so it is a zero of the q -th cyclotomic polynomial. It follows that ζ = Π β is

a zero of Φ . The other conditions of (4.1) are clear. This proves (4.4).

(4.5) Proposition. Let the Η-linear map λ from n[x]/<X> n[x] to itself be defined by

X U
1
 mod Φ ) = (χ

η ι
 - χ

1
 mod Φ ), for 0 ^ i < deg Φ . Suppose that h, g , g , ...,

U. L- L· A £

g ί n[x] have the following three properties:

(i) λ (g. mod Φ ) = 0 for l ^ i <· k;

(ii) h has leading coefficient l, and 0 < deg h :£ u;

(iii) hnCx] = Φ.ηΕχ] + I
k
 g.n[x3 äs ideals of n[x].

t l — l l

Put A = tt[x]/hn[x] and ζ = (X mod h) e. A. Then A has an automorphism σ with σς

= ζ
η
, and A, σ, ζ constitute a t-th cyclotomic extension of n. Moreover, deg h

= u.

(4.6) Remark. To motivate this proposition we remark the following. Let first n be

prime. Then one can construct a t-th cyclotomic extension of n by letting A be the

field n[x]/hn[x] for some irreducible factor h of Φ in tt[X.l, and defining σ

and ζ by ζ = (x mod h) and σζ = ζ . To find h, one can apply Berlekamp's algor-

ithm [8, Section 4.6.2; 9, Section 4] to factor the polynomial Φ in w[xj. Studying

this algorithm one discovers that each irreducible factor of Φ produced by this al-

gorithm is, äs in (iii), of the form gcd(Q> , g , g , ..., g ) for certain g. e n[X]
l— X *·> /C l

satisfying (i) . it is well-known that each irreducible factor of Φ in n[x] has de-

gree u.

If n is not known to be prime one can still attempt to use Berlekamp's algorithm

to find a factor h of Φ in w[x] of degree u. However, if n is not prime this

attempt is not likely to be successful (except if <n mod t> = (ZZ/tE)*, in which case

one finds h = Φ ) . The above proposition asserts that if Berlekamp's algorithm pro-

duces a factor h äs just described, then h does give rise to a t-th cyclotomic ex-

tension of n.

Proof of (4.5). There is a ring isomorphism n[x]/®tn[x] ·* AQ = 2Ζ[ζί
.]/ηΕ[ζ

ί
_] that

maps (X mod φ ) to (ζ mod n), and it is easily seen that this isomorphism maps the

kernel of λ onto the subring B = A
n m

°
 fc>

 . Denote by h(C) , 9 ( i )
 t n e

 images

of h,
 9 i

 in A
Q
, so that A = A

0
/h(C

t
)A

Q
. From A = A

Q
/ Z

= 1
 9

1
(ζ

ί
.)Α

()
 and g

i
(C

fc
)

e B we see that A = A
n
 ® B

1
, where B' denotes the image of B in A. Hence A

u B

is Galois over B
1
 with group <n mod t>; in particular, A is free of rank u äs a
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B'-module. But (ii) implies that A is free of rank deg h S u äs a module over the

subring n of B'. Counting A shows that we must have deg h = u and n = B'.

This implies (4.5).

(4.7) Proposition. Let h e Cl[x] be a polynomial of degree u with leading coefficient

l, and A = n[x]/hn[x]. Assume that α = (X mod h) has the following properties:

(i) h(cx
n
) = 0;

(ii) α"" = α;
n
u/p

(iii) a - a e A* for every prime p dividing u.
n

Then A is Galois over n with group <σ>, where σα = α .

Proof. From (i) we see that there is a ring homoroorphism σ: A -*· A with σα = α , and

frora (ii) that σ = id . Further l, a, ..., α is an n-basis for A. By (2.2)

^ i j

and Vandermonde's determinant it remains to prove that σ α - σ α e A* for i ^ j mod

u. Suppose that I = (σ
1
α - ΰ^α)Ά is different from A. By σα = α and σ = id

we have σΐ = I, so H = {τ e <σ>: τα Ξ α mod 1} is a subgroup of <σ> containing

σ
1
" ·

1
. By (iii) it does not contain o

u
'

p
 for any prime p dividing u. Hence H

is trivial and i E j mod u. This proves (4.7).

