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ABSTRACT

A subsample of the CfA galaxy catalog and two clustering models look different to the eye, yet have compa-
rable two-point correlation functions. We show how the technique of “measure analysis” clearly reveals the
nature of the differences, thereby providing an effective tool for discriminating between point set distributions.

We present three clustering paradigms to assess this approach. As an illustration we use an explicitly calcu-
lable two-dimensional clustering model: the multiplicative multifractal. The three-dimensional models are a
simple clustering hierarchy, and a clustering distribution consisting of the vertices of a three-dimensional
Voronoi tessellation. Moreover, we analyze the CfA galaxy catalog in the same manner as our stochastic point

processes.
Subject heading: galaxies: clustering

I. INTRODUCTION

One of the most important open questions in cosmology is
the origin of the clustering of matter. Because the structure of
the universe on large scales does not evolve very much in one
Hubble time, the observed distribution of galaxies contains a
lot of information about its origin and evolution. The distribu-
tion of galaxies is clumpy over a large range of scales. The most
popular way to measure this clumpiness is to use the two-point
correlation function &(r); the observed power law

-
&r) = (ri) r < 10h~* Mpc . )
1]
with y = 1.77 and r, ~ 5h~! Mpc (Davis and Peebles, 1983) is
evidence for clustering.

A complete statistical description of any point process
demands higher order N-point correlation functions (Peebles
1980). Yet it is practically impossible to measure N > 4 corre-
lation functions from galaxy catalogs (Bonometto and Sharp
1980). Galaxy redshift surveys (Tully and Fisher 1978; Kirsh-
ner et al. 1981, 1987; Giovanelli, Haynes, and Chincarini 1986;
de Lapparent et al. 1986) show different kinds of large struc-
tures, such as voids, filaments and sheetlike forms, on scales
where the two-point correlation function amplitude is negligi-
ble.

Study of these structures has led to methods of describing
the geometrical properties of the clustering (Gott, Melott, and
Dickinson 1986; FEinasto, Klypin, and Saar 1986; Barrow,
Bhavsar, and Sonoda 1985; Fry 1984 ; Schaeffer 1984 ; Bouchet
and Lachi¢ze-Rey 1987; Jones et al. 1988).

The fact that the two-point correlation function is a power
law over a considerable range of scales, and that the higher
order functions may be related to the two-point function by
Kirkwood-like relationships (Peebles 1980) suggests that there
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may be an underlying “scale-free ” behavior of the galaxy dis-
tribution. At the simplest level, this is suggestive of fractal
behavior (Efstathiou, Fall, and Hogan 1979; Mandelbrot
1982), although we shall show here that the situation is con-
siderably more complex.

A fractal geometry is usually characterized by the fractal
(capacity) dimension. However, this number is not by itself
sufficient to characterize all fractal sets. The fractal dimension
is defined as

log N(r)
=lm--—-——- 5
r—o log (1/r)

where N(r) is the number of nonempty cells in a partition of
constant cell size r. This number is not the Hausdorff dimen-
sion: it is merely an estimator providing an upper bound on
the Hausdorff dimension. Other estimators of the Hausdorff
dimension have already been applied to galaxy catalogs
(Martinez and Jones 1990).

A fractal set is characterized globally by the fractal dimen-
sion alone when the set is absolutely uniform or homogeneous.
Some classical examples are the Cantor set and the Koch
curves (Mandelbrot 1977). Two well-studied processes in solid
state physics, “diffusion limited aggregation” and
“percolating clusters ” (Coniglio 1986), generate point distribu-
tions with the same fractal dimension but completely different
structures. Clearly an additional descriptor of these fractals is
needed. Simple fractal models (Coleman, Pietronero, and
Sanders 1988) cannot globally characterize the observed
scaling behaviour in the CfA catalog of galaxies (Martinez and
Jones 1990).

It has been proposed that a continuum hierarchy of scaling
exponents can describe these more general structures
(Mandelbrot 1974; Frisch and Parisi 1985; Jensen et al. 198S;
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Although correlation functions of the data sets appear not to
differ much, there are differences in their Hausdorff dimension
which reflect the differences in the distributions. The multi-

Halsey et al. 1986; Jones et al. 1988; Dominguez-Tenreiro and
Martinez 1989). The “multifractal” or “multidimensional”

r TJODA

formalism (Hentschel and Procaccia 1983) was first introduced
., to characterize some sets which appear in nonlinear physics
and turbulence, such as strange attractors and aggregates.
Those methods describe statistical time series or point sets in
metric spaces, where the number of points N can tend to infin-
ity and the time or space interval between two points, r, can be
made to tend to zero. Jones et al. (1988) used this formalism as
a clustering descriptor. Pietronero (1987) has suggested a dif-
ferent multifractal analysis, but his approach is based on a
previous knowledge of the galaxy masses, and therefore it is
not applicable to the present catalogs.

