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ABSTRACT

Voigt functions are useful approximations for the intensity distribution in spectral lines. A table of
these functions is given, and its use in computations on instrumental distortion is explained. Some
mathematical properties of the Voigt functions are mentioned.

1. It is well known that the intensity distribution in a spectral line broadened by two
independent effects is expressed by the equation

+o
F@ = [ =y o) dy. ()

Here f'(x) and f”/(x) are the profiles that theline would assume if only one of the broaden-
ing effects was present. All functions f, ', and f* denote intensities, and « is the distance
from the center of the line in terms of either wave-length or frequency units.

Often the functions f(x) and f'(x) are known, and f”’(x) has to be found from equation
(1). Such is the case, for instance, if the observed profile of a spectral line and the in-
strumental function are known and the true profile is sought. Numerous methods for
solving the integral equation (1) have been applied.! However, all the general methods
are very laborious. This is not unexpected, since even the direct integration of equation:
(1) when f'(x) and f"’(x) are given is laborious. A separate integration is then needed for
each value of x, so that the construction of a single line profile, f(x), requires a large
number of integrations. ‘

A short way of solving either problem is to approximate the profiles by analytic
functions. One of us has shown that Voigt functions are very suitable for this purpose.?
Convenient tables of these functions are not available. We shall accordingly present
here a table and a graph which we have found to be useful in practice. With their use the
method can be applied to other problems without any effort.

2. The prototype of a method using simple analytic functions as approximations is the
“half-breadth method.” The profiles are supposed to agree with functions of the Gaussi-
an type:

f(x) =ce=/8;

where ¢ and B; are constants. If in equation (1) the functions f'(x) and f"'(x) are of this

‘type, then so is f(x), and the parameters B are related by

gL =B +6]" . )

The half-breadths, which for Gaussian functions are equal to 1.6658,, satisfy a similar
relation. Therefore, the two operations to which equation (1) gives rise consist of simple
addition, or subtraction, of the squares of the half-breadths.

This widely practiced method may be good for frequency functions in mathematical

1Cf. H. C. van de Hulst, B.4.N., 10, 75, 1946. 2 Ibid., p. 79.
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statistics, but it is unsatisfactory for spectral lines. The reason is that most profiles have
extended wings, in which the intensity decreases proportionally to x~2. Such wings are
present in the profiles of lines broadened by collision damping or by radiation damping.
They are also present in the instrumental curves of most spectrographs (compare sec. 6).
The classical example of profiles with very strong wings is provided by functions of the
dispersion type,

f(®) = 1—|-x2/6

where ¢ and B; are constants. These functiors also have the property that two functions
of this type define by means of equation (1) a third function of the same type. The
parameters B, are connected by the relation

B, =B{+8. (3)

The half-breadths, which for dispersion functions are equal to 28;, must also be added
linearly.

As an example, we consider the case of an observed spectral line having a profile of
the dispersion type with half-width 2 = 2.0 A, while the instrumental profile is also
known to be of the dispersion type, with 2’ = 1.6 A. Since we have to subtract linearly,
we obtain 4" = 0.4 A for the true half-width of the line. If, instead, we had applied the
usual quadratic subtraction, we should have found the value " = 1.2 A, which is three
times too large. This example shows how much the common half-breadth method may
be systematically in error when applied to spectral lines.

Voigt functions?® are a more general type of function, including, as extreme cases, the
two types mentioned above. They originate as functions f(x) in equation (1) if f'(x) is a
Gaussian function and f”/(x) is a dispersion function. Thus they are characterized by
tW/O parameters, 1 and B;, and show more or less strong wings, dependent on the ratio
B1/ B2

An important theorem (see sec. 5) is: If in equation (1) {'(x) and {''(x) are Voigt func-
tions, then £(x) is also a Voigt function. Their parameters satisfy the relations

B, =Bl +8,
} (4)

By =62 +6;".

Using this theorem, we can perform the operation (1) and its inverse process very
rapidly. Only a little more effort is required than in the common half-breadth method,
and the systematic errors of that method are avoided. In fact, we have found that the
profiles of most spectral lines which show no asymmetry, fine structure, or strong self-
absorption are very nearly Voigt profiles. Generally, therefore, equation (1) can be
solved by the new method as accurately as the observations will permit.