(4.8) Remark. Suppose that n is prime in (4.7). Then clearly σ = φ , and A is a

field by (3.8). Notice that (i) is automatically satisfied for prime n, and that (ii),

(iii) constitute a well-known irreducibility test for h, see [8, Exercise 4.6.2.16;

9, Section 5].

If n is not prime we need not have σ = φ , äs is shown by the example n = 35,
2 2 n

f = 2, h = X - 15X + l or h = X - 14X + 1.

5. Gauss sums.

As in the previous section, let n be an integer, n > l, and write n = 2Z/nZ2. Let

further t be a positive integer with gcd(t, n) = 1, and put u = 4*<n mod t>.

(5.1) Proposition. Suppose that

(i) gcd(t, (nu - l)/t) - l,

(ii) there exists a t-th cyclotomic extension of n.

Let t' be a positive integer satisfying

(lii) each prime factor of t1 divides t, and if t s 2 mod 4 then t' φ 0 mod 8.

Then a t'-th cyclotomic extension of n exists.

Proof. By the remark following (4.2) we may assume that t' is a multiple of t. Then

(iii) precisely means that the kernel J of the natural map (Z5/t'E)* -*· (Z!/tZ2)* is

cyclic of order t'/t. For each prime p dividing t'/t the kernel j
 O

f the natu-

P
ral map (Z/t'2Z)* ·* (ZZ/ptE)* has index p in J, so the groups J are exactly

the maximal subgroups of J. From n e l mod t it follows that (n
u
 mod t

1
) e J,
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and from gcd(t, (n
U
 - D/t) = l that (n

U
 mod t') έ J for each p. Therefore (n

U

mod t
1
) generates J, so any integer that is congruent to a power of n roodulo t

is congruent to a power of n modulo t'. By (4.2), this proves (5.1).

(5.2) Remark. Let t, t
1
 be äs in (5.1) with t dividing t1, and let A, σ, ζ be a

t-th cyclotomic extension of n. Then a t'-th cyclotomic extension of n is given by

A
'» °'» C', where A' = A »

 r
„

 Ί
 ΖΖ[ζ ], ζ ' = l ® ζ , , and σ

1
 acting äs σ οη Α

Ζίιίζ^-ϋ t Τ-

and äs (n mod t') οη Ε[ζ , ].

(5.3) Rernark . Let t satisfy (5.1) (i), (ii) , and let r be a divisor of n. Then

(5.1) implies that there exists i z lim 2Z/(ut'/t)E such that r = n in the profi-

nite group lim (K/t'2Z)*; here both projective limits are taken over the set of

multiples t
1
 of t satisfying (5.1)(iii). We denote this value of i, which is

uniguely determined, by £. (r) . It may be thought of äs a "t-adic logarithm of r to

the base n". In fact, if p is an odd prime dividing t then the image of i (r)

under the natural projection IJ-m ffi/(ut'/t)ZZ ->· ZZ equals (log r)/log n, where log

is the p-adic logarithm. The same assertion holds for p = 2 if t = 0 mod 4. Notice
o

that t1 = t satisfies (5.1)(iii), so it is meaningful to consider £ (r) modulo t.

(5.4) Gauss sums. Let A, σ, ζ be a t-th cyclotomic extension of H. Let further m

be a positive integer with gcd(n, m) = l , and χ: (Z5/mZ3)* -*· <ζ> a group homomorphism

that is primitive in the sense that it does not factor through the natural map (Z/mZZ)*

->· (Z/dZZ)* for any divisor d < m of m. For χ e G(n) <= $* we write χ(χ) =

X(xmodm), cf. (3. 2) (a), (c) .

The Gauss sum τ (χ) is the element of A ® ΖΖ[ζ ] defined by

τ(χ) = Σ
γ X
(y) · ζ^;

here ζ denotes a primitive m-th root of unity äs in (3.2) (c) , and y ranges over
m -l

(Z/mZZ)*. From the well-known formula τ(χ)τ(χ ) = x(-l)m and gcd(m, n) = l it

follows that τ (χ) belongs to the unit group (A ®^ 5Ζ[ζ ])*.

