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ABSTRACT

The analyticity of the complex extinction efficiency (., has been investigated in different parameter
domains. From the concept of causality, it follows that, in the angular frequency w domain, ., for arbitrary
finite particles must be analytic in the entire lower complex @-plane. While, at fixed frequency, the extinction
efficiency approaches “paradoxically ” the limit 2 for large particle size g, it is noted that Q,,, must approach 0
at high frequency for certain physical reasons. In the size parameter domain, x = wa/c, numerical Hilbert
transforms are used to study the analyticity properties of §,,, for homogeneous spheres. It is found that J_,, is
analytic in the entire lower complex X-plane when the refractive index m is fixed as a real constant (pure
scattering) or co (perfect conductor), but that poles appear in the left side of the lower complex X-plane as m
becomes complex. These properties of the complex extinction efficiency have been shown to result in a power-
ful approximation method. The computation of the mean extinction produced by an extended size distribution
of particles may be conveniently and accurately approximated using only a few values of the complex extinc-

tion evaluated in the complex plane.

Subject headings: dust, extinction — methods: analytical — methods: numerical

1. INTRODUCTION

The extinction efficiency Q.,, (extinction cross section
divided by geometrical cross section) is a fundamental quantity
needed in many applications. Since Mie did his pioneer work
almost 100 years ago, various exact and approximate methods
have been devised to obtain this important factor for non-
spherical and inhomogeneous particles as well as for spheres
(van de Hulst 1957; Kerker 1969; Bohren & Huffman 1983;
Purcell & Pennypacker (1973); Asano & Yamamoto 1975;
Hage, Greenberg, & Wang 1991). For the past three decades
this study has been greatly advanced due to the fast develop-
ment of computer technology. Programs for simple particles
like spheres and cylinders are easily handled on a personal
computer. However, for more complicated cases (spheroids,
porous particles, etc.), the scattering problem is still relatively
intractable and requires larger computers for fast and accurate
evaluation of Q.. There exists a strong and continuing
demand for discovering more and more efficient algorithms.

In most applications we are confronted with the problem of
the extinction produced not by a single particle but by a cloud
of particles of various sizes, shapes, morphologies, and material
constituents. Here we shall only consider the cases of single
scattering produced by independent particles. If the particles
can be parameterized by size alone as for spheres, the mean
extinction cross section of this cloud will be

Cow = J Cexlkan(ayda , (0]

0

where k = 2m/A is the wavenumber, A is the wavelength of the
incident light in vacuum; a denotes a linear measure of the
particle size (for spheres this is the radius); C,,(ka) is the
extinction cross section at a specified size a; n(a) represents the
normalized particle size distribution in the cloud. This integral
is usually obtained by summing C.,(ka)n(a) over many discrete
particle sizes. For complicated particle configurations, such a
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computation may become extremely time-consuming. Much
more efficient approaches are needed.

It would be extremely useful if one could apply to equation
(1) the mathematical tool for evaluating an infinite integral by
replacing it with an appropriate contour integral which is
simply calculated if the integrand has only simple poles. Going
further, if the complex extinction efficiency Q.,, has certain
analyticity properties (this will be fully addressed in the coming
sections) and the size distribution n(a) may be approximated by
appropriate functions with only simple poles in the complex
plane (see § 5), the well-known residue theorem will lead us to a
considerable simplification; that is, the integral in equation (1)
may be alternatively evaluated by calculating the sum of the
residues at discrete poles. Consequently the CPU time required
will be greatly reduced. The validity of such an approximation
relies completely on the analyticity properties of Q.. The
exploration of this analyticity is the main theme of our studies
presented in this and subsequent papers.

Our inquiry into the analyticity was also motivated by a
certain aesthetic curiosity. It has been widely known that parti-
cle scattering (whether classical or quantum mechanical) is a
causal process (Newton 1966; Nussenzveig 1972). Consequent-
ly the frequency-dependent complex extinction -efficiency
satisfies dispersion relations which imply special analyticity
properties in the complex frequency plane (see § 3). In general
the extinction efficiency is determined by a few parameters. For
homogeneous spheres, this parameter dependence may be
functionally written as

OQext = Qexdm, x),

where the refractive index m = m(w) is a function of light fre-
quency o and the size parameter x = wa/c depends on both
radius a and frequency w. Q.,, can be considered as either a
function of w for fixed a or a function of a for fixed w. It is clear
that parameters w and q affect Q,,, in unsymmetric ways. Our
question is this: how different will the analyticity properties be
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if the complex extinction efficiency is examined in different
parameter domains?

