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Flux-cancellation effect on narrow-channel magnetoresistance fluctuations
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The magnetic-field correlation function of the universal conductance fluctuations (UCF) in a
laterally confined two-dimensional electron gas is calculated in the high-mobility regime. Bound-
ary scattering induces cancellations of the magnetic flux enclosed by electron trajectories, which
leads to an enhanced correlation field. The theory is discussed in relation to a recent observation
of UCF in a narrow GaAs-AlxGai-xAs heterostructure.

An interesting development in the field of quantum
transport in disordered metals is the Al'tshuler-Lee-Stone
theory1'2 of universal conductance fluctuations (UCF).
This theory predicts aperiodic fluctuations in the conduc-
tance äs a function of magnetic field, with an rms ampli-
tude at T —0 of order e2/h, independent of sample size or
degree of disorder. Such UCF have been observed in met-
al wires and rings and in quasi-one-dimensional (lD)
semiconductor devices.3 Their origin is the quantum in-
terference of electrons on different trajectories, which
surprisingly does not average out to zero within a few
(elastic) collisions. (For a simple physical picture, see
Ref. 4.) To destroy phase coherence, inelastic processes
are necessary, but these become increasingly rare at low
temperatures. An increment in magnetic-field shifts the
phases of the electrons so that a different interference pat-
tern results, and this is seen in the magnetoresistance fluc-
tuations.

Recently, several groups5'10 have observed fluctuations
in the perpendicular field magnetoresistance of laterally
confined 2D electron gases in GaAs-AlxGai -ÄAs hetero-
structures. Because of the high electron mobility in these
quasi-1D channels, the elastic mean free path le (associat-

' ed with impurity scattering) can be much larger than the
channel width W. This leads to an interesting
modification of the current theory, in which the dirty met-
al limit le«: W is assumed.'' The effect we have in mind
is üieflux cancellation known from superconductivity,12

and studied recently13"15 in relation to the weak localiza-
tion peak in the magnetoresistance. As illustrated in Fig.
l, the intersecting trajectories of two electrons moving
ballistically from one boundary to the other can enclose
zero flux, due to a geometric cancellation. As a conse-
quence, the electrons acquire no relative phase shift in a
magnetic field. One would, therefore, expect the correla-
tion field for magnetoresistance fluctuations to be
enhanced in high-mobility channels with le > W. We note
that finite-size enhancement of the correlation field was
seen, and understood äs a geometrical effect, in previous
numerical work by Lee, Stone, and Fukuyama.'' The cal-
culation of the enhancement is the main issue of the
present paper.

For simplicity, we limit ourselves here to the quasi-1D
geometry of the experiments mentioned above (a thin
metal film in parallel magnetic field is analogous). We
consider the case W^l^«.L, where L is the length of the

channel, and Ιφ the phase-coherence length. There is an
additional restriction, which is essential, that the motion
along the channel is diffusive on the phase-coherence time
scale, that is to say τ^τε. [We use the definitions
lt=(£)τψ)1/2, le = vpTe, with D the diffusion coefficient and
VF the Fermi velocity.l We will return to this restriction
below. The quantity to be calculated is the correlation
function11·16

Here SG(B)=G(B)~(G(B)), with G (B) the conduc-
tance in a magnetic field B (the angle brackets denote an
average over impurity configurations). Note that F is B
independent, under the assumption that B is outside the
region of the weak localization peak in the magnetoresis-

le«W

10 12

FIG. 1. Plot of the correlation flux Φ£ (in units of 2nh/e) vs
the zero-field phase-coherence length /,n=/^(0) (normalized by
the elastic mean free path le). The solid curve is for a high-
mobility channel [Eq. (10)1, the dashed line is the dirty metal
value. The inset shows two trajectories of an electron in a nar-
row channel (dashed and solid lines) to illustrate the charac-
teristic flux cancellation: The relative phase shift acquired in a
perpendicular magnetic field is proportional to the flux enclosed
by the contour pqrsp, which is zero.
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tance around zero field. (Then only the diffusion propaga-
tor contributes to F, which is sensitive to field differences
AB, not to B itself.11'16) The value F(0) equals the vari-
ance of the conductance fluctuations, and the field incre-
ment ABC such that F(ABC) = jF(0) is by definition the
correlation field.

The variance is aifected by boundary scattering only
implicitly via the diffusion coefficient, so that no new
analysis is required. At Δ5=0 one has the two formu-
las11

F = a

F=ß

2ah

Inh

ϊίΙφ«ίτ (2a)

The thermal length is defined by lT = (hD/kBT)in. The
above asymptotic expressions are given in Ref. 11 up to
unspecified numerical coefficients α and ß. This has
caused considerable uncertainties in the experimental
literature. To eliminate these, we have evaluated the
series and Integrals of Lee et al.'' (which can be done
analytically in the asymptotic regimes) and find α =6,
β = j π. For the analysis of experiments in which Ιφ and
IT are comparable, we also give a formula which interpo-
lates between Eqs. (2a) and (2b):

-i

(3)

This formula is approximate, but the differences with the
füll expressions of Lee et al. '' are not significant (less
than 10%).