We let σ act οη Α ® 2Ζ[ζ 3 via A, and we write the induced module structure

2Z m
of (A ® 2Ζ[ζ ])* over the group ring Ζ[<σ>3 exponentially.

7L m

(5.5) Theorem. Let n and t be integers with n > l, t > 0, gcd(t, n) = l and

gcd(t, (n
u
-l)/t) = l, where u = #=<n mod t>. Let the further hypotheses and nota-

tions be äs in (5.4). Then we have:

(a) if n is prime, then τ (χ) = Χ (η);

(b) conversely, if n e <ζ> is such that τ (χ) ~
 n
'° = n, then η = χ(η) and

X
(r) = x ( n )

£ t ( r )
 for each divisor r of n, with i

fc
(r) äs in (5.3).

Proof . Assertion (a) follows by a computation äs in [5, Lemma (7.3)].

We prove (b) . Let j be a positive integer. Raising τ (χ) = n to the power

Σ
^_

0
 ( n /

0
)

1
 and using that n/σ acts äs the identity on <ζ> we find that
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Putting j = u and v = (n - l)/t we see that the order of τ(χ) divides t(n - 1)

= t
2
v.

Let now r be a prime dividing n, and let i be a positive integer congruent

o 2
to £ (r) modulo tu, so that n E r mod t . Putting j = £ in the above equation

we find that

But η ν is congruent to rv modulo the order of τ (χ), and σ
 =

 Φ
Γ
 by (4.2)(b),

so the equality simplifies to

Since r is prime, the argument used to prove (a) leads to τ(χ)
 r

 = χ(r) mod r.

Therefore

. .v «.v
χ(r) E n mod r.

The identity Π ~ (l - ζ
1
) ~ t shows that no two distinct elements of <ζ> are con-

gruent modulo r, cf. [5, (7.17)]. Hence x(r)
V
 = η , and since by hypothesis

gcd(t, v) = l we find that we have proved

X(r) = Λ
( Γ )

for each prime r dividing n. By multiplicativity, the same equality is valid for
ρ fr)

each r e G(n) c φ*, with r = n we see that χ(n) = η , so χ(r) = \(n)
 t
 for

each r e G(n).

This proves (5.5).

(5.6) We show how to Interpret (5.5) in terms of Artin Symbols. Let m and χ be äs

in (5.4). The field φ(ζ ) is Galois over Q) with group (ZZ/m2Z)*, and we let L =

Y
φ(ζ ) be the subfield corresponding to ker χ c (zz/mZ)*, with ring of integers

A . Then A^nA^ is Galois over n with group equal to the image of χ, by (2.3)(c).

This group is cyclic of order dividing t. From (3.2) (c) and (3.5) it follows that the

Artin symbol φ in this extension equals χ(χ), for each χ e G (n) , and in particu-

lar φ
η
 = χ(η). Thus we see that the conclusion of (5.5)(b) is equivalent to the

assertion that, for each t' äs in (5.1)(iii), the decomposition group of the Galois

extension (Ζ2[ζ ]/η2Ζ[ζ ]) β (A /nA ) of n with group (ZS/t'ZZ)* * (image χ) is
*- u /l Jj L

generated by the Artin symbol φ of the extension.

Viewing A β Ε[ζ 3 äs a Galois extension of A with group (2Z/m2Z)* one

checks easiüy that the action of any y e (ffi/mffi)* on the Gauss sum τ (χ) is given by

multiplication by x(y) . This implies that τ (χ) is a Lagrange resolvent for the

Galois extension A β A of A with group image χ; i.e., we have A ® A =

..v
5 ij

 2Z L

Α[τ(χ)3 with τ (χ)
 l m a <

3
e
 X

 e A
*

? a n d t h e
 G

a
i

0
i

s ac
tion of any x(y) € image χ on

τ (χ) is given by multiplication by x(y)

(5.7) We close this section with two remarks of computational interest. First, the el-

ement τ (χ) ~ ° of A ® ΣΖ[ζ ] belongs in fact to the subring of A generated by

the image of χ. It can be expressed in terms of certain Jacobi sums that belong to

that ring. One can use these expressions to calculate τ (χ) without leaving the



ring A.

