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Bases for Boolean rings

P. van Emde Boas and H.W. Lenstra, Jr

1. Introduction

Let B be a Boolean ring, i.e. a ring with 1 in which XZ::X for all x
It is well known that B is commutative, and that x+x = 0 for all xe€B.
Hence we can consider B as a vector space over IW? (the field of two
elements). By a basis of B we mean a basis of B over IF,, and the
dimension of B is its dimension over IFZ, notation; dim B.

Let AcCB be a subset. By A" we denote the smallest subset of B which

satisfies

(1.1) AU {o}ca®

(1.2) if x,y € B sre such that 1% contains three of the elements
{Xa Ys XY X-+y—%xy}, then also the fourth one is in A*o

Let us call a basis U of B an & - basis if U%zan The main object of
this paper 1s to prove the following lemma, which was left open by
W. Scherlau [4, lemma 5.1.1]:

Lemma (1.3). Every Boolean ring has an § - basis.
The proof is given in section 2,

By %Z[B] we denote the commutative ring delined by generators [x] (x¢€ B)

and relstions

[x] + v]
[x].1¥]

l?

lx+vy] + 2.(xy]
lx.y],

i

cf., [1]o If B is identified with an algebra of subsets of a set X,
then %Z[B] may be thought of as the ring of functions f: X — %Z which

satisfy :

(1.4) f|x] is a finite subset of %,
-1

(1.5) Vn € Z: T [{n}] € B,

X subset U of B 1is called an N - basis if {[u]l weU} is a 7 - basis
of %[B]. From Z(B}/?Z[B] =B we see:



Proposition (1.6). Every N -basis is a basis.

The converge of lhis proposition is discussed in section 3.
A theorem of ¢, NObeling [3] asserts that every Boolean ring has an W -

basis. This theorem also follows from lemma (1.3) and proposition (1.7):

Proposition (1.7). Every S -basis is an N- basis.

This proposition is proved in section 3. Although the converse of (1.7)
does not hold (cf. section 3), it turns out that the N - bases constructed

by G.M. Bergman [ 1] are actually § - bases.

2., Bxistence of S - bases

Lemma (2.1). Let U %be a subset of B with 0€U. Then the following

three properties of U are equivalent:

(2.2) if x,y € B are such that U contains three of the elements

Xy ¥y Xy, X+y+Xy then also the fourth one ig in U.
(2.3) if x,y € U are such that xy=0 or xy=x, then x+y € U.

(2.4) if x,y,xy € U, then x+y € U.
Proof of (2.1).

(2.2) = (2.3%3). If xy=-0 +then x,y,xy are in U, hence by (2.2) also
X+y+Xy = xX+y ds in TU. If xy=x then for y' = x+y we know that

X, Xy'=0 and xX+y'+xy' =y are in U, s0 also y' = x+y dis in U.

(2°5> = (2«4)o For =x'=xy we know x'¢U, yeU, x'y=x', Therefore by
(2.3) we have X'+y = xy+y € U. By symmetry, xy+x € 0. Now
x'" = xy+x € U, y" = xy+y €U satisfy x"y"=0, so by (2.3) we see

X+y = x"+y" & U,

(2.4) = (2.2). Let three of the elements x,y,xy, x+y+xy be in U,

We distinguish three cases.

(a) X, ¥y, ¥y € Us Then x+y € U by (2.4), and since x! = xy,
y! = X+¥, and x'y'=0 are in U, we have
X' +y! = xX+y+xy € U,
(b) Xy, ¥ X+y+xy € U. Applying (2.4) to x'=xy and y'=3y we

find y+xy € J. Then x" = x+y+xy, y" = y+xy yield

x"+y" = xeU.



(c) X, ¥, X+y+xy € U, Putting x'=%, y' = x+y+xy we {ind
y+xy € U, Then x" = y+xy and y"=y give us x"+y" =
= Xy € U.

