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Relation between entanglement measures and Bell inequalities for three qubits
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(Received 17 November 2003, published 23 March 2004)

For two qubits 1n a puie state there exists a one-to one telation between the entanglement measure (the
concuntence ) and the maxmmal violatton M of a Bell incquality No such relation exists for the thiee-qubit
analog of C (the tangle 7) but we have found that numerical data 1s consistent with a simple set of upper and
lower bounds fo1 7 gitven M The bounds on 7 become tighter with mcieasing M so they are of practical use
The Svetlichny form of the Bell mequality gives tighter bounds than the Mermin form We show that the
bounds can be tightened further 1f the tangle 1s 1eplaced by an entanglement monotone that can 1dentify both

the W state and the Greenbergei-Hoine-Zeilinger state
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Bell inequalities test for the quantum entanglement of a
state by comparing the maximally measwed value M of a
cettam coitelator with the maxumal value allowed by local
tealism [1] For a pute state of two qubits, the Bell-CHSH
(Clause1-Hoine-Shimony-Holt [2]) parameter M=2y1+C>
1s duectly 1elated to the degiee of entanglement (o1 concur-
1ence) C [0, 1] of the state [3] This 1elation 1s useful be-
cause, on the one hand, M can be 1eadily measwed [4],
while on the othei, C can be 1eadily calculated [5] In this
paper we vestigate to what extent this 1elation has a thiee-
qubit analog

The three-qubit analog of the concutience C 1s the tangle
7, mtioduced by Coffman, Kundu, and Wootters [6] It quan-
ttfies the nreducible ttipaitite entanglement thiough the for-
mula

Tzci(BC)_Cf\B_C/ZlC (1)

The mdices A,B,C label the thiee qubaits, the tangle 1s -
vatiant under permutation of these mdices The concurience
C4p 1efers to the mixed state of qubits A and B obtamned after
tiacing out the degiee of fieedom of qubit C, and Cy 1s
defined similaily The concunience Cypcy desciibes the en-
tanglement of qubit A with the jomnt state of qubits B and C
The tangle 7e [0, 1] equals O 1f one of the qubits 1s separable
fiom the other two It equals 1 for the maximally entangled
GHZ  (Greenber ger-Hotne-Zeilinger [7) state  [¥gis
=(|000)+|111))/+2

The best-studied geneiralization of the Bell-CHSH 1n-
equality to the case of thiee qubits 1s the one proposed by
Meinun [8] There exists no analytical foimula that gives the
maximal violation My of the Meimin mnequality for a given
puie state of thiee qubits, but it 1s not difficult to petrform the
maximization numetically For special one-paiameter states
of the form |¢)=cos @|000)+sin a|L11), Scarani and Gisin
[(9]found an approximate (but highly accuiate) ielation
My =max(4\ 7,21 1 —7) between 7=sin” 2a and My,

For moie geneial states thete 1s a tange of values of 7with
the same My, We have mvestigated this tange numetically
and tound that the data 1s well desciibed by a simple pan of
upper and lower bounds for 7 for any given My The
bounds can be tightened mn two ways (1) By using an alter-
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native form of the thiee-qubit Bell nequality, due to Svetli-
chny [10-13], and (2) by using an alternative measuie ¢ of
tupattite entanglement that we mtioduce m this papet, de-
fined by

C i+ C3
o= mm( Xz~ rg) 2 na _ C}z(y) 2)

The minimuzation 1s over the permutations X, Y, Z of the qu-
bits A,B,C We find the following bounds on ¢ for a given
maximal violation Mg of the Svetlichny mequality

IM16- 1| < o= MU32 (3)

(We use the symbol = mstead of = as these bounds aie
mferred fiom numerical data, i1ather than derived analyti-
cally)

Both ¢ and 7 ate entanglement monotones (meaning that
they cannot be incteased on average by local operations and
classical communication) Their essential difference 1s that o
can detect tipartite entanglement of both the W and GHZ
types, while 1t 1s known that 7 can only detect GHZ type
entanglement [14] We 1ecall that local operations on the W
state |¢)w=(|001)+|010Y+|100))/\3 and the GHZ state
|z generate two distinet classes of nieducibly entangled
tmipattite states While 7=1=0¢ fot |¢))guz for |y only o
=4/9 1s nonzero In fact, o=0 if and only 1f one of the qubits
1s sepatable fiom the other two (2-1 separability) This latter
property distinguishes the entanglement measute muoduced
heie fiom the one mmtioduced by Meyer and Wallach [15],
which s also nonzeio for 2—1 sepaiable states

After this mtioduction, we now piesent our findings in
mote detail

Puie states of thiee qubits constitute a five-patameter tam
ily, with equivalence up to local unitaty tiansfoimations
This tamily has the 1epiesentation [16]

|4h) = \ 120|000} + \ sy {100 + \ za] 10L) + ] L10)
i) (4)

with 1, =0, 2, w,=1, and 0= ¢d=<7 The labels A, B, and C
indicate the fust, second, and thud qubit, while X, ¥, Z 1efet
to an atbittaly petmutation of these labels
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The tangle (1) is given by

T=4uopy- (5)

The squared concurrences C’,zm,z)=4 Det py (with py
=Try ,|¢)(y| the reduced density matrix) take the form

C/ZA(BC) =4 po(py + p3 + ), (6)
C%(AC) = dpg(ps + pa) +4A, (7)
CZC(AB) =dpolpy + ) + 44, (8)

with the definition A= gy ps+ popta— 2ty pottaiia)’? cOs .
Each of the four quantities (5)-(8) is an entanglement
monotone [14,17].