Secondly, Theorem (5.5) and its proof are also valid if throughout τ(χ) is re-

placed by WT(X) for some v e R*. This remark can be applied if there are divisors

m
O
 anc

^
 m

l °^
 m an<

^ Primitive group homomorphisms χ : (E/m,Z2)* -*· <ζ> for i = 0,

l, such that χ(γ) = X
n
(y mod m ) ·χ (y mod m.) for all y e (ZZ/mZZ)*. In that case

one has τ(χ )τ(χ )/τ(χ) e A*, so one may work with τ(χ )τ(χ ) instead of τ(χ).

6. Applications to primality testing.

Galois theory for rings can be applied to the problem of how to recognize whether an

integer n > l is prime. Por background Information on this problem we refer to [14;

10; 7].

Composite numbers are usually easy to recognize by means of tests that are based

on Fermat's theorem and its generalizations. A single such test that n fails to pass

suffices to show that n is composite, although it does not readily yield a factoriz-

ation of n. However, if n passes many tests of this sort then it is very likely

that n is a prime number, and the problem becomes how to prove that n is a prime

number.

Let n be an integer, n > l, put rt = Ζί,/ηΖΖ, and let G(n) c φ* be äs in (3.2)

(a). Clearly, n is prime if and only if it generates G(n), and if this is the case

then for any Galois extension Ά of n with an abelian group the decomposition group D

is generated by φ . To prove that n is prime, one can apply the theory from the pre-
n

ceding sections to show that D = <φ > for many choices of A, and use this Informa-

tion to check that n has no divisors except l and n. A more precise outline of

how one might proceed is äs follows.

(6.1) To prove that n is prime one proceeds in three stages.

(a) In the first stage one selects two auxiliary positive integers s and t. The

precise conditions that s and t should satisfy depend on the method that is used.

They inelüde:
1/2

s is "large" (e.g. s > n ),

t is "small",

n B l mod s,

the complete prime factorization of s is known.

(b) In the second stage one constructs one or more Galois extensions of n with

abelian groups, and one performs certain calculations in these Galois extensions. Using

results like (4.2) and (5.5) one proves that the decomposition group of the Galois ex-

tension 2[ς ]/ηΚ[ζ 3 of n with group (2L/&7Z)* is generated by (n mod s); or,

s s
equivalently, that for each divisor r of n there exists i (mod t) such that r ~

n mod s.

(c) In the third stage one uses the Information from (b) about the divisors of n to

prove that l and n are the only divisors of n, so that n is prime. It is for
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this stage that one needs s to be "large". For more details about this stage, which

has nothing to do with Galois theory, we refer to [5, Section 3].

Several of the rings occurring in this primality proof turn out to be fields in

the end. This applies for example to n itself and to the cyclotomic extensions from

(4.1). But using this Information in the proof would obviously give rise to a circular

argument. Thus we are in the paradoxical Situation that we generalized Galois theory

from fields to rings in order to apply it to rings that are in fact fields.

Before we give examples of algorithms that proceed in the above way we treat some

auxiliary algorithms.

(6.2) Constructing cyclic extensions. Let u be a positive integer. We describe four

algorithms to obtain an explicit presentation of a Galois extension A of n with a

cyclic group <σ> of order u, with the property that σ = φ if n is prime. (So

A becomes a field if n is prime, see (3.8).)

(a) Suppose that a small positive integer t with gcd(t, n) = l can be found

for which u = 4*<n mod t>. Then we can use Berlekamp's algorithm to construct a t-th

cyclotomic extension A, σ, ζ of n, see (4.6). This is a Galois extension of n

with a cyclic group <σ> of order u, and σ = φ , by (4.2)(a).

