
Dynamics of pinned charge density waves: numerical
simulations
Veermans, E.; Erzan, A.; Heijungs, R.; Pietronero, L.

Citation
Veermans, E., Erzan, A., Heijungs, R., & Pietronero, L. (1990). Dynamics
of pinned charge density waves: numerical simulations. Retrieved from
https://hdl.handle.net/1887/11443
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/11443
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/11443


Physica A 166 (1990) 447-472 
North-Holland 

DYNAMICS OF PINNED CHARGE DENSITY WAVES: NUMERICAL 
SIMULATIONS 

E. V E E R M A N S  and A.  E R Z A N  1 
Solid State Laboratory, University of  Groningen, Melkweg 1, 9718 EP Groningen, 
The Netherlands 

R. H E I J U N G S  
Laboratory of Physiology and Physiological Physics, University of  Leiden, P.O. Box 9604, 
2300 RC Leiden, The Netherlands 

L. P I E T R O N E R O  
Dipartimento di Fisica, Universit~ di Roma "La Sapienza", Pie. Aldo Moro 2, 00185 Roma, 
Italy 

Received 19 March 1990 

A classical many-body model for the phase dynamics of randomly pinned charge density 
waves is found to exhibit stretched exponential relaxation below threshold. The statistics of 
single particle relaxation is highly non-trivial and can only be deduced from known scaling 
behaviour of intermittent trajectories in an uncoupled approximation. This is compared with 
results from present single-particle approaches. The self-similarity properties at the dynamical 
phase transition at threshold are investigated. 

1. Introduction 

Charge density wave (CDW) systems have been found to exhibit a large 
number of interesting phenomena besides nonlinear conductivity [1, 2], such as 
nonexponential relaxation below a finite threshold field for the onset of 
conduction [3], as well as mode locking [4] and memory effects [5]. 

The treatment by Pietronero and Str/issler [6, 7] of the equations of motion 
of the phase modes of the Fr6hlich CDW pinned by random impurities, taking 
full account of the internal degrees of freedom, provides a microscopic model, 
whose dynamical properties may be investigated in detail. Numerical treatment 
of their model yields [6, 7] a finite threshold field above which no equilibrium 
solutions for the polarization exist. They have also numerically obtained the 
dependence of the threshold field on the elastic coupling strength, i.e., the 
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pinned-unpinned phase diagram, and investigated the narrow as well as the 
broad band noise exhibited by the current in the unpinned region. Simulations 
performed on the same system by Littlewood [8] shed light on the properties of 
metastable states, which lead to hysteresis and memory effects. The pulse- 
duration memory effect exhibited by an analogous model has been investigated 
by Coppersmith and Littlewood [9] and Tang et al. [10]. 

The set of equations for the phase modes of the CDW are in the form of an 
array of coupled maps [11], which have recently become the subject of active 
research in that they are found to give rise to spatio-temporal organizing 
behaviour of great richness [12]. It has been noted [10] that such models share, 
together with spin glasses, neural networks and fully turbulent flows, the 
property that their dynamics cannot be adequately described by a few effective 
degrees of freedom. 

In this paper we concentrate on the relaxation behaviour of the classical 
CDW model of Pietronero and Strfissler [6] below the threshold. The numeri- 
cal integration of the equations of motion for the phases at the impurity sites, 
or the iteration of the equivalent coupled map lattice (CML) [11] yields 
information about the individual trajectories as well as the macroscopic 
behaviour of such quantities as the polarization and the current. Thus we have 
been able to investigate separately the consequences of random pinning 
(configurational noise) and the high effective dimensionality [9, 10] of the 
CML. The qualitative differences found between the coupled and uncoupled 
cases may help to understand the shortcomings of single particle or mean field 
approaches better [13-15]. 

Our main finding for the randomly pinned CDW system [6, 7] is that in the 
presence of an external field smaller than the threshold value, the polarization 
and the current relax to their equilibrium values with a stretched exponential 
law of the form exp(- t  ~). We find this to be the case both for random initial 
conditions and initial conditions obtained by previous relaxation to equilibrium 
in zero external field. This is to be contrasted with the response obtained after 
equilibration at a finite field. Turning off the field then yields an exponential 
decay to the new equilibrium state. For any finite sample, regardless of initial 
conditions, the extreme long time decay is, of course, once more pure ex- 
ponential. We have performed extensive simulations in order to determine the 
value of/3, which is found to be/3 - 1/3 well below the threshold, crossing over 
to a higher value in a neighborhood of the threshold. We have also com- 
puted the power spectrum of the noise in the current and found it to be Gaussian 
below the threshold. Right at the threshold, one finds a 1/f  dependence. 

We have also investigated the spatio-temporal organization arising in a 
cellular automaton representation of the underlying model, and determined the 
fractal dimension of the patterns obtained. 
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In section 2 we present the array of coupled maps for the phase dynamics of 
a randomly pinned CDW and we give a detailed description of the microscopic 
relaxation process. Availing ourselves of the results on the scaling behaviour of 
one-dimensional maps displaying Pomeau-Manneville type intermittency [16- 
18], we given an analytic derivation of the power law decay of the current for 
an ensemble of uncoupled maps with configurational disorder. In section 3 we 
present our numerical results. After general remarks on the computational 
procedures used, we report our findings on simulations for (i) ensembles of 
uncoupled, single particle maps with configurational and temporal noise, (ii) an 
array of coupled map lattice describing a randomly pinned CDW. The main 
results of this section are summarized and briefly discussed in section 3.1. In 
section 4 we present our findings on the spatio-temporal patterns associated 
with the relaxation phenomenon. 