Galaxy sets are characterized by a finite value of both N and
r, so the standard multifractal formalism has to be reformulat-
ed to circumvent the requirement N — oo or r — 0. In this
paper we present such a reformulation. We test the techniques
against specific clustering prescriptions. This gives us an appre-
ciation of the scope and applicability of multidimensional
analysis to clustered point sets.

The clustering paradigms we use are the continuum clus-
tering hierarchy of Soneira and Peebles (1978), which is a
homogeneous fractal, and the sample of vertices of a three-
dimensional Voronoi tessellation (van de Weygaert and Icke
1989). We illustrate the formalism by means of an analytically
calculable multifractal set. Then the formalism is applied to
real world data.

This paper is organized in nine subsections. After presenting
a subsample from the CfA catalog and both clustering models
in § II and IIL, § IV contains the determination of the two-
point correlation function for these sets. In § V we introduce a
new, optimal, technique for determining the Hausdorff dimen-
sions of the sets, based on their minimal spanning trees.
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fractal formalism is described in § VI and illustrated in § VIIL
The differences revealed by the multifractal analysis are
described in § VIII. General conclusions will be drawn in § IX.

II. THE CfA SUBSAMPLE

The CfA catalog is complete down to apparent magnitude
m = 14.5 on the northern hemisphere for Galactic latitude
b™ > 40° and declination § > 0°. An equal area projection of
the survey is shown in Figure 1. From the CfA catalog, we have
selected a complete volume-limited subsample of 359 objects.
The depth in terms of the radial velocity V,,,, is 6500 km s~ !,
As the CfA catalog is complete down to apparent magnitude
m = 14.5, the absolute limiting magnitude is M5** = —19.56.
We have removed galaxies with radial velocity less than 1700
km s~!. This is a representative volume-limited subsample
drawn from the CfA catalog. We call it S65.

Radial velocities have been corrected for solar motion, Vir-
gocentric flow and peculiar velocities due to galaxy clusters
(Einasto et al. 1984). Apparent magnitudes have been corrected
for galactic absorption. Calculations have been performed with
a Hubble parameter H, = 100km s~ ! Mpc ™.

III. THE CLUSTERING PARADIGMS

a) Model 1: Continuous Hierarchical Clustering

This model was proposed by Soneira and Peebles in 1978,
and provides a three-dimensional point process having the
same two-point correlation function as the observed one. The
construction is as follows: we place randomly in a sphere of
radius R the centers of 5 spheres of radius R/A where 4 > 1. In

FiG. 1.—Equal-area Lambert’s projection of the distribution of 2061 CfA catalog galaxies in the northern sky (b'' > 40° and § > 0°). The north pole of the plot is
the north Galactic pole. (b) Projection of the complete volume-limited subsample S65; 359 galaxies lie in the range between the velocity limits: 1700 < v < 6500 km
s~ ! and with absolute magnitude M, < — 19.56. The Galactic pole is now at the center of the plot.
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Fi6. 2.—Equal-area Hammer’s projection of one realization of a simple Soneira-Peebles model. This model is a homogeneous hierarchical fractal. 8192 points

have been plotted.

each of these spheres we place now n new spheres with radius
R/A? and so on. Repeating this an infinite number of times
yields a homogeneous fractal with Hausdorff dimension log
n/log 4. However, when we stop the construction at level L we
have n" positions where galaxies are placed. The two-point
correlation function of the galaxies in this model is then given
by

&r)~r7? 3)
with

log n R
= - DU f .
y=3 (log l) or - <r< R )

To illustrate what this model looks like we have selected the
following parameters: R = 50h™! Mpc, n =2, L =13, and
y = 1.77, the observed slope of the correlation function. The
value 4 = 1.76 is determined by equation (4). The whole model
contains 8192 galaxies. Figure 2 shows the equal-area
Hammer’s projection of this model. It should be noted that
Soneira and Peebles used a superposition of the purely fractal
models shown here, thereby creating a distribution that looks
more realistic. In doing that they break the simple fractal
nature of the clustering.

b) Model 2: Voronoi Tesselation Vertices

The Voronoi tessellation is a partitioning of space uniquely
defined by a discrete point set. Each point of the set (nucleus) is
surrounded by a Voronoi cell which encloses that part of space
which is closer to its nucleus than to any other. In three-
dimensional space, any realization of this process, called a
“Voronoi foam” (Icke and van de Weygaert 1987) is built of
three topologically distinct elements: walls, being the bisecting
planes between two neighboring nuclei; lines, where three walls
intersect; and vertices, where four lines come together. The
vertices are the centers of the circumscribing spheres of the
Delaunay tetrahedrons, whose packing is the Delaunay tessel-
lation, the dual of the Voronoi tessellation. Each Delaunay
tetrahedron consists of four nuclei whose circumscribing
sphere does not contain any other nucleus. A stereoplot of a
packing of three Voronoi cells is shown in Figure 3.