Throughout our investigation, the Titchmarsh theorem
plays a fundamental role (it will be introduced in § 2; further
explanations and some necessary clarifications are also pre-
sented there). Equipped with this basic theorem, we point out
that two alternative approaches exist for studying the analyti-
city. One way is to examine the possible causality of the
problem in hand. This is exemplified in § 3 by analyzing
the complex extinction efficiency in the angular frequency
domain. The other uses Hilbert transforms computationally.
Directly applying numerical transforms to the functions under
investigation, one can infer their analyticity behavior from the
differences between the transformed and corresponding
untransformed functions. In § 4 we apply this method to the
complex extinction efficiency for the homogeneous spherical
case, with the aim of understanding its analyticity in the parti-
cle size parameter domain. Based on the knowledge obtained in
such a way, an approximation procedure is formulated in § 5
which leads to a simplification in the calculation of the integral
in equation (1). A range of computational examples are pre-
sented which validate our approximating method as an effi-
cient and accurate one. In the last section our main results are
outlined and further applications are indicated.

The convention and notation to be used in this paper will
follow van de Hulst (1957), especially in choosing €' as the
time-dependent factor of the plane-wave. Furthermore, the
tilde is used to denote the complex extensions of the corre-
sponding real quantities. For instance, & is the complex exten-
sion of real w.

2. TITCHMARSH THEOREM: ANALYTICITY, CAUSALITY, AND
HILBERT TRANSFORMS

In his classical book on the theory of the Fourier integral,
Titchmarsh (1937) proved a theorem which connects analy-
ticity, causality, and Hilbert transforms. According to this
theorem, we have the following three equivalent statements for
a complex function F(x),! which is square integrable over the
real x-axis.

1. Analyticity—Replacing x by its complex extension X =
x + iy, the function F(X) is analytic in the lower complex
X-plane (y < 0) and approaches F(x) almost everywhere as
y — 07. Furthermore, these exists a finite constant K such that,

+ o
f |F(x + iy)|?dx <K fory<O0. )

2. Causality—The Fourier transform f(z) of F(x) vanishes
fort < 0, that s,

fo= —\/1.2——; er(x)eix* dx=0 (t<0). 3)

3. Hilbert Transforms—The real and imaginary parts of
F(x) are Hilbert transforms of each other:

Re [F(xo)] = — % P j o —————It EFSC)] dx (42)
— 0

Im [F(x,)] = + ;1; P J m RE—E_F% dx , (4b)
- 0 :

where the capital letter P denotes the Cauchy principal value.

! In this section both x and ¢ denote only the generic mathematical real
variables. One should not confuse them with the size parameter, x = 2na/4,
and the physical time ¢ as being used in the following sections.

165

Obviously, besides the analyticity, the first statement also
requires F(x) to be bounded in the lower complex plane. For all
the cases we will consider in the present study, where mathe-
matical strictness is not our major concern, it should be suffi-
cient to replace the requirement on the boundedness of F(x) by
the following asymptotic property

F(x)=0(§), x| - . )

The second statement is a mathematical formulation of one
of the most important physical concepts—causality. This
becomes obvious if we establish the following correspondences
in equation (3): ¢« physical time and x < light angular fre-
quency. It is sometimes hard to define causality precisely, but
the general idea is illustrated as follows: the response (output)
of a linear passive physical system cannot precede the cause
(input). In the case of light scattering, it is that the scattered
wave cannot be emitted by the scattering center before the
incident wave has arrived. This subject has been extensively
addressed in many research fields (Bode 1945; van Kampen
1953; Toll 1956; Nussenzveig 1972). In fact, causality is now
recognized as being one of the essential requirements for any
proposed physical theory to be accepted.

As Hilbert originally demonstrated, integrals (4a) and (4b)
actually imply each other. Thus it suffices to keep only one of
them. Nussenzveig (1972) referred to them as Plemelj formulas
in recognition of their earlier origins. We will use the more
customary designation and refer to both as Hilbert transforms.
But there is one thing that we would like to clarify. Although
they resemble each other, we think that it will be profitable to
distinguish Hilbert transforms from dispersion relations. It is
only when the complex function F(x) satisfies the symmetry
relation, or crossing condition,

F(—x) = F¥(x), (6)

where the asterisk denotes the complex conjugate, that Hilbert
transforms are equivalent to the ordinarily used dispersion
relations, known in optics as Kramers-Kronig relations:

Re [F(x,)] = — % P J‘w x—f::l—_ﬂl% dx , (7a)
0
Im [F(xo)] = + % P j ) xiff_[——%’fﬂ dx (7b)

The symmetry relation (6) is a consequence of requiring f(t) in
equation (3), the Fourier transform of F(x), to be a real func-
tion. This is justifiable in the study of physical systems in the
time domain, since any physical signal is always a real function
of time. But from the mathematical point of view, f(f) need not
be real, if t denotes a generic variable other than physical time;
f(¢) may be a complex function and still fulfill the condition in
statement (2) above.