2. Phase dynamics of the charge density wave 

2.1. The model 

A one-dimensional metal that undergoes a Peierls instability will exhibit a 
periodic modulation of the charge density of the form [6, 7] 

p(x) = epo{1 + C cos[qoX + 2~r~p(x)]} . (2.1) 

The one-dimensional electron density and Fermi wavevector are denoted by 
epo and q0, respectively. In a Peierls system with a constant density of states 
per site N 0, the amplitude of the charge density wave (CDW), C, is given by 
C = NoA/aAPo [6, 7], where a is the lattice constant, 2A is the gap and A is the 
electron-phonon coupling. It is assumed that the amplitude modulations can 
be neglected and the phase ~b(x) denotes the position of the CDW. It is only 
these excitations that carry an electric current [2]. 

The effective Hamiltonian for the phase dynamics is given by [2, 6, 7] 

H o = q  1 ~ Pmkot / ~ K Ox/  I '  

where Pm is the effective mass density of the CDW and for a Peierls system the 
2 elastic force is K = PomVF, where m is the electron mass and v v the Fermi 

velocity. 
Choosing delta-function pinning potentials at the random impurity positions 

xj. and a damping force only acting at these sites, Pietronero and Str/issler [6] 
have been able to obtain a difference equation for the values of the phase at 
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the impurity sites, 

d~bj ( ~bj+l-qjj ~bJ-qJJ-1)-sin[21r(Qou,+~bj)]+ EQj (2.3) 
dt = B u/+ 1 tlj U/ llj_ 1 

Here dimensionless parameters have been introduced such that uj = xj 1,, where 
u is the one-dimensional impurity concentration, Q0 = qo/2~ru, Q j = 1(u j+l_  
u j_ ~) and the time has also been normalized. The effective coupling constant is 
B = 2~Ku/epoCVoq3o, and the electric field E is normalized by CV 0 uqo. 

Defining a random pinning phase q~i =-Xiqo/2~r and finally neglecting ran- 
domness in the spacing of the impurities in the elastic and external field terms, 
which only introduce effects of higher order, we obtain 

oq, j 
Ot - B(t~J+I - 2t~i + qtj-1) - sin[2'rr(Oj + Oj)] + E .  (2.4) 

If we also discretize time (t = n dt) we get a set of N diffusively coupled maps 
which enables us to numerically describe the time evolution of N coupled 
phases ~0 by iterating from some starting configuration. Thus, with 

~bj(n + 1) = ~Oj(n) + ~i(n) dt (2.5) 

we have 

qJj(n + 1) = (1 - 2B dt)qJj(n) + B dt [~Oj_l(n ) + q%l(n)l 

- d t  sin[2w(~0~(n) + ~0j)] + E d t .  (2.6) 

We may define a polarization via 

1  j(t) P(t) = ~[ 
] 

(2.7) 

and a current density 

OP(t) L J(t) = = ~_~ ~bj(t) . (2.8) 
0t N j 

The simulations performed by Pietronero and Str~issler [6, 7] on the system 
given by (2.3) have shown that there is a maximum value of the field Eth , such 
that for E > Eth  , there is no equilibrium solution for P(t), thus J(t) is a 
nondecaying function of time, while for fields below threshold the system tends 
to an equilibrium value of the polarization. In fig. 1 we reproduce their phase 
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Fig. 1. Pinned verus unpinned phase diagram. We show here the dependence of  the threshold field 
Eth on the coupling B. For B ~ 0 the behaviour of  Eth is non-analytic. Taken from Pietronero and 
Str~issler [6], with permission of  the authors. 

diagram. The boundary between the pinned and unpinned regions is a broad 
band, attesting to the fact, which we verify, that the threshold field Eth differs 
from sample to sample. Versteeg has also been able to obtain Eth analytically in 
a mean field type approach to the present model [19]. 

In fig. 2, we display a typical decay curve of the current for a chain of 
N = 104  points. In (2.6), the values of ~0 i as well as the initial values of the ~i 
have been chosen randomly within the interval [0, 1]. The field has been set 
equal to 0.5 and B = 1. For small t the curve is relatively smooth, but as time 
passes it gets more and more irregular until, at very large times, one is able to 
distinguish isolated peaks of a characteristic shape. We have verified, by 
examining chains of various lengths, that the current in all cases is a superposi- 

1 , J i i 

10-] / ~  
io_. "~ l 
1o-3 

io-4 

1o-5 

io-6 

io-7 

1o-8 
0 IIo 2'0 3'0 4'0 50 

t 

Fig. 2. Polarization current for a coupled map with random pinning ( E  = 0.5, B = 1). 
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tion of single events, or contributions from the relaxation of individual points 
on the chain. Any given point on the chain undergoes typically a single 
relaxation (unless the field is very close to threshold) and the distribution of 
these single relaxation events in time, or "waiting time distribution" is what 
determines the shape of the overall decay. In subsequent sections we will 
present numerical results on the waiting time distribution, which turns out in 
all cases to have a long-time tail. This is graphically illustrated by the fact that 
however large N may be, the current has the characteristic shape shown in fig. 
2, with very long waiting times showing up as isolated peaks. 

2.2. The relaxation mechanism 

In order  to clarify the origin of the individual relaxation events, we cast (2.6) 
into the form 

O~(n+ l)=fj[O~(n)]+ Bdt[O~ l(n)+qtj+l(n)]=ffl~Oj(n)]+ Eeffdt (2.9) 

with 

fj[x] =- (1 - 2B dt)x  - dt sin[2'rr(x + q~j)] + E d t .  (2.10) 

The first equation above is now in the form of a one-dimensional map with a 
time dependent  force term. For  the rest of this section we will concentrate on 
the one-dimensional map appearing in (2.10). Changing the notation slightly, 
let us denote  by x,  the nth iterate of the argument.  Moreover  we will drop the 
site index from the pinning phase q~. Recall from (2.6) that 

f ( x , )  = x ,  + A(x,) d t ,  (2.11) 

where 

f f ( X n )  = - 2 B x  n - sin[2rr(x, + ¢)] + E ,  (2.12) 

which gives 

x,+ 1 = f ( x , )  = (1 - 2 B  dt )x ,  - d t  sin[2"rr(x, + q~)] + E d t .  (2.13) 