Icke and van de Weygaert (1987) and van de Weygaert and
Icke (1989) used the Voronoi tessellation as a description of the
geometrical skeleton of the distribution of galaxies in space,
based on the notion by Icke (1984) that underdense regions will
expand with respect to the background in such a way that they
become more and more spherical. The Voronoi walls were
identified with pancakes, the lines with filaments of galaxies,

F1G. 3.—Stereoplot of a packing of three Voronoi cells
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the vertices with clusters of galaxies and the interior of the cells
with the voids in the galaxy distribution. One of the most
outstanding results was that the two-point correlation function
of the Voronoi vertices with Poissonian nuclei has a power-law
form on scales smaller than the average cell size with a slope
~ —2 and an amplitude completely in accordance with the
observational cluster-cluster correlation function determined
by Bahcall and Soneira (1983), a result which nearly all pro-
posed models of large-scale structure formation have failed to
reproduce.

Present knowledge about Voronoi tessellations stems from
the pioneering works of Meyering (1953), Gilbert (1962), and
Miles (1970). The Voronoi tessellation has acquired several
alternative names: Dirichlet regions, Voronoi polygons/
polyhedrons, Wigner-Seitz cells, Thiessen figures, and
domains.

In this paper we will use the Voronoi vertices as a paradigm
for point clustering. Note that here we use the Voronoi vertex
distribution purely as an example of a stochastic point process,
without the physical background that underlies the use of
Voronoi tesselations as description of the large-scale structure
in Icke and van de Weygaert (1987) and van de Weygaert and
Icke (1989). The motivation for using the Voronoi vertices in
this way is the convenient power-law clustering properties as
expressed in their two-point correlation function. Moreover, to
get a point process resembling the galaxy distribution as close
as possible, the generating nuclei have a correlated rather than
a Poisson distribution. The Voronoi vertex catalog used here
consists of the 6001 vertices of a Voronoi tessellation of 996
cells defined by 996 clustered nuclei. As nuclei we have used the
Voronoi vertices of a Voronoi tessellation resulting from 150
randomly distributed nuclei. The 6001 vertices are situated in a
box of 100.0 Mpc x 100.0 Mpc x 100.0 Mpc. The Hammer
projection of all vertices within a radius of 50.0 Mpc from the
center of the box as seen from that center is shown in Figure 4;
3185 points have been projected.

IV. CORRELATION ANALYSIS

In Figure 5a we show the correlation function of the sub-
sample of the CfA catalog. The dashed line corresponds to a

CLUSTERING PARADIGMS AND MULTIFRACTAL MEASURES 53

subsample containing 50% of the galaxies randomly selected
from the whole sample.

Log-log plots of the two-point correlation functions of the
two stochastic models (Soneira-Peebles and Voronoi) are
shown in Figures 5b and S5c. Both models have a power-law
correlation function with a slope close to —1.77. Correlation
functions were also computed for randomly selected sub-
samples having 10% of the original sample galaxies (dashed
lines). The agreement between the subsamples shows the relia-
bility of the correlation function determinations.

The two models as well as the CfA sample have correlation
functions which are rather similar. Nevertheless, the two sto-
chastic models have completely different point distributions as
perceived by eye (Figs 2 and 4). We shall establish the mathe-
matical reason for this discrepancy: the Soneira-Peebles hier-
archical distribution is a homogeneous fractal, whereas the
Voronoi model is not. Demonstrating this fact requires that we
be able to determine the Hausdorff dimension of the point set.

V. THE HAUSDORFF DIMENSION

The Hausdorff dimension is defined for any set &/ by con-
sidering for each given value of € > 0 all possible coverings of
&/ formed by domains with diameters €; < €. Let us call this
family of coverings Y¢,. We need first a well-defined measure of
the set o (Falconer 1985). It depends on a real nonnegative
parameter >0, and it is the so-called Hausdorff g-
dimensional outer measure of &/ :

H¥(sf) =lim inf ) €f . 5)
e=0Y, i
Although it is always well defined, only if the set has uncount-
able support the f-dimensional outer measure can be different
of zero. Now, the Hausdorff dimension of &/, Dy(&) is defined
as the exponent which produces the following behavior of the
measure:

HY ) = o if B < Dy(A) 6)
HYst) =0 if B> Dy(f). 0

This definition (Hausdorff 1919) is not straightforward in its
application to finite subsamples of fractal sets.
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F1G. 4—Equal-area Hammer’s projection of the Voronoi vertices within a radius of 50h~! Mpc; 3185 points have been plotted
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F1G. 5—The spatial two-point correlation function: (a) for the CfA sample
(solid line), and 50% randomly selected subsample (dashed line). (b) Soneira-

Peebles model (solid line), 10% (dashed line), and 2% (dotted line). (c) Voronoi
model (solid line), 10% (dashed line).