(b) Alternatively, one can deterraine a polynomial h ε )t[x] with leading coeffi-

cient l and degree u, such that h is irreducible if n is prime. See [9, Section

5] for methods to do this. Next one uses (4.7) to construct the desired extension; if

any of the conditions of (4.7) is found not to be satisfied then n is not prime (see

(4.8)). It is, with this construction, not guaranteed that σ = φ (see (4.8)), but if

n is prime it is of course true. Usually it is possible to choose h such that its

coefficients are "small", which facilitates the multiplication in A = tt[x]/htt[x].

Method (a) does not have this advantage (unless h = Φ in (a)).

(c) Suppose that one can find a small positive integer m with gcd(m, n) = l

and a group homomorphism χ: (22/mZ2)* ·*· <ζ > such that χ (n) generates <ζ >. This

is usually easy to do, unless n is a p-th power for some prirae p dividing u. Let

L be the subfield of ffi(C
m
) corresponding to ker χ, with ring of integers A

L
-

Then R = A j Y n ^
 i s

 Galois over n with group <ζ >, and the Artin symbol φ

equals χ(η), cf. (5.6). To obtain an explicit presentation of A one can choose α

e A such that L = φ (α) and such that the discriminant of the irreducible polynomial

h of α over φ is coprime to n. Then A s, n[X]/hn[x]. From a computational point

of view this is an attractive presentation: not only the multiplication is easy to per-

form, äs in (b), but also the Galois action of the group <ζ >. If χ is an isomorphism

we can take α = ζ and h = Φ , which in this case also results from (a) (with t = m) ·

(d) Suppose that u = u.u , where u and u are positive integers with

gcd(u , u.) = 1. Suppose further that A
i
 is Galois over n with a cyclic group

<σ.> of order u., for i = 0, 1. Then A = A
Q
 ®

n
 A

J
 is Galois over n with a

cyclic group <σ > χ <σ > = < (σ , σ )> of order u, by (2.3)(d). Moreover, if each

σ. is the Artin symbol for A., then (σ , σ ) is the Artin symbol for A, by
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(3.2)(d).

(6.3) Composite numbers. The properties of the algorithms in (6.2) that are relevant

in the context of primality testing are: (i) if n is prime, then the algorithms are

likely to terminate within a reasonable time limit; (ii) if any of these algorithms

terminates, then the result is a Galois extension with the stated properties (even if

n is composite). In particular, in primality testing it is irrelevant whether the al-

gorithms terminate if n is composite. This is nevertheless a question of independent

interest. We stated already in (4.6) that method (a) is not likely to work for coropos-

ite n, except if <n mod t>= (ZZ/tZS)*. The behaviour of algorithm (b) probably de-

pends on the particular method that is chosen to determine h. Algorithm (c) works for

any n that is not a p-th power for any prime p dividing u. The method in (d) can

be used for any n to reduce the problem to the case that u is a prime power.

J6.4) Isomorphism of subextensions. Suppose that A. is Galois over n with a cyclic

group <σ > of order u., for i = 0, l, and let u be a common divisor of u_ and
i 11 i u

<o · >

Uj. Then B. = A, -
1
- is Galois over n with a cyclic group of order u generated by

the restriction of σ., for i = 0, 1. If n is prime and σ. = φ for each i, so

that each A. is a field (see (3.8)), then we know that B_ is isomorphic to B äs

a Galois extension of n. We describe an algorithm to find such an isomorphism. As in

(6.3) we want the algorithm to have two properties: (i) if n is prime and σ. = φ

for each i then the algorithm is likely to terminate within a reasonable time limit,-

(ii) if the algorithm terminates then the result is an isomorphism f: B_ -> B. with
o.f = fn (even if the A are not known to be fields).
1 0 i

There are situations in which the isomorphism B s B is obvious. This is the

case, for example, if there is a Galois extension A of n with a cyclic group <σ>

such that each A. is contained in A, with σ. = σ|Α.. If this is not the case one

might try to construct such an A, but it is more efficient to proceed äs follows.

One begins by constructing, äs in (6.2), a Galois extension B of n with a

cyclic group <σ> of order u. Next one constructs ring homomorphisms f^: B -»· A^

for i = 0, 1. If B = n[x]/hn[x] for some h e n[X] this comes down to finding a

zero of h in A., which can be done by the methods described in [9, Section 3]. If

B is a tensor product of several rings n[x]/h.tt[x] it suffices to find a zero of

each h. in A..