In fig. 3 we plot this map for E = 0 and E = 1, with q~ = ½. It has fixed points 
when x,+ 1 = x n, i.e. A(xn) = 0, which are either repulsive or attractive depend- 
ing on whether the absolute value of the derivative of (2.11) with respect to x is 
bigger or smaller than unity. The map with E = 0 has two attractive fixed 
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X n ¢ l  

l* 1 X n 

1 0 

Fig. 3. One-particle map for E=0  (B = 1, ~ =5, dt= 0.I). When a field E= 1 is put on, a neck 
appears. Within this neck the iteration velocity is slow (laminar zone), afterwards fast (event). 

points s 1 and s 2. A phase point or "par t ic le"  inserted before s 2 will, under  
iterations of this map,  converge to s 2 and remain there.  Had  E been sufficiently 
large, however ,  or with a sudden rise of  the field, the fixed points at s 2 and the 
origin would collapse and annihilate, creating a narrow neck through which the 
particle will slowly iterate,  as is the case with E = 1. Once the narrow neck 
region is left behind, there is a sudden rise in the velocity with a well defined 
max imum and then the t rajectory converges exponentially to the fixed point s'  1. 

We illustrate this in fig. 4a, where we plotted ¢)i(t) for a number  of sites 
belonging to a c o u p l e d  system (2.9) of  N = 500 points. The corresponding $j ( t )  

are shown in fig. 4b. One clearly notices the laminar zones (~bj(t) small, $i( t )  

almost constant) ,  the sudden bursts and the convergence to the fixed points. 
This well confined max imum in the velocity corresponds to the peaks seen in 
the current  (recall that J = (~b) ) and is the signature of an individual relaxation 
event. Then one is able to associate the waiting time with the path length 
[16, 17], or the number  of iterations it takes for an individual t rajectory to 
leave behind a neck region. 

The phenomena  associated with a tangent bifurcation are well known within 
the context of  the Pomeau-Mannev i l l e  intermit tent  route to chaos [16]. 
Pomeau  and Manneville [16] and Hirsch et al. [17] have determined the scaling 
behaviour  of the path  length r in terms of e, the width of t he  neck, once an 
"acceptance  window" is chosen to delimit the neck region. They find that 
~ - - e  -1/2 when the map  has a quadratic ex t remum at the point of nearest  



454 E. Veermans et al. / Dynamics o f  pinned charge density waves 

2.50 
? 

2.00 

1 . 5 0  

1 . 0 0  

0.50 

0.00 

1.20 

0.90 

0.60 

0.30 

O.OOq 

b 

/ 
16o ' 300 qO0 500 

Fig. 4. (a) Velocity ~b plotted versus time for five sites of a coupled map with random pinning 
showing four events (E = 0.5, B = i ,  N = 500, dt = 0.01) with in (b) the corresponding ~b's. 

approach to the diagonal. Eckmann et al. [18] have shown that this scaling 
behaviour survives in the presence of delta-correlated t ime-dependent  noise. 

With an event defined as the occurrence of a maximum in the velocity and 
the waiting time 7 as the number  of iterations before the manifestation of the 
event,  we are able to compute numerically the waiting time distribution for the 
dynamics of a chain of N phase variables. When both ~j(n) changes sign and 
~b~(n) exceeds threshold a, the count in the bin with r = n is increased by 1. In 
fig. 5 we provide evidence that the current J is nothing more than a smoothed 
version of the histogram JV'~(T), or that 

J(t) - ~ N,(~') 6(t - r) d r .  (2.14) 

If we can describe the distribution of waiting times, we can describe J. It 
turns out, however,  that this distribution can be derived analytically, from the 
microscopic equations of motion and known scaling behaviour,  only in very 
restricted cases. 
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Fig. 5. Current J and waiting time distribution ,ArT for a system of coupled maps with random 
pinning (E = 0.5, B = 1, 50 samples). A; is normalized to J. 

2.3. Statistics o f  single particle relaxation 

In the next section we will present  in detail our  numercial  results on )¢" (~-). 
In the remainder  of  this section we proceed to give a derivation of the power  

law dependence of )¢'7(~') when the chain is t reated as an ensemble of 
one-dimensional  maps (2.10), with a random distribution of 0 < q~ < 1. Phys- 
ically this is equivalent to a single-particle approximation where the neighbor- 
ing phases are assumed to remain fixed as a given q~j undergoes a transition. It 
will become immediately  clear f rom the computat ion below that in this 
single-particle approach spatial fluctuations in the external field, or, equivalent- 
ly, the values of  the neighboring phase points, enter  on the same footing as the 
fluctuations in the pinning phase,  and will give rise to the same type of 
anomalous  relaxation behaviour.  

Let  us expand our map (2.10) around the point of near  tangency (Xn~ck), 

f(x.) =/(X.eck) + 

+ 

o f ( x . )  x°ook (Xn -- X.ock) + 
ax n 

1 oZf(x , )  x.ock (X, - X,eck) z 
2 OX 2 

(2.15) 

Noting t h a t  (OXn+l/OXn)[Xneck -~- 1, one finds 

x ,+ 1 = e + x ,  + K(x, - Xneck) 2 + ¢7(X3,), (2.16) 

'1 02 X 0 2 with K = ~( f (  . ) /  x.)]x.ock and neck width e=f (Xneck) - -X .~ck  =i(x.ock) dt. 
Calculating the ex t rema of (2.12) we find for X.eck 
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(+max  
Xneck 2 2rr arccos ~0 + m -- min / m E 7/ (2.17) 

which gives 

.~(Xneck ) = C+(B) + 2B(~p + m) + E ,  (2.18) 

with C+(B) a constant depending on B and on whether  the extremum in (2.17) 
is a max or min. So we see that the neckwidth e depends linearly on the 
pinning phase q~, as well as the field E. Availing ourselves of the scaling result 
of Pomeau and Manneville [16], this leads to the following relation for ~- in 
terms of q~: 

"c(q~) ~ {Ca(E, B )  + C2(E, B) ¢{ 1 /2  (2.19) 

where the C i depend only on B and E. 
We may now write down the r-distribution in terms of the distribution of 

pinning phases, 

f / ,  - , -1/2;  W,(r) ~ dq~ ?¢" (~o) 6(~" - (C 1 + t..2cp ) ) ,  (2.20) 

which gives, for a uniform distribution N~ over a finite interval, 

,j~,r (T) ~ T -3 (2.21) 

after a standard substitution of variables. Note that in the absence of random- 
ness in the q~ (or E) ,  there will be but one characteristic waiting time. Then,  
after exhibiting a single peak,  the current decays exponentially, with the decay 
rate given by the Lyapunov exponent  of the map (2.10). 