3. For practical use of this method a set of standard Voigt functions is needed. Table 1
gives such a complete set. It is based on existing tables. If we denote by 4 the area

A=f_:°°f(x)d5c, (5)

3 First studied by W. Voigt, Miinck. Ber., 1912, p. 603.
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a Voigt-function f(x) is completely determined by the parameters 4, Bi, and B.. Nu-
merically computed tables have been published for the following cases: .

Born*: 4 =7, B1=1, Bo=1,
for 7 =0, 0.1, 0.5, 1, and 2;
Hjerting®: 4 = /=, Pr=a, B:=1, _
far a=0,....,(0.01),....,0.2, 0.3, 0.4, and 0.5.

TABLE 1
. STANDARD VOIGT PROFILES

PARAMETERS ORDINATES IN TERMS OF CENTRAL ORDINATE

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 | 0.02 | 0.01

Bi/k | Bi/B2| Ba/k |BY/K | p
Widths in Terms of Half-width
L

0.000| 0.00| 0.60| 0.36| 1.06{| 0.57| 0.72| 0.86|| 1.00|| 1.15] 1.32; 1.52| 1.82]| 2.08| 2.38| 2.58
.025( 0.04| .59 .34| 1.08)| .56| .72| .86|| 1.00|| 1.15] 1.33] 1.53|| 1.84)} 2.12} 2.49| 2.82
.050( 0.09 .57 .32 1.11j| .56| .71] .86|| 1.00|| 1.15] 1.33] 1.54]| 1.87| 2.19| 2.63| 3.13
.075| 0.14} .55 .31} 1.13|| .56] .71 .86| 1.00|| 1.16] 1.33| 1.56| 1.90}| 2.25| 2.79| 3.56
.100| 0.19{ .54| .29| 1.16|| .56 .71| .86| 1.00|| 1.16| 1.34| 1.57| 1.94(| 2.34| 3.00{ 4.08
J1251 0.24] .52 .27] 1.18|| .56 .71 .86| 1.00|| 1.17| 1.34| 1.59| 1.98|| 2.42| 3.24] 4.58
.150| 0.30] .50 .25} 1.20j| .55/ .71} .85|| 1.00|| 1.17| 1.35| 1.60| 2.02|| 2.54] 3.52{ 5.05
1751 0.36] .48 .23| 1.23})f .55 .70/ .85|| 1.00j{| 1.17| 1.36| 1.62|| 2.06|| 2.64| 3.80| 5.50
.200 0.43] .46 .21| 1.25) .55 .70] .85|| 1.00|| 1.18| 1.37| 1.64|| 2.10|| 2.75| 4.14| 5.96
2251 0.51) .44 .20| 1.28|] .54{ .70| .85|| 1.00|| 1.18| 1.38| 1.66| 2.15}| 2.87| 4.44| 6.40
.250( 0.59| .42; .18| 1.30|| .54 .70/ .84 1.00{| 1.18| 1.39| 1.68}| 2.19|| 2.98|. 4.73| 6.78
.275| 0.69| .40| .16| 1.33|| .53[ .69 .84( 1.00|| 1.19| 1.40| 1.71}| 2.24{| 3.12| 5.03| 7.15
.3001 0.79| .38 .14] 1.35|} .53 .69 .84| 1.00| 1.19| 1.41] 1.74)| 2.29|| 3.26| 5.32| 7.52
.32510.92) .35| .12] 1.38|| .53| .68/ .84|| 1.00|} 1.19| 1.42| 1.77|| 2.34|| 3.39| 5.57| 7.86
.350| 1.07| .33| .11} 1.40|| .52 .68 .84| 1.00{| 1.20| 1.44| 1.81|| 2.40(| 3.54| 5.83| 8.21
3750 1.26( .30 .09| 1.43|| .52{ .68 .83|| 1.00j| 1.20| 1.45| 1.85|| 2.46|| 3.70| 6.07| 8.55
.400| 1.50, .27\ .07| 1.45|| .52| .67| .83] 1.00|| 1.21| 1.47| 1.88} 2.54| 3.85| 6.30| 8.86
.425] 1.83] .23] .05| 1.48|] .51| .67 .83|| 1.00|| 1.21| 1.48] 1.92| 2.64|| 4.00| 6.55| 9.18
.450| 2.38) .19 .04] 1.51)} .51 .66| .82{ 1.00|| 1.22| 1.50| 1.96| 2.74| 4.13{ 6.76| 9.50
475 3.54| .13| .02{ 1.54| .51f .66 .82| 1.00|| 1.22| 1.52| 1.98|| 2.87|| 4.25| 6.92| 9.77
0.500| < | 0.00]{ 0.00| 1.57|| 0.50| 0.66] 0.82|| 1.00|| 1.22| 1.53| 2.00[ 3.00|| 4.36| 7.00| 9.95