The Titchmarsh theorem offers two options for studying the
analyticity of F(X). In one way we can examine the possible
causality of the problem. Another way is to check if the real
and imaginary parts of F(x) obey Hilbert transforms (4), which
is especially helpful when we lack the required physical intu-
ition for examining the problem under consideration. In the
next section we shall follow the traditional approach of cau-
sality for studying the properties of the complex extinction
efficiency in the angular frequency domain. However, in
turning to the question of the analyticity in the particle size
parameter domain in § 4, we have been forced to use Hilbert
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transforms. Although this approach is a numerical one, it
appears to provide a very powerful alternative to an analytical
calculation.

3. ANALYTICITY OF THE COMPLEX EXTINCTION EFFICIENCY
IN THE ANGULAR FREQUENCY DOMAIN

Let us, for simplicity, consider the scalar scattering produced
by a finite particle with arbitrary shape. Assume the particle is
fixed in space and illuminated by a unit plane wave of angular
frequency w, which propagates along the positive z-direction,

uo(w) — e—ikz+iwt X
Following van de Hulst’s argument (1957), the amplitude of the
scattered wave at a distant field point (r, 0, ¢) is

—ikr +ikz

u(w) = S, 6, 9) <

Uuo(®) ®

where r, 0, ¢ are conventional spherical coordinates, wave-
number k = w/c, ¢ the speed of light in vacuum, and S(w, 6, @)
is the complex amplitude function. In the forward direction
6 = 0°, equation (8) becomes

S(w, 0°)
i(w/c)z
On the other hand, the frequency-dependent extinction effi-

ciency Q. () is related to the forward amplitude function S(w,
0°) by the well-known optical theorem

ww) = uo(w) . e

Qenl@) = Re [S(w, 09)] . (10)

(o, / )ZG
Here G denotes the geometrical area projected by the particle
in the incident direction. We shall generalize equation (10) by
introducing the complex extinction efficiency

D oxi@) = S(w, 0° (11)
Oext @ / )2 (o, 0°) .
A bit of derivation based on equations (9) and (11) leads to
u) = ClioQex(@)]ug(®) , (12
where C = — G/4ncz is a real constant.

Clearly the complex function [iwQ, (w)] in equation (12)
relates the input uy(w) to the output u(w) in a linear and causal
way. Additionally, the reality of the light signal in the physical
time domain requires that [iwQ,(w)] satisfies the symmetry
relation (6). Hence, one may expect that the complex extinction
efficiency @, (w) will “ potentially ” fulfill the Kramers-Kromg
relations (7a) and (7b). The reason for saying “ potentially ” is
that until now the boundedness of ., (w) as required by Titch-
marsh theorem has not yet been checked. In the spirit of equa-
tion (5), this could be briefly demonstrated as follows.

At extremely high angular frequency (much higher than any
resonant frequency), the electromagnetic response of any
physically real material is essentially free electron-like. We can
use the Lorentz model to determine the asymptotic behavior of
its optical properties. Explicitly it is

e(a))—1=m2(a))—1=0(iz), I
®

where e(w) is the dielectric function of particle material and
m(w) the index of refraction. For simplicity, we shall only
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examine the case of spheres in the following. From the asymp-
totic behavior of m(w) displayed above, it is easy to show that
the phase shift p(w), along the diameter of a sphere of radius a,
will have the limit behavior

ple) = 2[m(w) — 1]x(@) = O(i) . Jol-w.

Here the dependence of the size parameter x(w) =
frequency o is clarified.

Since now |[m(w)—1|—0, |p(w)|—0, and |x(w)|— oo,
when |w|— oo, we are actually in the adjoining boundary
region “12” on the “m-x domain” diagram (van de Hulst
1957, p. 132). In such a case the complex extinction efficiency is

way/c on the

~ 4
Gun(@) = 235 810, 0%) =3 i) — 11x(0)
4 . 1
=§P(w)l=0<5), lo]— oo . 13

Although the discussion above was made only for spheres, the
asymptotic behavior (13) holds for particles of other types
(Greenberg 1960).

Combining equation (13) with the discussions following
equation (12), we see that Q. (w) must satisfy the Kramers-
Kronig relations, that is,

do, (l4a)

A ol
Re [Gouleop)] = — = P L @ Im [Qor(@)] [Qexz£w>1

w—co

* Do Re [Qextz(w)] dCO . (l 4b)
()

~ 2
Im [Qext(wo)] = +; P L 602 _

As a consequence of the Titchmarsh theorem, J., (@) will be
analytic in the lower complex @-plane. Clearly these results are
valid for any finite particles in any particular orientation so
long as the scalar scattering theory applies.