3. Simulation results 

3.1. Summary 

In this section we want to present the numerical work done on the system of 
coupled maps defined in section 2. We will first outline some technical details 
and make general remarks about the simulations. We found three different 
classes of relaxation behaviour.  

For an ensemble of single-particle maps (2.10), obtained from the N- 
dimensional equations of motion (2.6) by treating the nearest neighbors of 
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each dynamical variable as if they remained fixed, we reproduced the passage 
time distributions we predicted on the basis of scaling properties of intermittent 
maps, with and without external noise [16-18]. The distribution of different 
characteristic relaxation times thus obtained lead to a power-law decay, 
universal with respect to field and coupling constant, up to corrections to 
scaling. 

For the system of coupled maps (2.6) with uniform pinning (q~ = const), we 
find classical exponential relaxation below threshold. This is drastically changed 
when configurational noise is added and yields stretched exponential relaxation. 

For the coupled map (2.6) with random pinning, the relaxation obeys a 
stretched exponential law, - e x p ( - t  ~). We performed extensive simulations to 
obtain the exponent /3 as a function of the field E. We found a general 
lowerbound/3min ~ 0.3, and a peak/3max ~ 0.5 for 0.55 < E < 0.60. The coupled 
map exhibits a dynamical phase transition [20] parametrized by the field E (for 
fixed coupling constant B) from relaxation mode (pinned) to steady state 
(depinned). For B = 1, the sample dependent threshold field is approximately 
a t  Eth  = 0.70. In the neighborhood of the threshold, the system displays 
self-similarity and 1/f  noise. 

Although in the pinned region the spatial correlations in this system are 
found to be very short (of the order of the lattice spacing), the effect of the 
elastic coupling is highly non-trivial. Attempts at mimicking the local field due 
to the nearest neighbors by several time-dependent noise terms, with or 
without memory, all yielded behaviour qualitatively similar to that of ensem- 
bles of single-particle maps, namely, power law decay. Comparing these results 
with similar behaviour obtained by more sophisticated single particle ap- 
proaches [14, 15] seems to suggest that the system is inherently of high effective 
dimensionality [10] and cannot be treated satisfactorily by few-effective- 
degrees-of-freedom approaches. 

3.2. Numerical methods 

All programs were written in Pascal and executed on a VAX 8650 and Cyber 
170/760 at the Rijksuniversiteit Groningen. A typical job consisted of a series 
of 10 to 50 separate simulations with different random initial conditions. For 
each of them the normalized current J(n)/J(O) and the waiting time distribu- 
tion N~(n) were computed, after which the averaged results were stored. To 
compute the waiting time distribution, at every timestep n each site i was 
checked for a change of sign in the second time-derivative of q~. If a change of 
sign occurred and the velocity Idl exceeded a threshold a (a =0.001), the 
integer N+_(n) was raised by 1 (---depending on the sign of ~b). 

The initial configurations for ~0 and qs were taken from a uniform distribution 
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between 0 and 1 since this covers a complete period of the sine.  Better  statistics 
would be obtained by performing a pre-relaxation with zero field before the 
actual simulation takes place. Then,  turning on the field would only induce 
pos i t i ve  transitions and ?¢'~(n)= 2¢'+- J. But since this method causes a dou- 
bling of CPU-time we omitted the pre-relaxation. The price we pay for this is 
that, as can be seen from fig. 3, we will be measuring also negative events, 
contributing to N .  Particularly for small fields E this causes a slight distortion 
in the measured current J, which is then J ( n )  ~- N+ (n)  - N (n) .  

We checked that our results did not depend on our  choice of dt. Graphs and 
fits for d t = 0 . 0 1  and d t =  0.1 reveal no significant differences either upon 
inspection or by comparison of fitting parameters  and the latter only uses i of 
the time needed by d t =  0.01. So most simulations were performed with 
dt = 0.1, unless specified otherwise. 

The regimes of interest for the field E and coupling constant B could be 
determined with help of the rough phase diagram provided by Pietronero and 
Str/issler [6, 7]. Although we limited ourselves to probing the field dependence 
of various quantities of interest, at fixed B = 1, it would obviously be desirable 
to also investigate the effect of varying B at fixed E. 

Long chains of 104 sites were used except when stated otherwise. A large 
sample exhibits a longer lasting relaxation because one statistically has a larger 
probability to encounter  very large waiting times. We used large samples 
because the averaged dataset is as large as the simulation which is cut off the 
earliest, and we implemented a flexible stopping condition which stopped the 
simulation when entering the numerical noise zone for the current J. To  get rid 
of end-effects cyclic boundary conditions were used. 