There are two features of importance in relation to this defi-
nition of the Hausdorff dimension: the fact that we need the
infinum of all possible covering sets, and the fact that we need
to take a limit as the size of the covering elements tends to zero.
We want to have an estimation of the dimensionality of
support of the point distribution using only the point set.
Many methods of estimating dimensionality of point sets do
not directly address this problem. Box-counting methods
provide the “capacity dimension” which is frequently used as
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an estimate of the Hausdorff dimension, even though examples
are known of sets for which the Hausdorff and capacity dimen-
sions are not the same.

The problem of identifying the covering set that gives the
infinum is solved by using the distribution of the edge lengths
of a construction called the “minimal spanning tree.” The
minimal spanning tree is a graph-theoretical construct that
was introduced by Kruskal (1956) and Prim (1957). The
minimal spanning tree of a set of N points is the unique
network of N-1 edges (each linking two points) providing a
route between any pair of points while minimizing the sum of
the lengths of the edges. It defines a set of disks whose dia-
meters are the edge lengths, and which when taken together
provide the required covering. The covering is minimal in the
sense of equation (5) and comes as close as possible to realizing
the definition of the Hausdorff dimension for a discrete point
set.

The minimal spanning tree was introduced into astronomy
by Barrow, Bhavsar, and Sonoda (1985) to describe intrinsic
patterns in the distribution of galaxies and was used by
Bhavsar and Ling (1988) to argue that the filaments in the
galaxy distribution are real and not merely due to chance
alignments.

Formally stated in graph theoretical terms the minimal
spanning tree can be formulated as follows:

The data set is a graph G, consisting of a vertex set V (the
points) and edge set E (an edge is a straight line connecting two
points; E is a subset of ¥ x V), each edge having a “length” or
“weight” (in our case the Euclidean distance between the two
vertices). A sequence of edges joining vertices is a path, a closed
path is called a circuit. If there is a path between any pair of
vertices the graph is called connected. A connected graph con-
taining no circuits is called a tree. If the tree of a connected
graph contains all the vertices of the vertex set then it is called
a spanning tree. The length of a tree is defined to be the sum of
the weights of the component edges. The minimal spanning tree
(MST) is the spanning tree of minimal length.

We calculated the minimal spanning tree of the considered
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point sets using the algorithm described by Prim (1957), in
particular the implementation of Whitney (1972).

The algorithm starts by choosing an arbitrary point of the
set and finding its nearest neighbor. These two points and the
corresponding edge form the subtree T;. For each isolated
point (point not yet in the subtree) the identity and distance to
its nearest neighbor within the subtree is stored; by definition
this distance is called the distance of the isolated point to the
subtree. These potential MST edges are called links. The Mth
subtree, T, is formed by adding to T;,_, the nearest neighbor
of the subtree, being the isolated point whose distance to the
subtree is minimal, together with the corresponding link. After
adding this new point to the subtree the links are updated, i.e.,
the distance from each isolated point to the new subtree vertex
is calculated to see whether it is smaller than the previous
distance of the point to the subtree. The resulting Ty _, is the
minimal spanning tree. If there are M points in the subtree the
updating requires computation proportional to N —M, for M
going from 1 to N — 1, so that the total computation time is
proportional to N(N —1)/2.

In Figure 6, we have plotted the minimal spanning tree of
the galaxy subsample selected by Gott et al. (1986). The sample
contains 161 galaxies in a cube with sides of 28.9h"! Mpc,
defined by the spherical triangle A(6 = 90°), B(S =0°,
a=9"49™) and C(6 = 0°, a = 15"49™). In order to have a
volume-limited complete subsample only galaxies brighter
than My = —18.99 have been included. In the left plot all the
galaxies in the sample are plotted, while the right plot shows all
the MST links between the galaxies in this sample.

Determining the Hausdorff dimension using the set of
minimal spanning tree edge lengths {/,}7,, in which m =
Ng — 1 and Ny is the number of randomly selected points
from the sample, is related to the method given by Badii and
Politi (1984) by using the nearest neighbor distances:

Hi() = Y W(m) = K(Bym' ~#H® @®)
i=1
The fixed point of the function h(B), h(Dy) = Dy is a good

estimator of the Hausdorff dimension.
The correlation dimension D, can be formally defined as

m log C(r)
r—0 lOg r

, ©
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where C(r) is the correlation integral (Grassberger and Pro-
caccia 1983) defined by
Cr) = J 4ns*[1 + &(s)1ds . (10)
0
In a finite sample of a homogeneous fractal D, and Dy are
equal. Therefore the slope y of the correlation function is
related to the Hausdorff dimension Dy, of the fractal by Dy ~ 3

In the CfA sample the correlation dimension is D,(CfA) ~
1.3 + 0.1, while the Hausdorff dimension calculated from the
minimal spanning tree is Dy(CfA) ~ 2.1 + 0.1 (Martinez and
Jones 1990).