It should be noted that Ku & Felske (1986) arrived at the
same dispersion relations as equation (14) for a different
purpose. In that paper they thoroughly discussed both the low-
and high-frequency asymptotic behaviors of semiconductor
particles. It is also worth noting that there exists another
approach for the analysis of the dispersive properties of J, (),
namely, treating the cloud of particles as a formal linear causal
medium (Purcell 1969).

From equation (13) we see that the asymptotic behavior of
the real extinction efficiency Q.,(w) at large angular frequency
o is different from that obtained by ordinary diffraction
theory, which basically deals with the approximation in the
region of large particle size. Instead of approaching the value 2,
Qx(w) must vanish at very high frequency for distinct physical
reasons, that is,

| h;m Qexi(®) =0.

As an illustration of the general behavior of the frequency-
dependent extinction efficiency, we present in Figure 1 the plots
of ., (w) for a homogeneous sphere. For such a sphere with
radius a, §,,, is directly determined by two parameters: size
parameter x = 2ma/A = wa/c and complex refractive index
m(w). The light frequency o affects J,,, through both x and
m(w). For simplicity of presentation, we have chosen a = ¢, so
that x = w, and we can use x and w interchangably. In Figure
la §..(w) is shown for the frequency-dependent index of re-
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Re[@ezt(w)]
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Im[m(w)]
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Re[Qezt (w)]

-10 15 20
16
14
32
lo
m(w)=1.70-0.051 -2
+ t +
14
42
W )
-2
m(@)=1.70-0:050 ] _4
. . . L L .
-10 -5 0 5 10 15 20

w

Fic. 1b

Fic. 1.—a) Qm(w) for a physical m(w) given by eq. (15). Solid curves: the original Qex (w); dashed curves: respective numerical Hilbert transforms of Q"exl(co). The
real and imaginary parts are presented separately. m(w) is illustrated in the right box. (b) Q.,,(w) for a “nonphysical” m(w) = 1.7 — 0.05i.

fraction, in which m(w) — 1 satisfies the Kramers-Kronig rela-
tions (7),

m(w) = /e(@) = <1 + —2—“’L—>1/2 (15)

0§ — 0* + iyo

with w, = 6.0, w, = 5.0, and y = 1.0. Figure 1b is a similar plot
for a refractive index

m(w) = 1.7 — 0.05i , (16)

which is a complex constant over the entire frequency range, so
that m(w) — 1 does not satisfy the Kramers-Kronig relations,
and thus m(w) is not physically correct. For the former case, we
see that J_,(w) satisfies the crossing condition (6). Numerical
computations clearly show in Figure la that it fulfills the
Hilbert transforms (4) as well. Within numerical accuracy there
is an exact coincidence between the original and the trans-
formed curves. (For a detailed description of the numerical
Hilbert transforms technique, see the next section.) On the
contrary, when m(w) is “nonphysical” as assumed in equation
(16), it is obvious that the crossing condition (6) is totally dis-
obeyed and the asymptotic limit becomes 2 instead of 0. Con-
sequently the dispersion relations (14) also could not hold.

An obvious indication of these two numerical examples is

that, in the angular frequency domain, a physically correct
0..«(w) requires a physically correct m(w). This is understand-
able if we notice that both J,, (w) and m(w) [or €(w)] are
employed to describe the electromagnetic response of a contin-
uous medium, in the sense that the Kramers-Kronig expression
for the complex m(w) of the material of the particles in a
medium is equivalent to a Kramers-Kronig representation of
the effective refractive index of the medium consisting of inde-
pendent particles. Hence, one may argue that (. () is as basic
as m(w) [or (w)].

4. ANALYTICITY OF THE COMPLEX EXTINCTION EFFICIENCY
IN THE SIZE PARAMETER DOMAIN: HOMOGENEOUS SPHERES

_ In this section we will explore the analyticity properties of
Q.. for homogeneous spheres in the size parameter domain.
Since now G = na? (a is sphere radius), the complex extinction
efficiency introduced in equation (11) becomes

~ 4
Qerl) = 73 S(07).

Here we have considered ., as a function of the size param-
eter x = ka = wa/c instead of the angular frequency w. This
means we fix on a constant frequency and inquire how Q.,,
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varies as x changes. Since the refractive index m depends only
on the light frequency, a fixed w implies a fixed m.

From the discussions carried out at the end of the last
section, one can expect that Qg,(i) in the X domain will not
have the same properties as Q.,(®) in the @ domain. The
reason for this is that, although the proportionality of x to »
does not affect the analyticity properties of §,,, when it goes
from the ® to X domain, the physical incorrectness of
m(w) = constant will destroy the causality of J,.(x) com-
pletely. This was seen in Figure 1b. Thus the causality
approach used for ., (w) is no longer applicable to J.,(x).