We fitted the datasets with power laws, exponentials and stretched exponen- 
tials using fitting routines based on the method of least squares. The datasets 
were, where possible, manipulated in such a way that the actual fitting could be 
done with a straight line. Moreover ,  we restored the equal spacing of the 
independent  variables by either choosing an equidistant set of data points, or 
choosing the midpoints of equal intervals over which the dependent  variables 
were averaged. For  a stretched exponential  of the form 

y ( x )  = a exp(cx b) = y (0 )exp(cx  b) (3.1) 

one can compute the double logarithm 

In[In y(0) - In y(n)] = In c + b In x . (3.2) 

But as one can see in (3.1) the amplitude y(0) appears as a parameter  of the 
fit, and one is only allowed to take it equal to the numerically obtained initial 
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value if one indeed expects stretched exponential behaviour starting from very 
small times, and there are no distortions due to transient effects. Since all of 
our fits hold only for intermediate times we have to do a three-parameter  fit of 
the following kind: 

Yi = A -  C x f  . (3.3) 

Formula (3.3) proved to be very sensitive to the inevitable scatter of the 
experimental  datasets but at least not as much as a fit of the stretched 
exponential  of (3.1) (with free parameters a, b, and c). This problem is 
eliminated in case it is possible to choose one of the parameters in (3.1) or 
(3.3) to be fixed, for the details we refer to the sections in which we treat the 
actual fits. 

3.3. Single-particle relaxation 

For an ensemble of effectively uncoupled single-particle maps (2.10) we 
derived the waiting time distribution analytically at the end of section 2. In this 
section we will compare these results with the simulations. We predicted that 
with uniform pinning we should find a delta function for the waiting time 
distribution, and for random pinning a power law, 

N~(~-) - ~--~, o- = 3 ,  (3.4) 

as well as J(t)  ~ t -~. In the presence of a vanishingly small field and B = 1, the 
powers with which N~ and J decay are found to be o - =  2.90 -+°'1° and o-j = 
2.94 -+°1° respectively (see fig. 6). For higher fields E, one finds 2.70 < tr < 2.90. 
This is probably due to corrections to scaling, which one should expect for a 
finite neck [17, 18]. 

Hirsch et al. have performed simulations on the mean passage time for the 
three-fold iterate of the logistic map (which yields a form like (2.16) if one 
expands around the point of near tangency). They also did simulations on 
(2.16) in the presence of additive t ime-dependent  Gaussian white noise ( ( t ) ,  

( ~ )  = 0 ,  (~2)  = 1 ,  (~ ( t )  ~ ( t ' ) )  = 6 ( t - t ' ) ,  (3.5) 

and obtained a power-like tail for the path length distribution. Since the 
random pinning is responsible for a power law tail in (3.4) we made a simple 
approximation to see if we could mimic effect of random pinning with a linear 
additive configurational noise term. Expanding the pinning term in (2.10) 
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Fig. 6. Fit of the current for an ensemble of uncoupled maps (E = 0, B = 1, random pinning, 50 
samples) with power law exponent /3 = 2.94 ±°1°. 

a r o u n d  @j, w e  ge t  

s in (2w[@j(n)  + q~j]} ~ sin[2-rr@~(n)] + q~j w i th  - 1  < q~j < 1 ,  (3 .6 )  

w h e r e  t h e  ~0j a r e  c o n s t a n t  in t i m e .  In  fig. 7 w e  p l o t t e d  the  d i s t r i b u t i o n  o f  

w a i t i n g  t i m e s  w e  o b t a i n  w i th  t he  a p p r o x i m a t i o n  (3 .6 ) .  T h e  r e s e m b l e n c e  to  fig. 

15 o f  H i r s c h  e t  al .  [17] is s t r i k ing .  F o r  q~ = 0 ( u n i f o r m  p i n n i n g )  w e  f ind a s h a r p  

p e a k ,  as w e  p r e d i c t e d ,  a n d  w i th  t he  n o i s e  t e r m  o n  w e  ge t  t he  p o w e r - l i k e  ta i l .  

W e  h a v e  f i t t ed  th is  ta i l  a n d  w e  f o u n d  a p o w e r  or-~ 2 .70  (see  fig. 8) .  W e  f ind it 

r e m a r k a b l e  t h a t  t he  e f f ec t  of  conf igura t iona l  r a n d o m n e s s  o n  the  w a i t i n g  t i m e  

d i s t r i b u t i o n  is t he  s a m e  as t h a t  o f  t i m e - d e p e n d e n t  a d d i t i v e  no i se .  

i00 
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< Nr(n) > 
~ = 0  

+ r l O l ~  

~0 80 £20 ISO 200 
R 

Fig. 7. Waiting time distribution for an ensemble of uncoupled maps wl)h uniform pinning (E = 0, 
B = 1, ¢ = 0, 10 samples). An added noise term yields a power law tail. 
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Fig. 8. Power law fit of  the tail of  the waiting t ime distribution as presented in fig. 7 yielding an 
exponen t /3  = 2.72 -+ 0.10. 

Finally, we tried to see if we could simulate the effect of the coupling term in 
eq. (2.6) by treating the Eel f in (2.9) as a time dependent  noise term, with or 
without memory.  In the coupling term in (2.6) we substituted 

[~j_l(n) + ffj.~(n)] ~ p[q,j_~(O) + q%a(O)] + 2(1 - p)P(n  - 1) 

+ a - ~ ( j ) ,  (3.7) 
n i 

where p and a are adjustable parameters,  with P(n - 1) = (~0j(n - 1)) the total 
polarization at time n - 1 and ~: a time dependent  noise term (as in (3.5)) with 
its fluctuations smoothed out by the average over n. But the stretched 
exponential relaxation behaviour observed for coupled maps in the presence of 
configurational randomness could not be reproduced in this manner for any 
combination of p or a. We obtained only power laws with cr in the range 
2 . 5 <  o-<3.5 .  Thus the time dependence of the effective field due to the 
neighbors is highly non-trivial and cannot be mimicked by a noise term. This 
implies that the effective high-dimensional dynamics of the full model (2.6) 
cannot be reduced to a few degrees of freedom model such as an ensemble of 
maps given by (2.10). 

3 4. Coupled maps with uniform pinning 

In this section we present numerical results from simulations of the coupled 
map lattice (2.6) with uniform pinning, namely, q~ = const for all sites j. For  
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most runs the constant was taken equal to zero. No essential differences were 
found with the runs we did for comparison with const ~ 0. 