For the Soneira-Peebles hierarchical model both values are
nearly equal: Dy ~ D, ~ 1.2 + 0.1. In the Voronoi model there
is a clear difference between the two: D, (Voronoi) >~ 1.4 + 0.1
and Dy (Voronoi) ~ 2.0 + 0.1. The fact that these two values
are different indicates that the distribution is not well rep-
resented by a simple fractal. A generalization of this concept,
the multifractal, is needed to characterize such kind of sets.

VI. THE MULTIFRACTAL FORMALISM

The multifractal formalism was first formulated to charac-
terize nonlinear phenomena, such as dynamical systems,
strange attractors and turbulence (Mandelbrot, 1974, 1982,
Frisch and Parisi 1985; Jensen et al. 1985; Halsey et al. 1986).
Jones et al. (1988) initiated the application of this method to
describe the galaxy distribution. In that paper they also com-
pared their results for the real data with some cold dark matter
N-body simulations.

Consider a set </ embedded in a Euclidian space R". For
each r > 0 we can consider all possible coverings of &/ formed
by sets with diameters r; < r; Y7,. For any general measure u
we can calculate its counterpart in each of the sets of the cover-

ing:
i =J dp, (11
i—set
Now we can define the following general partition sum:
'u‘.l
I'(g, 7) =lim inf )’ = . (12)
oY, i T
~

FI1G. 6.—The minimal spanning tree of a cubical complete subsample of the CfA catalog. The length of the side is 28.9h~! Mpc. Our Galaxy is at the bottom left

corner.
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Then a new function (q) is defined by the requirement
I'(g, ) = constant . (13)

It is easily seen that, for ¢ = 0, equations (12) and (13) are
exactly the definition of the Hausdorff dimension (see egs.
[5}-[7] above), Dy = Dy = —1(0). In general, the set of
numbers defined by

D,=(q—1)"'q) (14)

forms a family of relevant dimensions which have been used to
characterize many physical systems (Renyi 1970; Hentschel
and Procaccia 1983; Halsey et al. 1986). Because D, is a gener-
alization of the concept of dimension provided by Hausdorff in
1919 to sets that are clearly not homogeneous fractals, these
quantities are called generalized dimensions. The dimensions D,
and D, are called the “information” and “ correlation ” dimen-
sion.

Because we are dealing with sets containing a finite number
of points, so that limits » - 0 cannot be taken, we have to
resort to approximating methods. Three methods are as
follows.

Algorithm 1: Box-counting—Consider a point set G which
represents the positions of a sample of galaxies in three-
dimensional Euclidean space. In this method the assumption
(or simplification) is that all the domains forming the covering
of G have the same size r; = r, leading to a partition of size r of
the volume in which the N galaxies are embedded. Then a
probability measure is assigned to each cell:

=", (19)

where the subscript j labels the cells and 7ifr) is the total
number of galaxies in the cell j. We are interested in the behav-
ior of the partition sum,

Necen

Zgn= Y B (16)

where N, is the number of occupied cells.
A new variable 7 is introduced as the exponent of the scale
factor in the following way,

Neenl

Ignn=r"Zgn=r"r ; pin)* . (17)

This function behaves in the limit r — 0 as
0 if T > 1(q)

I'(q,7) =1lim I'y(q, 7, r) = { constant if 7 =1(q). (18)

r—0

0 if T < 1(q)

This defines a new function (g) for which the function I' is
finite. The variable 1(q) is related to the generalized dimensions
D, (eq. [14]).

Algorithm 2: Correlation and density reconstruction
method.—In the box-counting method only a small interval of
r-values is significant when one computes the partition sum
(16), due to the discreteness of the sample. If r is too small there
is only one galaxy per cell; if r is too large, the number of
galaxies per cell is rather constant and the statistics are very
poor. These considerations lead one to consider other estima-
tors of the partition sum (12). One method is the correlation
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algorithm (Grassberger and Procaccia 1983). For each galaxy
labeled by i, we count the number of points n(r) lying within a
sphere of radius r centered on galaxy i. We can define a
measure at scale r by

nry 17X
P =—== 2 O(r—r]|-1), (19)
with N the total number of galaxies in the sample, r; and r; the
positions of galaxies i and j, respectively, and ® the Heaviside
step function. This set of values p; represents a sample of the
underlying fractal measure. The partition sum is now

N
Z(g, 1) = 2 Pyt (20)

1
N,
If these moments behave as a power law of scale r we say that
the measure is multifractal:

Z(g, r) = r*@ x const , (1)

in which the constant depends only on g; consequently the
function (g) is obtained from

_ dlog Z(g, )

=—22 22
@) = @)
Equivalently one can obtain the function t(q) by fitting
1 N
W, p) = N Y r{p)""=p"' 7 x const (23)

i=1

where r(p) is the radius of the smallest sphere centered at
galaxy i whose probability is p. Equation (21) works better for
q > 1, whereas equation (23) converges quickly for g <1
(Grassberger, Badii, and Politi 1988). This method is rather
efficient, and it is the one used in § VIII.