Fortunately the Titchmarsh theorem offers us another
option for studying the analyticity, that is, verifying if J,(x)
fulfills the Hilbert transforms. We have not been able to do this
purely analytically because Q.,, has no simple explicit expres-
sion. But we have advanced computer codes which can be used
to calculate ., at specified points, so as to verify numerically
the satisfying of the Hilbert transforms.

Before implementing the numerical approach, we must
modify §,.(x) somewhat in order to ensure that it has the
proper asymptotic behavior (5) at large x as required by the
Titchmarsh theorem. Recallmg the kinds of arguments we
made in previous sections, it is clear that the quantity J,,(x)
— 2 will fulfill our purpose. Since 2 is the limit value of the
diffraction theory approximation, J_,(x) — 2 approaches 0 as
| x| — oo, so that we must apply numerical Hilbert transforms
to Q.,(x) — 2 rather than to Q,,(x) itself.

In practice, for a specified refractive index m, we apply
numerical Hilbert transforms to the real and imaginary parts

of §,,(x) — 2 separately, namely,
1 + o0 A _
H{xo)= —~ P J Mm@ =214 (17a)
T ) e X — Xq

¥ Re [Qey(x) — 2]

X — Xq

H/(xo) = + 1 P j dx. (17b)

Then H (x) and H,(x) are to be compared with Re [0..(x) — 2]
and Im [Q,,(x) — 2], respectively, so that the analyticity of
0.,(%) in the lower %-plane is inferred from the possible differ-
ences.

From the computational point of view, the integrals in equa-
tions (17a) and (17b) are both of the type

T g
p J; x_———x; dx . (18)

9

Hence they can be computed by the same computer algorithm.
Note, however, that since equation (18) is an infinite Cauchy
principal value integral, some special treatment is needed.

At first, we split equation (18) into three separate parts,

+© —a
R J 69, _ f o
—n X — Xo —w X — Xp

+b + o
+ P J 9 dx + J ) dx ,
—a X — Xg i X — Xg
where a and b are positive numbers. If we choose quite large
values for a and b, the integrations over both positive and
negative tails can be readily estimated by using asymptotic
expansions for §,,(x) — 2. In the literature accessible to us, we

found approximate expressions only for pure dielectric
(Nussenzveig & Wiscombe 1980; Attard et al. 1986) (m = real)

(19)

and metal (Senior 1983) (m = o0) spheres. For all intermediate
cases, with m neither real nor oo, the asymptotic behavior at
large x has been assumed to have a negative power form: Ax™*
for both real and imaginary parts of Q. (x) — 2 with different
exponents o. Experience tells us that if a and b are large
enough, the tail integrals are mainly decided by the values of
0.«(x) — 2 at the cutting points x = —a, +b. Thus one must
set a and b as large as possible in order to ensure the accuracy
of the numerical infinite integration.

The middle term in equation (19) is expected to contribute
the major part to the final transforms. Obviously the integrand
diverges at x,. Sophisticated ways have been devised to treat
this singularity, and well-designed algorithms are now gener-
ally available in several scientific software packages. In our
computation, a subroutine implemented for a finite Hilbert
transform in NAG (1983) has been adopted to fulfill our
purpose.

As can be expected, the success of the numerical Hilbert
transforms (17) will greatly depend on the efficiency and cor-
rectness of the Mie program used for the evaluation of §.,(x),
especially at a large size parameter. The one we employed in
this study is based on the algorithm suggested by Wang & van
de Hulst (1991), which can reliably compute 0., (x) for x as
large as thousands when m is moderate.

We have done the numerical Hilbert transforms (17) for a
number of specified refractive indices. The transformed curves
are plotted in Figures 2 and 3 along with their respective orig-
inal (untransformed) ones in the range —20 < x < 20. The real
and imaginary parts of Q. (x) — 2 are presented separately.
These curves have been arranged in a sequence of increasing
values of —Im (m) from 0 to 400 while Re (m) is fixed as 1.33 in
Figure 2 and 1.70 in Figure 3. With this organization, the
evolution of ., (x) — 2 versus m may be clearly viewed. In our
numerical integration, an adaptive resolution on the size
parameter x has been used in order that certain very sharp
features could show up clearly. For all the calculations we have
done, the values of both a and b in equation (19) are <et to be
1500.

By examining these figures closely, one notices that

1. The variations of the real and imaginary parts of J,,(x)
— 2 are correlated with each other. Whenever a feature of
Re [Qm(x) — 2] appears, there is a corresponding feature of
Im [Q..(x) — 2] appearing in the same x-range.

2. When —Im (m) increases from O to the extremely large
value of 400, J, ,(x) — 2 undergoes a change agreeing precisely
with its Hilbert transforms at both extremes but exhibiting
differences in the intermediate range. It is, in fact, reasonaple to
believe that Hilbert transforms are strictly fulfilled by Q,,(x)
— 2 only when m = real constant or m = 0.