Once the f have been constructed one checks that f σ = σ f , äs must be the
i .L χ .L

case if n is prime and σ, σ. are the Artin symbols. If f^ = σ ^ then by (2.8)

the map f. yields an isomorphism B 51 B.,, for i = 0, 1. This leads to the reguired

isomorphism B s B .

J6.5) Construction of cyclotomic extensions. Let t be a positive integer that is co-

prime to n, and suppose that the complete prime factorization of t is known. We

describe an algorithm to construct a t-th cyclotomic extension of n that is likely

to be successful if n is prime and the number u = #=<n mod t> is not too large.
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One begins by constructing a Galois extension A of n with group <σ> of

order u, äs in (6.2). If one uses method (6.2) (a) to do this, with the same t, this

leads by (4.5) to the required extension. Otherwise, one continues äs follows.

For each prime q dividing t one does the following. One finds, by trial and

error, an element α = α eh, α * 0, such that

If n is prime and σ = φ then any α has the first property, and it has the second

property with probability l - 1/q; so α should not be hard to find. If α has been

found one expresses α and α - l on a basis of A over n. Let c e n be

q
one of the non-zero coefficients of the first of these expressions, and d e n of the

q

second.

This being done for each q, one checks by means of the Euclidean algorithm that

Π (c d ) e K*, äs must be the case if n is prime. Then the conditions of (4.4) are

q q q
satisfied, so if ζ is äs in (4.4) then A, σ, ζ is a t-th cyclotomic extension of n.

Notice that the same construction actually yields a t
Q
-th cyclotomic extension

of n, where t is the largest divisor of n - l that is built up from the primes

dividing t.

We remark that the calculations involved in the above construction can often be

done in proper subextensions of A. For example, if q is a prime power dividing

t, äs in (4.4), then the search for α = α can be done in the subextension of rank
/ \

equal to ΊΦ<η mod q™
 q
 >, which may be smaller than t. Explicit presentations for

such subextensions can be obtained äs in (6.4).

(6.6) Classical primality tests. Our first example of a primality test that proceeds äs

in (6.1) is äs follows.
First one constructs s and t äs in (6.1) (a), with t äs small äs possible.

This is done by looking for prime factors of 4^ (n) = n - l , *2(n) = n + l, φ (n) =

2 2

n + n + l , Φ (n) = n + l , . . . , and letting s be equal to the product of the primes

that are found, with the proper multiplicities. If one is lucky this leads to a number

s that is sufficiently large, and one puts t equal to the order of (n mod s) in

. For example, if n = 2 + 1 for some k S l one can take s = n - l = 2
k
,

t = l, and if n = 2 - l for some k £ 2 one can choose s = 2 (n + 1) = 2
+ 1
 t =2.

If one does not succeed in finding a sufficiently large value for s in this way there

is still the possibility of applying a technique that depends on lower bounds for the

unknown prime factors of n - l, n + l, ..., see [14].

Suppcse that s and t have been found, with t = #<n mod s>. Then one con-

structs, by the method of (6.5), an s-th cyclotomic extension of n, which is an ex-

tension of rank t. From (4.2) it now follows that for each divisor r of n there

exists i (mod t) with χ & n mod s. With this Information one can proceed to part

(c) of (6.1) .

If t = l or 2 then the above test is essentially contained in [3], except for

the language that is used. Larger values for t, all dividing 12, were employed by



Williams [14],

(6.7) Gauss sum tests. We next describe a test depending on Theorem (5.5). It general-

izes a method that was proposed in [53.

First one chooses s and t äs in (6.1)(a), but with the condition n E i mOd s

replaced by

a β l mod s for all a e ΣΖ with gcd(a, s) = 1.

We refer to [5, Section 4] for methods to choose s and t. The number t will

usually be somewhat larger than in (6.6). To give an Impression of the size of these

numbers we remark that for n S 10 one can take t = 5040 = 2 ·3 ·5·7 and

s = 2t-n . . , q
q prime, q-1|t

= 2
6
·3

3
·5

2
·7

2
·11·13·17·19·29·...-1009-2521 « 1.532-10

52
.