This proves (2.1).
For AcB, let A* denote the cmallest cubset of B which contains
AU {0} and satisfies the equivalent conditions (2.2), (2.3) and (2.4) :

s nfulfoluscucs, U satisfies (2.4)1.

Lemma (2,5). Let f: B~ B! be a surjective ring homomorphism, and let
A be o subset of B which contains ker(f). Then

I SE Y
where f[A]* 1is formed inside B!'.

Proof of (2.5). It is clearly sufficient to prove the following three

assertions

(2.6) 2% e e a)*]
(2.7) A* 4 kerf o A%
(2.7) fla)* < £[aA%] .

Proof of (2.6). f[A]* is a subset of B' which contains f[4] U {o}
and sstisfies (2.4). Therefore f”qu[A]]* is a subset of B containing

4U{0} and satisfying (2.4). Now A* c £ '[£[4]]* follows by definition
of A%,

Proof of (2.7). If xeh”, y ¢ kerf then veh < A*¥ since we assumed
kerf < A . Also xy € x.kerf < kerf < A*, so (2.4) gives x+y € A%,

Proof of (2.8). Since flaA]JU{0} c £[A*], it suffices to show that f[4¥]
has property (2.4). So let =x,yeA® be such that f£(x)e £[a*],

T(y) e f[a%], £(x)f(y) € T[A¥]; we have to show f(x)+f(y) e £[A¥].

Choose =z € A* guch that f£(x)f(y) = £(z). Then xy € z+kerf c A*¥ 4+ ker £ =
= A" vy (2.7). so A* conteins x,y and xy, and by (2.4) we conclude
x+y € A%, £(x)+L(y) = f(x+y) e £[4*].

This concludes the proof of (2.5).

Before proving lemma (1.3) we fix some notations. For a well ordered set
T, we denote the set of finite subsets of I by F(I), and we wellorder
F(I) by putting F'<E if E,E' ¢ F(T), E£B', are such that the



largest element of the symmetric difference (EUE')\ (ENE') 4is in B
this comes down to a lexicographic ordering if in each E € FP(I) the
elements are arranged in decreasing ovrder. We agree that a subring of B

always contains the unit element 1 of B.

Proof of (1.3).

Let (ei)iEI be a sequence of elements of B, indexed by a well ordered
set I, such that B, as a subring of itself, is generated by

§ei‘ ieIl. For EeF(I) we put

Ay = Mieg &3 € B

in particular dy = 1. Lemma (1.3) clearly follows from:
Lemma (2.9). Define T c F(I) by

T - [BeP(I)|d, isnot in ihe T, - linear span of
fag, |Brer(r), B <all,

2

Then {d |EeT} is an §-basis of B,

The proof of lemma (2,9) is by induction on the order type of I,

Tf [=¢ then B = {0}, T=f or B =T, T-{f] and the assertion of
the lemma is easily checked. If the order type of I is a limit ordinal,
then B is an ascending union of subrings corresponding to beginning
segments of I, and the assertion of {he lemma is immediate from the
induction hypoilhesis. We are left with the case the order type of I 1is
A+ 1 for some ordinal .

Let k Tbe the largest element of I. We put J = 1\ {k} and e=e .
The subring of B generated by fei] ieJ} is denoted by B, -

Let T,,T c F(J) be defined by:

2
T, =T NF()
7, = BeF(I) | {xluperl.
Since J has order type A, the inductive assumplion shows:

{dEIE€T1} is an & - basis of Bo‘
Hence we can rewrile
(2.10) 7, = {E€F(J) | ed; is not in the T, - linear span of

B U iedE, |Brer(3), B' <wl}l.