With uniform pinning in the relatively strong pinning region (B = 1) we have 
investigated, one has a unique equilibrium state and all the ~0j go to the same 
fixed point. We found exponential relaxation of the type 

J ( t )  ~ e x p ( -  t /To) (3.8) 

for E < Eth ~ 1, with z 0 decreasing with increasing B or E. The waiting time 
distribution has the same form as the current (see figs. 8 and 9). The initial 
differences between the phases ~bj (from the starting configuration) stay con- 
stant till they one by one reach the same fixed point. If, on the other  hand, the 
system is allowed to reach equilibrium at zero field, this causes all the ~b's to 
"walk in line" when the field is turned on. 

For  low fields (E  ~< 0.3) the current J decays too fast and too irregularly to 
allow a determination of its functional form. For  higher fields, the current 
displays noisy oscillations superimposed on the exponential decay which evens 
out when E is increased (0.5--~ E--~0.9),  till the threshold field Eth  ~ -1  is 
reached. An explanation for this oscillation is to be found in the field of the 
washboard potential. Above  Eth w e  find an oscillating current with a single 
characteristic frequency and a nonzero average. Right at threshold the current 
obeys a power law - t  2 (see fig. 10). 

Finally, as in the previous section, we were able to mimic the effect of 
random pinning by perturbing the coupled map lattice with a linear additive 
noise term. In fig. 11, we see the current plot for a simulation of a coupled map 
with uniform pinning but with added noise term dt ~j and -0 .1  < ~j <0 .1 .  This 

should be compared with fig. 2. 

<J(t)> 

~o-I 

~0-2 

10-3 , \ 
o 3 8 9 12 15 

t 

< Nr(t) > 

h ' 
I°-1 ~ / .  

I°-4 6 '3 r6 '9 I~2 15 

t 

Fig. 9. Exponential  fit of (a) the current and (b) the waiting time distribution for a system of 
coupled maps with uniform pinning (E = 0.5, B = 1, ~ = 0, 50 samples) both yielding T O --2.50. 
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Fig. 10. Power law fit of the current at threshold field for a system of coupled maps with uniform 
pinning (E = 1, B = 1, ~ = 0, 50 samples) yielding tr = 2.00. 

3.5. Coupled  maps  with r a n d o m  p inn ing  

In  th is  s e c t i o n  w e  r e p o r t  o u r  n u m e r i c a l  r e su l t s  fo r  t h e  c o m p l e t e  c o u p l e d  m a p  

la t t i ce  (2 .6 ) .  

T h e  a v e r a g e  c u r r e n t  J fo r  a n u m b e r  o f  d i f f e r e n t  f ie lds  E b e l o w  t h r e s h o l d  is 

s h o w n  in fig. 12. T h e s e  c u r v e s  a r e  v e r y  we l l  r e p r e s e n t e d  by  a s t r e t c h e d  

e x p o n e n t i a l  f o r m ,  

J( t )  ~ e x p ( - t - ~ )  . 

1 

io-1 

jo-2 

1o-3 

lo-d 

~o-6 

10-7 

~o-8 

1o-9 
0 I'0 2'0 3'0 40 50 

t 
Fig. 11. Current for the coupled map with uniform pinning (E = 0.5, B = 1, ~ = 0) but with added 
noise term to mimic random pinning. 
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Fig. 12. Current for coupled maps with random pinning and various fields (B = 1, 50 samples). 
The various curves refer to: (a) E=0.70=E, , ;  (b) E=0.65; (c) E=0.60; (d) E=0.55; (e) 
E = 0.50; (f) E = 0.45; (g) E = 0.40. 

We plot ted  our  es t imates  for  the s t re tched exponent ia l  e x p o n e n t / 3  for  fixed 

B as a funct ion o f  the field E in fig. 13. Despi te  the ra ther  large e r ror  bars,  

whose  origin we will discuss below,  its m e a n  features  are quite clear. We find a 

m in imum /3min = 1/3,  an increas ing /3  with increasing E,  a max imum be tween  

0.5 < E < 0.6, and f rom about  E = 0.6 till E = Eth ~ 0.7 a decreasing /3. 
We have poin ted  out  in sect ion 3.2 that  the th ree -pa ramete r  fitting fo rmula  

(3.1) appea red  to very sensitive to changing the lower  and,  to a lesser extent ,  

the uppe rbounds  (tl,  t2) of  the t ime interval  over  which the fit was pe r fo rmed .  

Since the relaxation behav iour  will not  be s t re tched exponent ia l ,  but  ra ther  

exponent ia l ,  for  very small and very  large t, we had to use fitting p rograms  that  

d .80 . . . .  

'2 ~.oo 

Q3._ _ _ _ 1 /  

:3.20 

E t h i  I Etk 
2.8oo 0'.30 o'.4s 0'.60 o.7s .oo 

E 
Fig. 13. Stretched exponential exponent/3 plotted as a function of the field E. Each point stands 
for 50-100 runs. 
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scanned a dataset for t 1 (and sometimes t2) .  The error  bars for/3 arise from the 
range over which the exponent  fluctuated as a function of t 1. 

For large t one only finds single events with rather large gaps in between (see 
fig. 2), so one could stop iterating if J falls below a certain Jmin" This will 
automatically cut off this single-event zone but sometimes too much. If, for 
instance, 1 out of the 100 samples just happens to exhibit such a dip at an 
earlier stage than the bulk, it will determine t 2 for the average. The long tailed 
distributions we deal with ensure that the more samples one averages over the 
more likely it is that such "bad luck" will occur. 

For very short times the current is dominated by the movement  of the sites 
which relax exponentially towards nearby fixed points without having to iterate 
through a neck region on their trajectory. For some low field simulations we 
indeed found, for the very first iterations, exponential decay. On the other  
hand, one can see clearly that a high field means a lot of events, i.e. good 
statistics, which implies a rather smooth curve over a longer range. Therefore  
we can report  higher accuracy for high field relaxation. 