If s and t have been chosen one checks that gcd(st, n) = 1.

Next one puts u = =&<n mod t>, and one constructs a Galois extension A of n

with a cyclic group <σ> of order u, äs in (6.2). Notice that u divides 12 if

t = 5040. One now replaces t by the largest divisor of n - l that is built up

from the primes dividing t, so that (5.1) (i) is satisfied. Using the method of (6.5)

one finds ζ e A such that A, σ, ζ is a t-th cyclotomic extension of n,

At this point we know from (5.1) that for each divisor r of n and each t' äs

in (5.1) (iii) we have

r β
 n

l t M
 mod t',

where ^
t
(

r
) is äs in (5.3). We wish to prove the same congruence modulo s.

Let s1 be the largest divisor of s that is relatively prime to t. (By [5,

(4.1)], the number s1 is squarefree.) One selects a set Υ of pairs (m, χ) such

that: (i) for each pair, m is a divisor of s' and χ is a primitive group homomor-

phism (ZZ/mZZ)* ·+ <ζ> (see (5.4)); (ii) the induced group homomorphisms (ZZ/s"ZZ)*

·*· <ζ> sending (x mod s") to χ(χ mod m) generate the group of all group homomor-

phisms (E/s'E)* ->- <ζ> if (m, χ) ranges over Y.

For each (m, χ) e Υ one now checks the condition τ(χ) e <ζ> of Theorem

(5.5)(b). As we remarked in (5.7), this verification can de done within the subring of

A generated by the image of χ. If τ(χ) ~
 n /
° i <ζ> for some (m, χ) e Υ then n

is not prime, by (5.5)(a). Hence assume that τ(χ) ~
 η / σ

 e <ζ> for all (m, χ) e Y,

and let r divide n. Then x(r) = χ(η)
 fc

 for each (m, χ) e. Y, by (5.5)(b), and

o (r·)

property (ii) above now implies that χ(r) = χ(n)
 t
 for all group homomorphisms

χ: (2Z/s'Z;)* -»· <ζ>. Since the exponent of (2Z/s'ffi)* divides t, this yields

r B
 n
*t<

r
>

 m o d s
..

To prove the same congruence modulo s it now suffices to do it modulo s/s', since

gcd(s', s/s
1
) = 1. Because t

1
 = s/s' is built up from primes dividing t it usually

satisfies (5.1)(iii), so that r E
 n

£ t ( r )
 mod s/s

1
 is automatic. The only Situation in

which t' = s/s' does not satisfy (5.1)(iii) is given by

n E 3 mod 4, u is odd, t * 2 mod 4, s m s/s' m B mod 16.

This minor problem can be solved in three ways. The first is to avoid this case in the



selection of s and t. The second is to observe that t
1
 = -rs/s' does satisfy (5.1)

(iii), and to be content with the slightly weaker conclusion r E
 n

 t
 mod -rs. The

third is to check τ(χ) e <ζ> f
0
r one more pair (m, χ), with now m not

being a divisor of s
1
 but a multiple of B; for example we can take m = 8 and

χ(±3
3
 mod 8) = <-l)

j
, in which case τ(χ)

1
 ~

 n /
° e <ζ> is equivalent to s ^ "

1
^

2

 E

±1 mod n. If r e n t
( r )

 m o d
 |e

 a
nd χ (r) = x(n)

i
'

t ( r )
 for a pair (m, χ) äs just

described, then r H n ^ Γ
* mod s.

If, finally, it has been proved that r s n *· mod s for each r dividing n,

one can proceed to part (c) of (6.1).

This concludes our description of the Gauss sum method.

(6.8) Comparison of the two methods. The methods discussed in (6.6) and (6.7) differ in

two important respects. The first is that whereas in (6.6) the numbers s and t

should satisfy

n B l mod s,

they should in (6.7) satisfy the much stronger condition

a
fc
 E l mod s for all a e ZZ with gcd(a, s) = 1.