As a ring, B 1is generated by BO and e, g0 92= e implies

B =B, +eB . Here eB  is a Boolean ring with unit element e, although



it is not a subring of B if ef 1. Clearly, B, ﬁeBO is an ideal of eB_.
Let B' = eB /(B NeB_ ). Since the function g: B, = B', g(b) =

= (eb mod(BOfﬁeBo)), is a surjective ring homomorphism, we have a sequence
(eé e7 = (g(ej)>jeJ of ring generators for B!, Applying the induction

hypothesis to B', we find that {g(dE)] BeTt} is an S - basis of B,

where
T = {BeP(J) | g(d;) ic not in the T, - linear span of
{g(dE‘)l E'cF(3), B'<E}].
By definition of g, we have
T - {Ee F(J)| edE is not in the ]F2-linear gspan of

(B, NeB) U fea,, |E1eF(7), B'<BI],

ol

Comparing with (2.10) we see T!'=T So we know

2 ]
ted, moa(B NeB ) |Ee1,} isan 5-Dasis of B /(B NeB) .

Since

ta,

Betrl = lag|Ben }u leay|Ber,l

it now suffices to prove the following lemma :

Lemma (2.11). Let U, be an S-basis of B , and let TU,ceB  bea
subset which under the natural map f: eBO-% eBO/(BOfWeBO) maps bijective-
ly onto an § - basgis of eBO/(BOﬁeBO)n Then U,UU, is an 8 -basis of

E +eB .
o) o

Proof of (2.11). It ic clear that U,UU, is an TP, -Dbasis of B _+eB .
Applying lemma (2.5) to f: eB,  — eBO/(BOrWeBO) and A - (BoﬂeBo)UU2

we find

((B

+*
o ( eB ) UT,)" = eB_,

and since

*

Bo N eBO (el BO = U,l

it follows that
* H
eB, = ((B, NeB ) UT,)" (UqLJUZ)* = (v, UT,)*.
Also
* *
B, = U, c (U1LJU2)
and application of (2.4) to U= (U,UU,)" gives immediately
*
B,+eB_ C (U1LJU2)

so U,UU, is an 5-basis. This proves (2.11), (2.9) and (1.3).



3, S -~bases and N - bases

We first prove that every S -basis is an N -basis (1.7).

Let U be an $-basis for B, let H cZ[B] Dbe the subgroup generated
by g[u]! weU), and let V = {xe B|[x]c n}. Clearly, U U {olcv.
Also, for x,y € B we have in 7Z[B]

(2} + [y} = [x+y+xy] + [l

so if three of the elements x, y, Xy, X+¥y +Xy belong to V, then so
does the fourth ome. Now the definition of UY implies U cvV,

But U¥=B, so V=B. From this it follows easily that H =Z[3], i.e.
{[u]l we U} generates #[B] as an abelian group. It remains to show
that {[u]{ ue Ul is linearly independent over 7 . Buppose we have a

relation

T nlu] =0, n e@&, n =0 for almost all wu,

wey v u
n_#£ 0 for some u.
u

Since Z[B]| is torsion-free, we may assume that at least one of the n,
is odd. Then
5 (n_mod 2),u = 0O
uey U
is a nontrivial dependence relation of U over 1F2, contradicting that

U is a basis. This proves proposibion {1.7).
We next study the converses to (1.6) and (1.7).

Let B be a Boolean ring, If dim B > 2 , then there is an xe R with

x40, x7!1, and for this x there is an isomorphism of rings

B =3B/xB X B/(1+x)B = B, ¥ B,

10 B, are nonzero Boolean rings. By induction on Kk it follows
k

that if dim B > k (ke %, k20), then B =L~ B, for certain nonzero

where B

Boolean rings B, (1<i<k).

IT dim B = k 1is finite then every Bi is one-dimensional, so B EIFIZC°
In this case Z[B] =z% . A subset

k
Jd=

is a basis 1f and only if

{ei = (eij) 1615‘12{ ! “l_<~i_<_k}

(3.1) det((eij),lsi’jik) = 1elr,

and it is an N-TDasisg if and only if the matrix



M- (e! v 1 ewm if e,

<eij)1£i,i§k’ i € T8y
el, OeZ if e, .
i3 1J

(this matrix has coefficients in % ) satisfies

i
i

i eIF2,
OeIFz,

b
1l

det(M) = +1.
0f course, (3.1) is equivalent to

det (M) is odd.