3. As for the crossing condition (6), §.,(x) — 2 shows a
similar varying pattern to point 2. That is, only when m = real
or m = oo, does the symmetry relation hold for §, (x) —

4. When m is a finite complex constant, there exist many
discrepancies between the transformed and the corresponding
original curves, which show the following patterns: (a) discrep-
ancies appear as oppositely directed features with respect to a
common background; (b) the central position of these features
are located only on the negative part of the x-axis.

With the help of the Titchmarsh theorem, we can infer the
analyticity properties of §,,(¥) — 2 in the lower %-plane from
the characteristics listed above. Most obviously, based on
point 2, we can say that §, (%) — 2, thus J,,,(%), has no poles in
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FiG. 2—The original and respective numerical Hilbert transforms of §,,(x) — 2 for a sequence of m-values with Re (m) = 1.33. (a) Solid lines: Re [0.,.(x) —2];
dashed lines: H (x) defined in eq. (17a). (b) Solid lines: Im [0..(x) — 2]; dashed lines: H (x) defined in eq. (17b). When m takes intermediate values, Q.,(x) has many
very sharp features on the negative x-axis. Note that, for x > 0, Re [(,,,(x)] is just the normal extinction curve. In order to let the main features show up fully
different scales have had to be used.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992ApJ...399..164X&amp;db_key=AST

z)—2] and Hi(z)

Re[éezl(

and H,(z)

Im[Qeze(z) - 2)

T 399 TI64XT

-20 -15 ~10 -5 0 5 10 15 20
— . h — — . ;
R 2
1
B :
2t m=1.70-0.00i -2
— t *
5
)
m=1.70-0.05% -5
+ + + 3
10
[
m=1.70-0.10i -0
10
0
m=1.70-0.50i -0
t + : :
10F Ny 10
o e A S — )
~10k m=170-1.00i {710
E : + " + t + + ]
iz
0
m=170-500i 7%
2k 2
—2f m=1.70-50.0i 2
F " N N n i i + 3
2F 2
° /" ’
E m=1.70-400. -2
-20 -15 ~10 -5 [) 5 10 15 20
T
FiG. 3a
—20 -15 ~10 -5 0 5 10 15 20
-2 m=170-000i 172
E + ; ; " ; +— + ]
is
0
m=1.70-0.051 i-%
J10
0
m=1.70-0.10i i1
j10
____________ °
m=1.70-0.50i -0
10
o
m=1.70-1.00i -to
2
_________________________________________________________________ 0
m=170-5.00i -2
N iz
o 0
Er m=1.70-50.0i -2
E t + + t + —+ t ]
2f iz
0 0
2 m=1.70-400.i 12
-20 ~15 -10 -5 ) 5 10 15 20
z
FiG. 3b

F1G. 3.—Similar to Fig. 2, but with Re (m) = 1.70
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FiG. 4—Inferring the poles of the rational function F(%) defined in eq. (20)
by numerical Hilbert transforms. Solid lines: the original; dashed lines: respec-
tive numerical Hilbert transforms. (a) Real part of F(%); (b) Imaginary part of
F(%). The central positions of the poles are also indicated.

the lower X-plane if m = real constant or m = c. Undoubtedly
if m is chosen as a finite complex constant, Q. (X) — 2 intro-
duces poles in the lower X-plane because now the Hilbert
transforms (4) are violated. This becomes obvious if we carry
out the numerical integral transforms (17) on a much simpler
rational function. As an example, consider

(X =z )X — z,)
(& = P& — p2)& — p3)& — pa)(X — ps)’

with z, =0, z, =3.0—1.0i, p, = —5.0+ 0.15i, p, = —2.5
—06i, p;=—10+02i, p, =15+ 0.5, ps=4.5—025i
The numerical results are shown in Figure 4. Clearly function
(20) has three poles, p,, p3, and p,, in the upper %-plane and
two poles, p, and ps, in the lower plane. We see that only p,
and p5 show up as locally reversed features in the transformed
and the original curves. Furthermore the central positions of
these discrepancies are decided by the real part of the poles,
and the range over which a discrepancy appears is approx-
imately proportional to the imaginary part of the correspond-
ing pole. Based on this example and our point 4, we may
suggest that the possible poles of Q.,,(X) — 2, and, of course,
0..(%), which are in the lower X-plane, are only limited to the
left side. In the next section, we will see that it is this interesting
mathematical phenomenon that validates the approximation

F(X) = (20

- method proposed there.