This implies that the second method is less sensitive to special properties of the

number n: the same values for s and t can be used for all n of the same order

of magnitude, and several quantities can be computed once and for all (cf. [5, Section

12, Step 1]).

The stronger condition that s and t should satisfy in (6.7) also implies that

the value for t is larger in (6.7) than it is in (6.6). This is compensated for in

the other difference between the two methods: whereas the main calculations in (6.6)

are performed in a ring of rank t over n, the calculations in (6.7) are performed

in a t-th cyclotomic extension of n, the rank of which is usually much smaller than t.

(6.9) Combination of the two methods. We shall now see how the formalism of Galois

theory allows the two methods to be combined. Suppose that method (6.6) has been applied

with auxiliary numbers S
Q
, t

Q
, and method (6.7) with numbers Sj , t.. Then one knows

that for each divisor r of n there exist integers i
Q
 (mod t ) and i (mod t )

such that

^0 l

r s« n mod s~, r ε η mod s..

Suppose moreover that each of the numbers S
Q
, Sj is too small for stage (c) of (6.1)

to be practicable, but that the number s = Icm(s
0
, Sj) is sufficiently large. Then

one would like to show that for each divisor r of n there exists an integer i

modulc t = lern(t , t.) such that r H n mod s. This clearly holds if i = i mod t

and i ε i mod t^, so one is faced with the task of proving i s i moü gc(3(t , t ).

That is easy to do if #<n mod gcd(sQ, s^> = gcd(t0< tj) , but in many cases *t=<n mod

gcd(s-, s.)> is smaller.

One can solve this problem by interpreting the above congruences äs relations be-

tween the Artin Symbols φ and φ in suitable Galois extensions of n and by exhi-
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biting isomorphic subextensions, äs in (6.4). Instead of describing in abstracto how to

proceed let me use a few "seminumerical" examples to indicate the possible techniques.

Suppose that t. = 5040 and assume for simplicity that the number u = 4t<n mod

tj> from (6.7) equals 12. Then the Gauss sum calculations are performed in a Galois

extension A. of n with a cyclic group <O
1
> °f order 12. They lead to the con-

clusion that for r dividing n we have

r E n £ ( r ) mod &1

for some integer i,(r) (mod 5040). If φ , φ denote the Artin symbols for A we
0 f γ-\

also have φ = φ . and this determines i. (r) modulo 12.
r n

Assume now first that t_ divides 12, äs is the case with the tests described

by Williams [14]. Then the calculations involved in (6.6) are performed in a Galois

extension A Q of n with a cyclic group < σ

η

>
 °f order dividing 12. Suppose that

there is a ring homomorphism f: A
O
 ·+· A with fa = o f; this is the case, for ex-

ample, if one has chosen A
n
 to be a subextension of A., with σ = σ. |A , and in

i, (r)
any case f may be constructed äs in (6.4). Then the equality φ = φ for A.

implies the corresponding equality for A.., by (3.4). From (4.2)(b) one then obtains

r B n mod s-, so r s n mod lcm(s.., s ), äs desired.

Let it next be assumed, still with t = 5040 and u = 12, that t = 5. Then

A Q has rank 5 over n, so to establish a connection between the two tests we need

a Galois extension of n of degree divisible by 5 that is associated to the Gauss

sum test. Suppose, for simplicity, that there is a pair (m, χ) in the set Υ occur-

ring in (6.7) with the property that the image of χ has order 5 and is generated by

X(n). Let L = φ(ζ )
k e r x

 and A be äs in (5.6). Then the equality x(r) = x(n) £ ( r >

m Kr)

resulting from (5.5)(b) exactly means that φ = φ for the Galois extension

A /nA of n occurring in (5.6). Hence if we establish an isomorphism A_ s A /nA

of Galois extensions then we also have φ = φ for A
Q
. This leads, äs before, to

ί> (τ}
the congruence r s n mod lcm(s

n/
 s.), that we wished to prove.

The conclusion is that it is advisable to construct the Galois extension A used

in (6.6) from Galois extensions that arise in connection with (6.7). This makes it

possible to combine the two methods without extra effort. It may be expected that this

combination will lead to important practical improvements in primality testing.
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