Algorithm 3 : Minimal spanning tree—The minimal spanning
tree with m edges produces a set {/;}7-, of edge lengths, with
m = Ng — 1; Ny is the number of galaxies in a subsample
formed by random selection from the whole sample. Now, we
define the partition function by

S(t, m) = i Zm: Im~". (24)

If this sum behaves as a power law of the number of edges m in
the subsample we have

S(t, m) = m?~ ! x const, (25)

with the constant depending only on 7. By fitting this scaling
relation for different values of m(m + 1 points selected random-
ly from the whole sample) we obtain g as a function of 7. Notice
that m has to be large enough for the corresponding MST
branches to be small enough to be within the scaling region.

This method is promising because it remains close to the
original definitions as expressed in equation (12). The three
algorithms explained above give consistent results in those
cases where, all of them can be applied (van de Weygaert,
Jones, and Martinez 1990; Dominguez-Tenreiro, Roy, and
Martinez 1990).

The f(x) curve—Alternatively, we can write the fractal
measure (19) as a power law of the scale. These scaling indices
or point-wise dimensions (Grassberger et al. 1988) are defined
by the equation

pir) =r*, (26)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJ...357...50M&amp;db_key=AST

J. - -357. . 50M

AR

I'I_

No. 1, 1990

The distribution of the scaling indices characterizes the
dimensionality of the set /. The distribution is quantified by
means of the a-spectrum, f(«), defined by the Ansatz,

n(o)do. ~ N |In r |2~ /@ dg | 27

where n(a)do is the number of times that « takes values in the
interval (a, o + do). The Hausdorff dimension of the set of
points that have the same value for the scaling index « is f().
In a homogeneous fractal the curve f(x) degenerates into a
single point: a, = f(ay) = D,. The statistical properties of a
broad class of point sets are equivalently described by either
the f () function or by the generalized dimensions D,. To make
this evident, let us consider the partition sum as a continuous
integral,

1 X 1
Z@n=y ¥ oy =y fn(a)r@—”“da
i=1

=j|1nrll/2ﬂ_f‘“)da. (28)

The last integral can be solved by using the Laplace integral
approximation theorem (Copson 1967):

T 1/2
|Inr| 12,24~ f@) Jo — pe@a-Jl [a(q)l{”_} 29
J yo@ P
the conditions of this theorem defining the function a(q) by
L ICH] p— (30)
do a’=a(q)
and
d*f(«)
12 <0. (31)
Combining equations (21) and (29) gives
g =g —f(0), (32
while equations (30) and (32) lead to
dt
wq) = 7 (33)
q

These last two equations relate the pairs (g, 7) and (a, f)
through a Legendre transformation, and consequently the
information on the set .o/ is described equivalently by both.

The function f () is convex and has a single maximum at o,
which is the most frequent value of the scaling indices. Equa-
tions (30) and (32) tell us that this occurs at g = 0, where
f(ag) = —7(0) = Dy. Also the scaling indices take values in a
finite range [o,;n, %max]:

Umin = lim D, , (34)
g

Omaxy = lim D, . (35)
4= -

Important information about the degree of inhomogeneity
of the point set can be obtained from the second derivate of

f(®.
(e
do’>  \dg*) (g’

The curvature of 7(g) is a measure of its departure from the

(36)
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linear behavior expected for homogeneous fractals; if 7"(q) = 0,
the set is a simple fractal, and the value of | 7"(g) | measures the
richness of different structures observed in a multifractal set.

The f () spectrum can be used to fully characterize the struc-
tural features of the distribution of galaxies. In the next section
we will present several realizations of a random multiplicative
multifractal to illustrate the interpretation of the f(«) spectrum.

Once we have 1(g) we can obtain f(«) by simply taking the
Legendre transform. Note that while D, is mathematically
equivalent to f(«), the numerical evaluation of f(x) involves an
additional differentiation of the data and so is inherently less
well determined unless the sample is large enough that D itself
is well determined.

VII. THE MULTIFRACTAL SPECTRUM ILLUSTRATED

To give a feeling of the discriminating power of the f(a)
spectrum we show some realizations of a hierarchical clus-
tering model in two dimensions. The model we use is of a kind
discussed frequently by Meakin (1987) and has the virtue of
being analytically calculable.

The hierarchy is constructed by dividing a square into four
equal square pieces. We assign four numbers, p,, p,, p3, and p,,
p; € [0, 1] to each of the subsquares. Each subsquare is then
subdivided in the same way as the parent, and the subdivisions
are randomly assigned the same four numbers p;,. The value
attached to a square is the product of the p;’s of the square, its
parent and all its other ancestors. Going to L levels of the
hierarchy produces a 2¢ x 2L array of numbers that are each
products of L of the p;. The distribution of cell values therefore
depends on the initial choice of the p; values. It can be shown
that in the limit L — oo

D,=(1—¢q)  "log, (f{+f4+f4+S%, (37
where
R 4
fi= ?=1Pi ’ (38)

In our examples the process is continued until a lattice with
512 x 512 cells has been constructed. The point process reali-
zation is generated by distributing 10* particles on the lattice
with probabilities that are simply proportional to the cell
value. Because the random numbers are generated multiplica-
tively the process can be referred to as a “multiplicative
random process.” It is manifestly non-Gaussian.