It would be very gratifying if our assertions above could be
proved strictly rather than numerically. We even suspect that

such a proof may have been given by somebody some years
ago, since Mie’s result has been known for such a long time,
but we have not been able to find it. However, our numerical
approach is always helpful and actually offers a pragmatic
method for studying analyticity, especially when we have no
simple explicit expressions for the functions under investiga-
tion.

5. APPROXIMATING THE CALCULATION OF
MEAN EXTINCTION

From now on, we shift our discussion from the complex size
parameter X domain to the complex particle size & domain.
Because x = Iga, it is obvious that the conclusions we have
drawn about (. (X) in the %-plane carry over for J,,(kd) in the
complex d-plane. Here a constant angular frequency w is
assumed as before, which means the wavenumber k = 2n/
A = w/c is a real number. We shall restate these conclusions for
0., (kd) in the complex d domain for future reference. When m
is real or o0, §,,,(kd) is analytic in the entire lower d-plane. But
as m becomes complex, poles are introduced in the lower
a-plane, which are, however, limited to the left side. Further-
more Q.. (ka) approaches the limit value 2 as | a| becomes very
large,

lim Q. (ka)=2.
lal= o

We shall now reconsider the problem of evaluating the mean
extinction introduced in § 1.

First, consider the complex integral

E]g 13 ox(kiA)n(@)dd

over the contour C shown in Figure 5. Here n(@) denotes an
appropriate complex function which approximates our actual
size distribution when 4 is real® and it has a “limited ” number
of discrete simple poles in the lower d-plane. We further require
that n(d@) approach zero sufficiently fast when | G| — co, namely,

23)

o2y

22

lim @n@) =0,
la| -
so that the application of the residue theorem (Arfken 1985) to
the contour integral equation (22) will result in

2 This means that n(d) becomes a real function when d is real and it approx-
imates the actual size distribution in the entire real a-axis. Although an actual
size distribution must be 0 for all a < 0, the approximate n(a) may not be zero
when a < 0; however, it should be negligibly small.

Im(a)

A

0 Re(a)

R — oo

Fi6. 5—Contour C used in complex integral (22)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992ApJ...399..164X&amp;db_key=AST

J. - 23997 CI64X T

]

rTI92A

172 XING & GREENBERG

f " 24?0, (kayn(a)da

__,_.Jresidues at the poles of both J.,(kd) 24
B and n(d) in the lower & plane ’

We shall employ the real part of the left-hand side of equation
(24) as an estimation of the mean extinction cross section
defined in equation (1). This is reasonable because n(a) is
expected to be negligibly small when a is negative. Therefore
the integration over size distribution is reduced to an evalu-
ation of the residues at discrete poles.

One may question the feasibility of conveniently finding
such a complex function n(d@). This suspicion can be dispelled if
one notices that nonlinear rational approximation theory has
become one of the well-established branches of numerical
analysis during the past decades (Braess 1980). In fact one can
rather accurately approximate most of the frequently used
practical size distributions by rational functions (ratios of two
polynomials) with only a few simple poles. Details on this
matter will be presented in our subsequent papers.

Careful readers may also notice that on the right-hand side
of equation (24), the residue contributions are not only from
the poles of n(d), but also from these of J,,(kd). From the
discussions of § 4, we know that the possible poles of J.,,(kd) in
the lower left plane are enormous and their locations are com-
plicated as well. These may at first seem to prevent a practical
implementation of our approximation scheme as proposed,
especially when m is complex. However, the versatility of
rational approximation theory allows us to construct n(d@) in
such a way that n(a) approaches zero very quickly on the nega-
tive a-axis. Consequently n(d) also will vanish quickly in the
entire left-hand d-plane. As a result, the residue contributions
from all the possible poles of (. (kd) can be generally
neglected, since these poles are only located in the left side and
their effects are highly suppressed by the smallness of n(d@) in the
entire left d-plane. Hence, as will be numerically demonstrated,
in the final evaluation, only the poles of n(d@) will be involved.

Summarizing all the above arguments, we are left with the
following approximation:

j " 1a?Q, (@n(a)da
0

~ —2mi Y, {n] Qenkd,)[(@ — 3 0(@)]a=a,} » (25)

where @, denotes the possible pole of n(d) in the lower d-plane,
which should be of order of one. Note that the mean extinction
defined in equation (1) is just the real part of equation (25).

The approximation given in equation (25) requires the com-
putation of Q.,(X) for complex size parameter X = kd. This
further requires modifying the usual Mie program so that a
complex size parameter X may be used as input. For most
cases, this revision is not too difficult.

As already mentioned, the approximation neglects any pos-
sible residue contribution from the poles of (., (kd). Seeing
how these poles are distributed (§ 4), it is rather difficult by
strict analysis to estimate, a priori, the accuracy of our method.
Direct numerical integration is the only way to check how
good (or bad) our method is.