It should be stressed that the fits which lead to fig. 13 individually look very 
good (see fig. 14 for an example), and yield error  bars for the free parameters,  
which are of the order  of 1 percent. A stretched exponential fit with three 
parameters according to (3.1) can find combinations (a, b, c) which minimize 
the total errors with respect to the dataset almost as well as other combina- 
tions. As soon as one is fixed, the other  two stay almost constant with respect 
to a changing fitting regime. However ,  there is no obvious way in which one of 
the parameters could be thus eliminated. With fig. 15 we provide an example 
of what might happen if one cautiously would fit with (3.2). 

At B = 1 the threshold field Eth is about 0.7, depending on the pinning 

i0-1 

20-2 

1o-3 

]o-4 
0 8 16 24 32 

t 

A 

V 

40 

Fig. 14. A n  example  of  a s tretched exponential  fit of  the current  for a coupled map  with r andom 
pinning (E = 0.6, B = 1, 100 samples)  giving/3 = 0.42. 
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Fig. 15. Double- log fits to the same dataset as used in fig. 14 with different initial amplitudes A 
(=y(0) in eq. (3.2)). By adjusting the lower bound each fit would look satisfactory. 

configuration. Right at threshold, a fit stretching out over the first decades 
indicates a power law dependence for the current but we cannot confirm this 
for the complete range of data that we obtained from the simulations. The 
deviations from a power law for large times may be due to finite size effects, 
but this remains to be investigated. 

For large E and large B, that is, in the unpinned region, we find an 
oscillating current which is non-decaying. The power spectrum S(k) displays 
both narrow and broad band noise (see fig. 16), and contrary to E ~ Eth we 

d .00 
7" 

3.60 

3.20 

2 .80  

2.40 

2.00 

0.75 

0.60 

i i 

o .~5 

0.30 i 

Oo. 
00 

i i i L 

200 d00 600 800 1000 

Fig. 16. Non-decaying current for a coupled map with random pinning in high field (E  = 0.8 > E,h, 
B = 1) with the power spectrum displaying both narrow and broad band noise. 
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Fig. 17, Power spectrum of the current reflecting 1/f noise at threshold field for a coupled map 
system with random pinning (E = 0.7-- Eth, B = 1). 

find a large peak for S(k  = 0). This is in agreement with previously reported 
results [6]. For the power spectrum in the pinned regime (E < Eth ) we found a 
power law ( f  ~) with exponent ~b close to 2 (1 .8<  ~b <2 .0) ,  this implying 
Guassian fluctuations rather than 1 / f  noise. However, right at the threshold 
field (E = Eth), we did find 1 / f  behaviour (~b ~ 1) in the low frequencies (see 
fig. 17). 

A cellular automaton visualization of the velocity profiles (see section 4) 
shows that a relatively short chain (down to N = 5 !) with a given configuration 
of pinning phases undergoes the same microscopic relaxation process as when 
it is embedded in a longer chain, even at the endpoints [21]. This suggests that 
the spatial correlations are very weak even when the system is performing 
completely coherent periodic motion in time, as already remarked by Lit- 
tlewood [8]. Indeed, a numerical computation of the correlation function 

C,(r) = / ( 6 , )  (6 ,+, . )  

revealed spatial correlations in ~bj in the pinning regime to be of the order of a 
lattice spacing. The Fourier transform of C,(r) has a Gaussian like envelope, 
centered around k = 0. 

4. Spatio-temporai patterns 

Coupled map lattices, similar to that in (2.6), are a growing area of research 
[11, 12], promising to a new testing ground for models and ideas on chaos. 
Variants of the CMP in (2.6) have been investigated by Kaneko [11], and 
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shown to give rise to s p a t i o - t e m p o r a l  pa t t e rns  exhibi t ing in te rmi t ten t  and 
chaot ic  behav iour .  

In this sect ion we will m a k e  use of  a s imple  ce l lu la r  a u t o m a t o n  r ep resen ta -  

t ion [11] in o rde r  to display the  s p a t i o - t e m p o r a l  dis t r ibut ion of  the individual  
re laxa t ion  events  (see sect ion 2) or  ab rup t  changes  exhib i ted  by the phase  
var iables ,  while the sys tem r e p r e s e n t e d  by (2.6)  evolves  in t ime.  T h e  pa t t e rns  
thus f o r m e d  are  found  to be  self-similar ,  with a well-defined fractal  d imens ion ,  
right at the threshold ,  while above  and be low no such self-similari ty is 
obse rved .  

The  cellular  a u t o m a t o n  r ep re sen t a t i on  is def ined as follows: 

0 ,  ~j(n) < a , 
Sj(n) = (4.1) 

1 ,  4)i(n) ~ a ,  

whe re  q)j(n) = Oi(n + 1) - qJj(n). Fo r  each  t ime step n and j = 1 , . . . ,  N ,  Sj(n) 
is c o m p u t e d  f rom (2.6) and (4.1) .  Plot t ing dots  where  Sj = 1 and b lanks  
o therwise ,  yields pa t t e rns  such as those  in fig. 18. Clear ly,  Sj(n) = 1 at those  n 

where  0j m a k e s  an ab rup t  t ransi t ion.  
A n  inspect ion of  the  plots  in fig. 18 suggests  tha t  for  relat ively low fields (e.g. 

(a) E= 0.6 

(b) 

(c) E = o. 7,5 

t E = 0 " 7 0 ~ E t h  (d) t E = 0 . 8 0  

Fig. 18. Realizations of the cellular automaton representation of the randomly pinned CDW (see 
rule (4.1)). The system size if 512 and 1024 time steps have been taken. The lower cutoff in the 
velocity, a, is a = 0.002 except for E = 0.80, where it is 0.01. The vertical axis corresponds to the 
positions along the chain and the horizontal axis represents time. 