‘The values of the central ordinate, ¢, and of the total half-breadth, %, were found
for each tabulated function. All ordinates were then divided by ¢ and all abscissae by #,
and the resulting functions were plotted. Born’s and Hjerting’s tables are complemen-
tary; together they cover the complete range of positive values of 8;/Bs. For the case
Bi/ B2 = 0.5, which they have in common, the results were found to be in good agree-
ment. As a further check, the values of the half-breadths in the entire range were com-
pared with those computed by Minkowski and Bruck;® the differences were less than .

4 M. Born, Optik (Berlin: Julius Springer, 1933), pp. 482-86.
_®F. Hjerting, 4p. J., 88, 508, 1938.
& R. Minkowski and H. Bruck, Zs. f. Phys., 95, 299, 1935.
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Now if the subscripts g and d denote functions of Gaussian and dispersion types, respec-
tively, the symbolical product of two Voigt functions may be reduced as follows: "

Jiofo= figs f1a fog foa = frg* fog* f1a* foa = fog* fsa= f35-

This proves the theorem stated in section 2 and the correctness of equations (4).
b) Let the Fourier integral of any symmetrical function f(x) be denoted by

o () = f_ﬂocos xt f(x) dx ; : (é)

then, as is well known, the symbolical multiplication in equation (8) corresponds to an
ordlnary multlphcatlon

() =o' () «o" (1). (10)

By means of these equations we find that the Fourier integral of a Voigt function has
the form : .

" o () = Ae BB/ (11)

as was first derived by Reiche.®
¢) If a profile is not a Voigt profile, its Fourier integral w1ll often admit of the ex-
pansion

logo(f) =log A—Put—1Br—B3. ..., (12)

By neglecting the third- and higher-order terms in equation (12), we approximate the
given profile by a Voigt profile. We call §; and B, its “Voigt parameters.”

@) If functions of the type (12) act together with other Voigt functions or non-Voigt
functions according to equation (1), the third-order terms lose importance relative to the
first- and second-order terms. In particular, if many such functions act together, the
Fourier integral, ¢(#), of the resulting function is practically zero at the values of ¢ where
the third-order terms would become important. Thus the combination of many inde-
pendent broadening effects tends to yield a Voigt profile.

Theorems closely corresponding to the points mentioned are found in the theory of
probability distributions.® In that case, however, the emphasis is on distribution func-
tions that possess one or more finite momenta, whereas all momenta of the functions
discussed above are infinite (unless f; = 0). In particular, if the functions mentioned in
section d are supposed to have no extended wings, i.e., to have f; = 0, one obtains the
well-known theorem of statistics that many independent sources of error yield a Gaussi-
an distribution function.

6. For some frequently occurring profiles we list the values of the parameters below:

a) Doppler broadening.—A pure Voigt profile with B, = 0 and B = (2RT/mc?)N?;
B2 is expressed in wave-length units and the symbols have the usual meanings.

b) Damping profile—A pure Voigt profile with 8, = 0; B = 1/¢, expressed in angu-
lar-frequency units. Here ¢ is either the time in which the intensity is damped to 1/e of
its original value or the average time between two collisions. The usual damping con-
stant, v, equals 26;. To convert into wave-length units, multiply by \?/2mwc.