We have derived an explicit form of equation (25) using the
size distribution,

Vol. 399
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which is illustrated in Figure 6. Now equation (25) becomes

—i(n/3)

R 1— ~
f na*Q s kan(a)da ~ ~——— [ & 0o (ko)
0

+ e_i(nls)ﬁléext(kal) + e_i(Zﬁ/S)dZ Qext(kaZ)] (27)
with three poles located in the lower plane at
Go=0o+ Pe 'O F =g+ Pe D G, =4 fe 5O

Numerical examples are calculated for « = 1.0 and f = 0.5.
Two sets of curves have been plotted (Figs. 7 and 8). Each one
corresponds to a fixed Re (m). Results obtained by direct
numerical integration are represented by thin solid lines, and
the residue evaluations by thick dashed lines. The differences
are shown as thin dashed lines. For clarity, the real and ima-
ginary parts are illustrated separately.

These examples show that our approximation is really quite
good. For all the values of m we have tried, the absolute differ-
ences between direct integration and the residue approx-
imation are less than 1%. The mean relative error is only about
0.5% for a large range of k (from 0 to 10). Such a small error
exceeds one’s expectation when m is complex. Looking back at
Figures 2 and 3, we can see that quite large differences exist
between the numerically Hilbert-transformed and the original
0.x(x) — 2, especially for 0.1 < —Im (m) < 50. But if we recall
that the analyticity is a localized property and the integrand of
equations (25) or (27) approaches 0 with a speed faster than
O(a®) when a— 0, this high accuracy becomes reasonable.
We have performed many other calculations for different size
distributions and refractive indices. All show a similar high
accuracy.

6. SUMMARY AND DISCUSSION

In previous sections, we have explored the analyticity of the
complex extinction efficiency ., in different parameter
domains. By employing the physical concept of causality, we
found that Q. (@) is analytic in the entire lower @&-plane. And a

a=1.0
. £=05
S

F1G. 6.—Size distribution n(a) defined in eq. (26). It is normalized as
j"_'i n(a)da = 1. Note that, with the given parameters, it has a very small tail
on the negative g-axis.
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FiG. 7—Comparison between direct integration and the residue approximation for a sequence of values of m with Re (m) = 1.33. Thin solid lines: direct numerical
integration of the left-hand side of eq. (27); thick long dashed lines: residue calculation by the right-hand side of eq. (27); thin short dashed lines: difference = residue
approximation — direct integration. (a) Real parts; (b) Imaginary parts. Notice that the scale for the differences as labeled on the right side is 500 times the scale of the

mean cross section. For each curve, 100 points have been plotted.

few simple physical arguments show that 0.,(®) must vanish
when | w | goes to infinity. All of these strongly indicate that the
causality of 0, (w) implies the causality of m(w) — 1, or vice
versa. We think this is not just a mathematical coincidence.
Instead it comes from the self-consistency of Maxwell theory.
The major part of this Paper has been devoted to the dis-
cussion of Q,,(X) in the complex size parameter X domain. In
the X-plane, Q.,, behaves very differently than in the complex
@-plane. The most prominent difference is that 0.u(x)
approaches the limit 2 when x goes to infinity. Even though
poles appear in the lower X-plane when the refractive index m
is complex, all of our carefully calculated examples suggest that

these poles are located only on the left side. Although we are
still unable to strictly (analytically) prove these results, we
believe they are generally mathematical truths. In this Paper
we studied only the case of homogeneous spheres. At the next
stage we will extend our investigations to other particle shapes
and configurations. 5

Our detailed investigations of the analyticity of Qex,()?) have
resulted in a powerful approximation, which promises to
reduce greatly the evaluation of mean extinctions. Besides its
practical usefulness, this approximation method releases us
from the narrower positive x-axis to a much wider complex
%-plane. We hope that such an extension will be helpful for the
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FiG. 8—Similar to Fig. 7, but with Re (m) = 1.70

solving of other related problems, such as particle sizing. As we
have already seen, a complex extinction efficiency with a
complex X reveals hitherto unexpected properties. We suspect
that much more information remains to be discovered in the
complex X-plane. The advantage of the approximation method
derived here will become even more obvious when the particles
have nontrivial shapes (say spheroids). And future develop-
ment of useful expression of a given n(a) in terms of rational
function or other functions having simple poles is also needed.
We will address these problems in our forthcoming papers.
Finally we have learned from our investigation that numeri-
cal Hilbert transforms are practical and efficient tools for the
studying of the analytic properties of complex functions. In
fact, by using these and other similar transforms one can infer
the analiticity of a complex function in any area of the complex

plane. Analogously, through the differences shown by the
transformed and the corresponding original functions, we can
gain a general view about the distribution of the poles (or
zeroes) in the entire complex plane.
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