E. Veermans et al. / Dynamics of pinned charge density waves 469 

' --" 6 
J 

Z 

O'3 
0 

3 

. . . . .  "* '32. 

o 6 4  

• 5 1 2  

l 

o 3 6 § 

to 9 t 

6 
_ . )  

,,._.j 

Z 

03 
O 

J 3 

' ' • 3 2  

i i I i i I i i 

" " ' ' "~ "32 

o 64 

• 128 

i i I 

- 0  3 6 9 O  3 6 9 

Lo 9 L Lo 9 L 
Fig. 19. The logarithm 2 of the mass versus the length scale at constant time for the spat io-  
temporal patterns in fig. 18. The mass points have been averaged over 100 realizations. E = 0.70, 
0.75 and 0.65 in (a), (b) and (c), respectively. 

E = 0 . 6 5 )  the spa t io - t empora l  correlations between the events are small, 
whereas above threshold one clearly discerns quasi-periodic mot ion fully 
correlated in time. 

We have per formed box counting to determine the scaling behaviour  of the 
total "mass"  (sites in mot ion showing up as occupied dots) at each time step n. 
For  each separate  field, averages were per formed over  100 samples. At  a given 
n, the number  of occupied "boxes"  N ( n ,  m )  at each length scale l = 2 m was 
averaged over  the 100 realizations. Our  results are shown in fig. 19 for different 
E at fixed B = 1. The points fail to fall on straight lines for E < Eth  and 
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E > Eth, the limiting slope for small box sizes being 1 and 0, respectively. This 
can be understood from a close inspection of fig. 18. In the former case the 
mass formes compact fingers and in the latter it is organized in straight line 
segments. For large scales the slope tends in these cases to 1. At  the threshold, 
on the other hand, although the mass decreases with time, the scaling 
behaviour is remarkably uniform, and extends over five to six decades. The 
fractal dimension Df + 0.58 - 0.01. We checked that varying the lower cutoff a 
did not affect the results, except to shift the scaling regime. 

The scale invariance and fractality of the "active" region at threshold is a 
manifestation of the dynamical phase transition [20] that takes place there. 
Similar patterns consisting of all the points that make transitions until an initial 
perturbation (here turning on the field) completely subsides, have been 
investigated by Bak et al. [22]. They found such self-similar patterns in the 
neighborhood of a "critical state", which was a dynamical attractor, whereas in 
the present case this state is achieved by adjusting the parameter E. 

For the sake of completeness, we have also investigated the CML in (2.6) 
with an added non-linearity. After Kaneko [11] we write 

xj(n + 1) = h(xi (n))  + ½e[g(xi+l(n)) + g(x j_ l (n) )  - 2g(xi(n))] , (4.2) 

with j = 1, 2 . . . .  , N and periodic boundary conditions and 

h ( x ) = l x + A s i n ( 2 ~ r x ) + C l ( m o d l ) ,  with A = 0 . 2 ,  C = 0 . 5 5 ,  

The circle map h(x)  exhibits a stable cycle with period two: x~*+l = h2(x * ). The 
parameters are chosen such that a slight perturbation will yield the intermittent 
transition of Pomeau-Mannevil le  [16]. By choosing a small coupling constant e 
in (4.2), such a small perturbation is provided by the coupling part. The 
patterns of bursts and laminar clusters (see fig. 20) are obtained by a similar 

i 

3 2 n  
Fig. 20. Realization of a kink pattern from the cellular automaton representation (4.3) of the 
coupled map lattice (4.2) with initial conditions (4.4). See text. 
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plotting criterion as we used for the velocity profiles, where we measured 
temporal differences, while here "kinks" or abrupt spatial differences are 
registered according to the following rule: 

{ > 6 ,  (4.3) 1 for IXj+l(n) - x~(n)l (mod 1) ~<~. SAn)= o 

Random initial conditions (0~<x j< l )  can be used, or single k i n k s  im- 
plemented by putting half of the chain equal to the fixed point xl and the other 

half to x 2 , 

x j  = x 1 f o r  l <~ j <~ N / 2  , 

x j  = x 2 for N / 2  < j <~ N .  
(4.4) 

* = h ( x ~ )  the sites keep alternating between x I and x 2 * = h ( x ~ )  and x 1 Since x2 
and xj+ 1 - xj will be zero except at the kinks which are initially positioned at N 
and N / 2 .  Right at these kinks the motion is chaotic and there are large 
differences between neighbouring sites. In this way one can follow the propa- 
gation of the kinks in time and space. In fig. 20 we give an example for a 
representation (4.3) of the coupled map (4.2) with initial conditions (4.4). We 
used absorbing boundary conditions and applied the (mod 1) operator on the 
complete map (4.2) instead of only on the circle map, which is a minor change 
to the original implementation. The white regions correspond to laminar zones 
where sites alternate regularly between the two fixed points; the black parts 
correspond to chaotic bursts. Lowering the coupling confines the region of 
propagation and reveals patterns looking like the growth of dendritic crystals, 
increasing the coupling reveals a kind of "fully developed turbulence". The 
parameters for fig. 20 are d t = A = 0 . 2 ,  E =  C / d t =  2.75 and B = e / 2 d t =  
0.595. 

Although for any given time n this pattern shows excellent mass to length 
scaling, the fractal dimension depends on n, decaying slowly with time. 

It is interesting to note that defining a Boolean variable ~ = (0 for state x~, 1 
for state x~') and mimicking h ( x )  by F(~) = (~ + 1) (mod 2), yields the cellular 
automaton 

.~/(n + 1) = [F(~j(n)) + ~Tj+,(n) + .~_,(n) - 2~.(n)] (mod 2) ,  (4.5) 

which is "illegal" according to the rules of Wolfram [23]. However, it is easy to 
see that for the "kink" variables defined via 

gAn) -- 0 ( I G , ( n )  - .Un) l )  (4.6) 
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one  has a legal cel lular  a u t o m a t o n  giving rise to a fractal pa t t e rn  and  ident if ied 

as " ru le  150" in Wol f ram ' s  scheme [23]. 
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