8 A. C. G. Mitchell and M. W. Zemansky, Resovnance Radiation and Excited Aloms (Cambridge
Cambridge University Press, 1934), pp. 319 ff.

9 S. Chandrasekhar, Rev. Mod. Phys., 15, 1, Appen. IV, 1943,
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By combining these three steps several kinds of operations may be performed. If
many broadening effects have to be combined, or disentangled, it is convenient to repre-
sent the results graphically as vectors in a (B, ;) diagram. Such a diagram will also
help to estimate how uncertainties in the primary data affect the results. For a practical
example we may refer to an earlier paper,? in which this method was applied to weak
lines in the Utrecht Photometric Atlas of the solar spectrum.

5. We may, finally, add some remarks on the mathematical properties of the Voigt

. functions.

a) The relation (1) can be written symbolically as
f=rf, (8)

and the symbolical product thus defined has all the properties of common products.
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Fic. 2.—Working graph of the parameters
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1 per cent. Finally, the values given in our Table 1 were obtained by graphical inter-
polation.
Arrangement of the table.—Since most of the values needed are approximately linear

~ functions of Bi/k, the table was arranged with equal intervals of this argument. The

upper line, with B;/k = 0, gives data on a Gaussian function; the bottom line, with
Bi/h = 0.50, gives data on a dispersion function; any intermediate line gives data on a
particular Voigt function. The first four columns contain thé parameters defined above.
The parameter p, given in the fifth column, is defined by the relation

A=phc. : (6)
The further columns show to what breadth the line extends at a given fraction of the

central intensity. In addition to & (=bo;), we use, in partlcular the value bo.. Figure 1
illustrates the shape of the line in the two extreme cases and in one intermediate case.

F1c. 1.—Voigt profiles. G = Gaussian type, D = dispersion type, and the intermediate case of B1/k=
0.25 (dotted curve).

The values in the table are believed to have errors smaller than one unit in the last
decimal, with the exception of the values in the last three columns, which may have
larger errors. This accuracy may be sufficient for all cases in which the approximation of
line profiles by Voigt functions is suitable. '

4. We shall now describe what calculations can be performed by means of this table
and the graph in Figure 2.

a) To find the parameters for a given profile—Read the central ordinate, ¢, the breadth,
h, of the line at half this ordinate, and the breadth, 801, at one-tenth of this ordinate.
Take the ratio bo1/k and read the corresponding values of 8i/k, 8% /#?, and p from Figure
2. Find B and B} by substituting the value of 4. In order to check whether the approx-
imation is good, the breadth at ordinates other than 0.5¢ and 0.1¢ as found from the
table may be compared with the observed widths. As a further check the area may be
determined by planimetering and by means of formula (6).

b) To solve the integral equation (1).—Determine the parameters B, 83, and 4 for both
known profiles. Find the parameters for the unknown profile by means of subtraction
or addition according to equation (4). Find its area from’

A=A4"-4". (7

¢) To construct the profile for given parameters.—Find the value of B;/B: and the cor-
responding value of B;/4 from Figure 2. Compute % from 8 and By/k; find ¢ from equa-
tion (6); and multiply the tabulated ordinates and breadths of the standard profile by
the factors ¢ and 4, respectively.

7 In most cases, where one of the functions is a simple broadening function with the area 1 per defini-
tion, the rule used is that the area does not change by broadening or narrowing the line,
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¢) Straight slit—The profile is a rectangular function of breadth, s. The Fourier
integral is
st

2 Sin?

o) =4 —0—,

from which we find the Voigt parameters B = 0 and B, = 0.408s by means of equation
(12).

@) Diffraction paitern of straight slit.—The instrumental profile of a perfect spectro-
graph is determined by the limited size of prism or grating. If the limiting edges are a
distance s apart, the instrumental function is {sin(wsx/N\)/(wsx/\)}%, where x is ex-
pressed in radians. Its Fourier integral is a triangular function:

¢O)—A<1——~) t<——

and O for ¢ > 2ws/N\. By means of equation (12) we find that the best-approximating
Voigt profile has the parameters 81 = A\/2xs and B2 = 2(\/2xs)?, both B and B; being
expressed in radians.
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