Proposition (3.2). Let B Dbe a Boolean ring. Then every basis of B 1is

an N - basis if and only if dim B < 3.

Proof, "If": Let MW be a k Xk-matrix with coefficients O, 1 in Z .

Applying the Hadamard determinant inequality to a suitably chcsen
(k+1) X (k+1) -matrix with coefficients -1, +1 we find [ecf, 2]

1
laet(1)] < 27K (4 1)E (r)
If k<3, it follows that
|det(m)| < 2,

so det(M) is odd if and only if det(M) = +1. This proves the "if" - part.

"Only if" ¢ If dim B> 4, we may assume B = ij1 Bj9 where the Bj are
nonzero Boolean rings. Let U be a basis of B containing the four
elements e, = (1,0,0,0), e, - (0,1,0,0), ey = (0,0,1,0) and

ey = (0,0,0,1) . Replacing e, by l+e, = (1’1’1’1>'+ei for 1<i<4,
we get a new basis U', wvhich is not an N - basis since the subgroup of
Z[B] generatled by i[u']lﬂ'e Ut} has index 3 in the subgroup generated
by {[u]‘ ueU}l. This proves (3.2).

Propogition (BCB)° Let B be a Boolean ring. Then every N - basis of B

is an 5 - basis if and only if dim B £ 5.

k
2 ?
We have to show that U is an

Proof. "If": Let B = k<5, and let UcB be an N ~ basis.
3 -basis. If wu,v € U satisfy uv=rw,
'u%'v, then replacing u by u-+v obviously does not change the problem,

Also, this replacement lowers the number of extries 1 1in the matrix

k id .
(eij>1§iaj§k’ where U = i(eij)j:1 ¢ T, | 1<i<k}. We conclude that we
may assume
(3.4) if w,v € U, uw /v, then uv £ v,

A direct search shows that for k<4 the only N-basis U satisfying
(3.4) is the trivial basis corresponding to the k Xk identity matrix.
For k=5 there are three types of N - bases satisfying (%.4), given by

the three matrices



10000 (00111 100 0)
01000 0100 10110
00100 100 1 01101
00010 10100 01011
woo0o01, 11000, loo111

It is easily checked that each of these bases is an S - basis., This proves

the "if" - part.

Then an N - basis U 1is

0
S
e

"Only if" : First we treat the case B

given by the rows of the matrix

111000
110100
011100
(3.5) 010110
001101
101011,

But U is not an S -basis, since U = ULJ{O}D
6

In the general case dim B > 6 we may write B = HJ.H1 Bj’ where each Bj

is nonzero, Let M., be a maximal ideal of Bj (1< 3<6). Then
B, = Mle(1—+Mj), 20 Mj generates Bj as a subring of itself. Using
lemma (2.9) one easily sees that Bj has an S - basis of the form

{1} UT,, where U, is a basis of I, .

Combination of these bases yields an S -~ basis of B of the form

U u {ei{1§iug6f s, where U 1is a basis of M = IIJ_61 Mj and e, =
6 6 -
- I . . ) PN
(eij>j=1 e I, BJ’ °5 3 1 for i=3j, e 5 0 for ifj (1£1i,3<6)
Replacing iei‘ 1<1i<6} vy the rows of matrix (3.5) we get an N~ basis

V of B which is rot an S - basis since
V¢ < (V+ M) UM\7B°

This proves (3.3).

Remark. Using the notations of lemma (2.9), we put

T = {8 e 7(1) | [dz] is not in the % - linear span of

Clearly TcT_ . G.M, Bergman [ 1, theorem 1.1] proved that {dElEe TO} is
an N-basis of B, But by (2.9) {dE]Ee T} is an S -basis of B, and
since different bases can have no inclusion relation, it follows that

T = TO° 30 the N - bases constructed by G.M. Bergman are actually S - bases,
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