For the purposes of illustration we have chosen three models
with p; values showed in Table 1. In Figure 7 we have plotted
these models with their f(«) curves derived by box-counting
method (solid line). We have also shown the theoretical curves
derived from equation (37) through a Legendre transformation
(dashed line). Model I is clearly a homogeneous fractal with
dimension D, = D, = log 3/log 2 for any gq. In this case the f(a)
curve degenerates into a single point. Instead, models IT and
IIT are multifractal sets (inhomogeneous fractals). Notice that

TABLE 1

PARAMETERS OF THE MULTIPLICATIVE
RANDOM MODELS

Model Py P2 P3 Pa
I......... 1 1 1 0
m......... 1 1 0.5 0.5
mI......... 1 0.75 0.5 0.25
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the degree of nonuniformity has been increased from model IT
to model III, and therefore the spread in the f(e) is wider in ITI
than in II.

VIII. THE MULTIFRACTAL ANALYSIS

In this section we present the results of the calculations of
the f (o) spectrum for the two stochastic models and for the real
data. Calculations for these models have been performed for
the whole model (~ 10°~10* points), and for a subsample taken
from the whole by randomly selecting 10% of the points. This
has been done in order to check the stability of the statistical
descriptors when having only relatively small data sets, which
is the case with the available data in redshift space.

a) The CfA Data

We have performed the multifractal analysis for the real
data. The partition sum (see eq. [20]) has been calculated for
the subsample S65 described in § II. In Figure 8 we show log
Z(g, r) as a function of log r (see eq. [22]) for g = 2, 3, 4, 5, 1(q)

CLUSTERING PARADIGMS AND MULTIFRACTAL MEASURES 59
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p

has been calculated as the slope of the regression lines over the
range [r,, r,], where r, is the mean nearest neighbor distance
and r, is the mean interparticle distance (V/N)/3. The fact that
there may be no scaling outside of this range may be simply a
finite sample effect or it could be a fingerprint of the break-
down in the fractal range (Martinez and Jones 1990). The dis-
tribution is dominated by discreteness noise on the smallest
scales, while the distribution looks Poisson-like on the larger
scales. As the sample size increases, we would expect to see an
amplification of the scaling range if the galaxies did indeed
follow the kind of generalized fractal scaling law suggested
here.

For g < 1 the scaling has been found by fitting equation (23)
for small values of the probabilities p, (p € [0.01, 0.1]). In

Figure 9 we show how to get the fractal dimension Dy, = —1(0)
o T LN BN e T T T 1T 1T rr1rr 3
N .' - .0:1
[q=2 <] w0 Ras3 o3
oo .’ . E
A R
C Lt 1 10t . q
o . o. E
10'3 1 11 l_Lll' 10'5 PR TS T N A ul'
10° 10 10’ 10
T ¥ T T III‘ T T T T llll
10" Eq=4 10° fq=5 ..
\;:10_3 ....0 10.. ...'
N .t Ry
0° be 07 .
10-7 1 1 1 11 g atl 10-. L L 1 L1 1.1
10° 10 10’ 10
r/Mpc r/Mpc

FiG. 8.—The scaling behavior of the partition sum Z(g, r) of the CfA sub-
sample for different values of g. The slope in the scaling region is t(g).

F1G. 9.—The fractal dimension D, of the CfA subsample obtained from the
scaling of the partition sum W[t(q), p] vs. p when g = 0.

for the data sample by using this procedure. The f(x) curve for
the CfA sample is shown in Figure 10, and following the dis-
cussion so far, we would conclude that the galaxy distribution
is well represented by a multifractal. It is interesting to remark
that the left branch of the f(a) curve remains always stable for
different complete volume-limited subsamples drawn from the
CfA. The right branch is not so universal due to the different
distribution of the low-density regions (voids) in each sub-
sample.

b) Clustering Models

In Figure 11 we show the D, curve for the Soneira-Peebles
clustering model. (solid line: whole model; dashed line: 10%
random subsample, dotted line: 2% random sample). The
model is a homogeneous fractal and the D, curve is virtually
independent of ¢, as would be expected.

CfA
2 S65 |
T
—
‘ -
]
Cmax
o 1
0 1 2 3 . 5

FiG. 10.—The f(«) multifractal spectrum of scaling indices for the CfA
subsample. The width of f(«) shows that the distribution is a complex mixture
of subsets corresponding to many different scaling indices.
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F1G. 11.—D, curve for the Soneira-Peebles hierarchical model. It is a simple
fractal, and therefore the curve remains roughly constant for any q. The f(«)
will degenerate into the point, @ = f(a) & 1.23. The solid line corresponds to
the whole model; dashed and dotted lines correspond to random selection of
10% and 2% of the particles.