The quantity o defined in Eq. (2) can equivalently be
written as

o= %(74_ min C%(XY)) =T+ ‘;‘ mm(C)z(Z + Ci;'/z) > 9)

as follows from the identity [18] 7=Cxy,+Cixz—Cruxn)
~2C%,. One sees that 0< 7< g =< 1. Most importantly, since
7 and min C%(xy) are positive entanglement monotones,
their sum ¢ is an entanglement monotone as well [19]. If
one of the qubits (Z) is separable from the other two, then
7=0=Cyxy)= 0=0. The converse is also true: If o=0 then
Czxry=0 for some permutation X, Y,Z of the qubits, so one

qubit is separable from the other two.
Bell inequalities for three qubits are constructed from the
correlator

E@b.c)=(flla-0)® (- 0)® (c-o)l¢).  (10)

Here a,b ,c are real three-dimensional vectors of unit length
that define a rotation of the Pauli matrices o=(0,,0,,0,).
One chooses a pair of vectors a,a’, b,b’, and ¢,¢’ for each
qubit and takes the linear combinations
E=E(a,b,c')+E(a,b’',¢c)+E(a’,b,c)-Ela’,b',c’),

(11)

E'=E(a',b',c)+E(a',b,c')+ Ela,b',c’) - Ela,b,c).
(12)
Mermin’s inequality [8] reads |£] <2, while Svetlichny’s

inequality [10-13] is [E-&’|<4. We define the Mermin and
Svetlichny parameters

My =max|&], Mg=max|E-E']. (13)

!

The maximization is over the six unit vectors a.b,c.a’ b’ c
for a given state {). The largest possible value 1s reached for
the GHZ state (My=4 and Mg=4.\2). The W state has
My =3.05 and Mg=4.35. Any violation of the Svetli-
chny 1nequality implies irreducible tripartite entangle-
ment. In contrast, states in which one qubit 1s separable
from the other two may still violate the Mermin inequal-
ity, up to £=212. For both inequalities, there exist pure
entangled states that do not violate them [9,20,21].
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FIG. 1. Numerically determined Mermun (M),) and Svetlichny
(M) parameters for the threc-parameter state (14). A range of
values for the entanglement measures 7 and ¢ corresponds to the
same value of My or Ms. The solid curves are the upper and
lower bounds (15) and (16) The dotted line indicates the maximum
value obtainable with local variable theories.

The maximization over the two unit vectors a.a’ can be
done separately and analytically. The maximization over the
remaining four unit vectors was done numerically. Before
showing results for the full five-parameter family of states
(4), it is instructive to first consider the three-parameter sub-

family
=% 0/\0/\o
- ‘(0)(003 02><cos 493> 14
s o 1/\sin 8, /\sin6;//’ (14

with real angles 6,. These states are all in the GHZ class, so
for the moment we avoid the complication introduced by the
W class. The physical significance of states of the form (14)
is that they are generated in optical [22] or electronic [23]
schemes to produce three-particle entanglement from two in-
dependent entangled pairs. (Notice that the second and third
qubits become separable upon tracing over the first qubit.)

For any state of the form (14) picked at random, we cal-
culate the two entanglement monotones 7 and o, and com-
pute numerically the Mermin and Svetlichny parameters de-
fined in Eq. (13). Results are plotted in Fig. 1. The numerical
data fill a region bound by

max(1 - M0 M3 - 1) = o= oM, (15)

|[EME— 1] = r0= SME. (16)

These bounds on 7, ¢ do not have the status of exact analyt-
cal results (hence the symbol =), but they are reliable rep-
tesentations of the numerical data [24]. Note that the same
violation of the Svetlichny inequality gives a tighter lower
bound on 7,c than the Mermin inequality gives due to the
fact that 2—1 separable states are eliminated.
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FIG 2. Same as Fig. 1, but now for the geneial five-parameter
state (4)

For the three-parameter states (14) in the GHZ class there
is no advantage in using o over 7. Both entanglement mea-
sures are bound m the same way by the Bell inequalities.
That changes when we turn to the general five-parameter
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states (4), which also contain states m the W class. We see
from Fig. 2 that the bounds (15) and (16) still apply to o.
However, the tangle 7 drops below the previous lower bound
due to the fact that it cannot distinguish W states from sepa-
rable states.

In concluston, we have constructed an entanglement
monotone ¢ for three qubits which, unlike the tangle 7, can
detect entanglement of both the GHZ and W types. We have
investigated numerically the relation between the entangle-
ment measures ¢, 7 and the maximal violation of Bell in-
equalities (both of the Mermun and Svetlichny form). The
upper and lower bounds reported here have already been put
to use in the design of a protocol for the detection of tripar-
tite entanglement in the Fermi sea [23]. Alternatively, if one
wants to do better than a bound, one could use the interfero-
mettic circuit proposed recently for the tangle [25], which,
with a small modification, can be used to measure o as well.

We thank W. K. Wootters for drawing our attention to the
merits of the Svetlichny inequality. This work was supported
by the Dutch Science Foundation NWO/FOM and by the
U.S. Army Research Office (Grant No. DAAD 19-02-1-
0086).
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