The correlation field ABC depends on the geometry of
the trajectories (via the enclosed flux), and this is where
boundary scattering comes in explicitly. The diagram-
matic analysis of Lee et al. '' gives F in terms of the
diffusion propagator Ρ(τ,τ';ί). This quantity is the prod-
uct of three terms:17 (1) the classical probability to
diffuse from r to r' in a time t (independent of B in the
field ränge of interest); (2) the relaxation factor
exp[ — ί/τφ(0)], with τ/O) the zero-field phase-coherence
time (also referred to in the literature äs the inelastic
scattering time τ·ιη); (3) the average phase factor (β'Αφ),
with Δφ the phase shift induced by the field increment AB.
More explicitly,

(eM*} =

=exp( — (4)

Δ A is along a classical trajectory which goes from r to r'
in a time t, and the average is taken over all such trajec-
tories.18 As a consequence of Eq. (4), proven in Ref. 14,
the effect of a nonzero Aß on the diffusion propagator is
simply to increase its relaxation rate by an amount Ι/ΤΛΑ,

It follows that the correlation function F(AB) is given by
Eqs. (2) and (3), with a ΔΑ-dependent length
1Φ(ΑΒ) = [Ότφ(ΑΒ)\1/2. By solving F(ABC) = yF(0) we
then find that the correlation field is determined by the re-
lation

(6)

(2b) where γ =7=} if /,»/r, and y = l/(41/3-l)« 1.7 if
[For comparable 1T and Ιφ the value of τ^ can be

obtained using the Interpolation formula (3).]
It remains to determine τ/^. In Ref. 14, the relaxation

time TB relevant to weak localization in a magnetic field B
was calculated for the present geometry. The relaxation
time TA£ relevant to UCF is obtained from those results
simply by replacing B by y AB [compare the phase
definitions in Eq. (2.2) of Ref. 14 and Eq. (4) above].
One thus finds, in the dirty metal limit (le <£. W),

(7)

and, for a high-mobility channel (le^> W ),

. (8)

Equation (8) is a numerically obtained Interpolation for-
mula, the limits of small and large AB being exact. 14 The
coefficients C\, €2, and the diffusion coefficient D depend
on the type of boundary scattering. In the heterostruc-
tures considered the scattering is predominantly specu-
lar; 15 then C\ = 9.5, C2 = f" , and D = y vFle. We stress
that the results (7) and (8) are only valid for sufficiently
small-field increments AB, such that TAÄ^T,,, and
DT&B 3> W2· These inequalities are implied by the condi-
tions T^»Te, l^W, mentioned earlier. The resulting re-
striction14 is that the flux increment W2 AB should be less
than hie.

Upon Substitution of Eq. (7) into Eq. (6), the criterion
of Lee et al. ' ' for the dirty metal correlation field is
recovered, 19

where the line integral of the vector potential increment

(9)

The numerical constant (left undetermined in Ref. 1 1 ) is
given by (3/π2γ) 1/2, which equals 0.95 for 1Φ»1Τ and 0.42
for Ιφ<^1τ· In a high-mobility channel, the "correlation
flux" Oc resulting from Eqs. (6) and (8) is many times
larger than the dirty metal value (9). For specular
scattering we find

3.37/ί(0)ν4~3]1/2} i f / e » W . (10)

In the regime /< t(0)»/ e^/^. we see tnat ΦΓ is larger than the dirty metal result (9) by a factor of order ~Jle/W, while
for le«:ίφ(0) £ le^Jle/W the enhancement factor can increase up to le/W. As a typicai example, we have plotted in Fig. l
Φ£ äs a function of Ιφ(θ)/1ϋ for a channel with le =5W, in the case /^»/r. For comparison, the constant dirty metal re-
sult is plotted äs well. This figure illustrates the importance of the flux cancellation effect on magnetoresistance fluctua-
tions in high-mobility channels.
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We have analyzed the UCF seen by van Houten et al.,6

using the above results. The system studied is a narrow
conducting channel, etched in the 2D electron gas of a
GaAs-AUGai -xAs heterostructure. Estimates for the
relevant lengths of the narrowest channel studied, at
Γ=2.4 K, are L = 10 μτη, tf"=138 nm, /e-314 nm,
1T=344 nm. The conducting width W of the channel is
much smaller than the lithographic width of 0.5 μπι, due
to side wall depletion. The value of W given above is ob-
tained from an analysis6 of the magnetic depopulation of
l D subbands at high fields. An analysis of the low-field
weak localization effect gives a value which is 20%
lower,15 and comparable uncertainties exist in the values
of/ e and/ r .

2 0

In Fig. 2 we have plotted the correlation function
F(A5) obtained from the magnetoresistance fluctuations
shown in Fig. 3 of Ref. 6. As usual, the impurity average
in Eq. (1) is replaced by an average over B. A linear fit
through the experimental data points was subtracted be-
fore calculating F, to correct for a systematic trend in
G(B). We find F(0) = 1.9xlO~4(e2/2^)2, AÄC=0.05
T, with error estimates of 30%. Substitution of this value
for F(0) into Eq. (3) gives a zero-field phase-coherence
length /^(0) of 500 nm. Equations (3), (5), and (8) then
predict Aße=0.12 T, more than twice the experimental
value. This discrepancy seems rather large to attribute
entirely to uncertainties in W. More likely, the reason
that the correlation field turns out smaller than predicted
is that, äs we increase the field increment, more and more
electrons lose phase coherence before entering the regime
ofdiffusive motion. This breakdown of coherent diffusion
is beyond the UCF theory, which assumes
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FIG. 2. Correlation function F(AB), in units of (β2/2πη)2,
obtained from the magnetoresistance measurements of Ref. 6.
The inset shows the experimental data.

but certainly plays a role in Systems where the phase-
coherence time is comparable to the elastic scattering
time.2I In the case above, the ratio τψ/τβ is about 5 at zero
field, which is not especially large (and becomes even
smaller äs we increase Δ/?). The Situation in the similar
experiment of Thornton et al.5 is even less favorable, with
τφ/Tg about 2 at the lowest temperature studied. The
presented theory calls for experiments with a larger ratio
of inelastic to elastic scattering times.
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