In this model the density scales as a power law of the dis-
tance (Peebles 1980) n(r) ~ r~*. The measure (19) is p(r) ~r>~"
and therefore the partition sum (20) behaves as

1 N
Zgn=7 3 P~ O

i=1

(39

The value of D, = 3 — y is around 1.23, as would be expected
from the input parameters. (The hierarchy was fixed so as to
give the correct slope to the two-point correlation function).
The f () curve degenerates to a point.

For the Voronoi model, we show in Figure 12 the f(«) curves
for the whole sample (solid line) and a random subsample with

T v T T M T

Voronoi model

d
d
1
1
'
1
'
'
1
'
1
1
1
1
'
1
1
1
1
1
1
=

[} 1 2 3 4 5

F1G. 12—The f(«) curve of the Voronoi model. It is a multifractal, as the
real galaxy distribution. The agreement between the solid line (whole model)
and the dashed line (10% random sample) shows the stability of this clustering
descriptor.

Vol. 357

10% of the points (dashed line). The agreement between the
curves etablishes our ability, for this sample, to derive a mean-
ingful f(a) curve even from small samples. The model is clearly
not a homogeneous fractal, as we would have expected since
we have already found that the correlation and Hausdorff
dimension are different for this set. The differences between
Figures 10 and 12 [right branch of the f(«) curve] show how
the Voronoi model and the CfA catalog, being both multi-
fractals and having both some similar scaling properties, are
not equivalent as point processes. This fact gives a good idea
about the discriminating power of the multifractal formalism.

IX. CONCLUSIONS

It has long been realized that the clustering of galaxies is a
highly complex process. The two-point correlation function is
a first-order descriptor that owes much of its importance to its
intimate connection with the dynamical aspects of the clus-
tering process (Peebles 1980). The possibility that there may be
a simple relationship between all orders of correlation function
would allow a more complete description of the clustering
process (Fry 1984; Schaeffer 1984), but there is no evidence for
the kind of extrapolation that has been suggested apart from
the rather tentative studies of the projected three- and four-
point correlation functions.

The most useful hypothesis is that there may be a rather
complex kind of scaling underlying the galaxy distribution. So,
although we cannot know the high-order correlation functions
in detail, we can nevertheless know something about their
amplitudes. (The simplest such hypothesis, that the universe is
a homogeneous fractal manifestly fails, so we have to go deeper
than that). The clustering information is contained in the D,
[or f(«)] curves. If the scaling is of the multifractal type, then
that information is sufficient to specify the entire clustering
process. This follows from the intimate connection between D,
and the moment generating function.

Multifractal measures can be computed reliably even for
samples of a small number of objects, and therefore we can
apply this formalism to analyze real galaxy catalogs. The evi-
dence that the multifractal description is a correct description
comes entirely from the CfA catalog, and expanding that
survey will clarify the situation. Until then, it is the best
hypothesis we have.

Turning to the paradigms, we see that they play an impor-
tant role in assessing our understanding of clustering processes
in general and of our ability to describe the processes quanti-
tatively. The simple fractal hierarchy fails because the Haus-
dorff dimension of the galaxy distribution is not related to the
correlation dimension in the way that would be expected in a
homogeneous fractal distribution.

The Voronoi model is especially remarkable in this respect,
since, despite its somewhat abstruse manner of generation, it
has very interesting scaling properties. It is a multifractal, and
it has a rich enough dimensionality structure. What is sur-
prising perhaps is that it is based in the first instance on a
Poisson process (the initial tessellation centers).

It should be interesting to apply the multifractal formalism
to cosmological N-body simulations. In each time step of this
kind of simulations, the exponent of the correlation function is
calculated by fitting a power law, and it is compared with the
observed value y = 1.77 (White et al. 1987). Probably, it will
be more reliable to do the comparison not only with D, ~
3 — y, but with the whole spectrum D, or f(«).
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It is not to be expected that any such scaling would extend
over all cosmic scales. Indeed, the only evidence we have for
any scaling is in regions where the two-point correlation func-
tion is larger than unity. We know that even that scaling must
break down on the larger scales where the universe becomes
homogeneous. It will also break down on the very smallest
scales where star formation rather than galaxy formation has
been the dominant process. So such discussions are inevitably
confined to discussions about what happens on scales 1h~ !~
10r~! Mpc. We could not expect to make statements about
what is observed on larger scales since we expect the scaling to
have broken down by then. However, the initial conditions
that led to the observed scaling behavior on the 1A~ '-10n"!
Mpc scales may have influenced the largest scale structures.
That is a question of dynamics and is as yet largely unsolved.
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The suggestion from pancake-like models (Buchert 1989) is
that we may be close to seeing that link.
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