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Relation between entanglement measures and Bell inequalities for three qubits

C Emaiy and C W J Beenakkei
Institiiut La ι entz Umveisiteit Leiden PO Bo\ 9506 2 300 RA Leiden The Netheilands

(Received 17 Novembei 2003, published 23 March 2004)

Foi two qubits in a puie state Lhere exists a one-to one lelation between the entanglement measure (the
concunencc C) and the maximal violation M of a Bell mcquality No such lelation exists foi the thiee-qubit
analog öl C (the tangle τ) but we have found thal numencal data is consistent with a simple set of uppei and

lowei bounds foi r given M The bounds on rbecome tightei with incieasing M so they are of practical usc
The Svethchny foi m of the Bell inequality gives tightei bounds than the Mermm foi m We show that the
bounds can be lightened further if the tangle is leplaced by an entanglement monotone that can identify both
the W state and the Gieenbergei-Homc-Zeihngei state
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Bell inequalities test foi the quantum entanglement of a
state by compaimg the maximally measuied value M of a
ceitain conelatoi with the maximal value allowed by local
leahsm [1] Foi a puie state of two qubits, the Bell-CHSH
(Clausei-Hoine-Shimony-Holt [2]) paiametei M = 2\l+C2

is dnectly telated to the degiee of entanglement (01 concui-
lence) Ce[0, l ] of the state [3] This lelation is useful be-
cause, on the one hand, M can be leadily measuied [4],
while on the othei, C can be leadily calculated [5] In this
papei we investigate to what extent this lelation has a thiee-
qubit analog

The thiee-qubit analog of the concunence C is the tangle
τ, intioduced by Coffman, Kundu, and Wootteis [6] It quan-
tifies the meducible tupaitite entanglement thiough the foi-
mula

^AB~^AC ^L>

The mdices A,B,C label the thiee qubits, the tangle is m-
vaiiant undei peimutation of these mdices The concunence
CAB tefeis to the mixed state of qubits A and B obtamed aftei
tiacing out the degiee of fieedom of qubit C, and CAC is
defmed similaily The concunence CA(BC) descnbes the en-
tanglement of qubit A with the jomt state of qubits B and C
The tangle re [0,1] equals 0 if one of the qubits is sepaiable
fiom the othei two It equals l foi the maximally entangled
GHZ (Gieenbeig_ei-Home-Zeihngei [7]) state |ιΑ}οπζ
= (|000) + | l l l ) ) / \ 2

The best-studied geneialization of the Bell-CHSH in-
equality to the case of thiee qubits is the one pioposed by
Meimm [8] Theie exists no analytical foimula that gives the
maximal violation MM of the Meimm inequality foi a given
puie state of thiee qubits, but it is not difficult to peifoim the
maximization numencally Foi special one-paiametei states
of the foi m \>/j) = cos a|000) + sin α]!!!), Scaiani and Gisin
[9]found an appioximate (but highly accuiate) lelation
MM~msL\(4\r,2\ ί-τ) between T=snr2o· and M·^

Foi moie geneial states theie is a lange of values of r with
the same MM We have mvestigated this lange numencally
and found that the data is well desciibed by a simple pan of
uppei and lowei bounds foi r foi any given MM The
bounds can be tightened m two ways (1) By usmg an altei-

native foi m of the thiee-qubit Bell inequality, due to Sveth-
chny [10-13], and (2) by usmg an alternative measuie σ of
tupaitite entanglement that we mtioduce m this papei, de-
fined by

σ = min (2)

The mimmization is ovei the peimutations Χ, Υ,Z of the qu-
bits A, B, C We find the followmg bounds on σ foi a given
maximal violation MS of the Svethchny inequality

\M\n6-[\< σ: • Ms/32 (3)

(We use the symbol £ mstead of =s äs these bounds aie
mfened fiom numencal data, lathei than deiived analyti-
cally )

Both σ and r aie entanglement monotones (meaning that
they cannot be incieased on aveiage by local operations and
classical commumcation) Their essential diffeience is that σ
can detect tiipaitite entanglement of both the W and GHZ
types, while it is known that τ can only detect GHZ type
entanglement [14] We lecall that tocal opeiaüons on the W
state |<A)w=(|001} + |010) + |100))/\3 and the GHZ state
ΐΆ)θΗΖ geneiate two distinct classes of uieducibly entangled
tupaitite states While τ=1 = σ foi |<A)GHZ> fQ1 I0)w omy σ

=4/9 is nonzeio In fact, σ=0 if and only if one of the qubits
is sepaiable fiom the othet two (2-1 separability) This lattei
pioperty distmguishes the entanglement measuie intioduced
heie fiom the one intioduced by Meyei and Wallach [15],
which is also nonzeio foi 2-1 sepaiable states

Aftei this mtioduction, we now piesent oui findings in
moie detail

Puie states of thiee qubits constitute a five-paiametei fam
ily, with equivalence up to local unitaiy tiansfoimations
This family has the tepiesentation [16]

= λμ0|000) + \μίβ'φ\100) \μ.·,|ΠΟ>

) (4)

with μ,^ Ο, Σ, μ,= 1, and Ο^φ^ττ The labels Α , Β, and C
mdicate the fust, second, and tlmd qubit, while Χ , Υ ,Z lefei
to an aibit ia iy peimutation of these labels
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The tangle (1) is given by

τ=4μ0μ4.

The squared concuiTences

(5)

4 Det px (with px

= Τιγζ|0·)(ί/Ί the reduced density matrix) take the form

Γ2
UA(BC) '

r

+ 4Δ,

(6)

(7)

(8)

with the definition Δ =
Each of the four quantities (5)-(8) is an entanglement
monotone [14,17].

The quantity σ defined in Eq. (2) can equivalently be
written äs

σ= τ min (9)

äs follows from the identity [18] τ=ί

-2€χγ. One sees that Ο^τ^σ^εΐ . Most importantly, since
τ and minC^xY·. are positive entanglement monotones,

their sum σ is an entanglement monotone äs well [19]. If
one of the qubits (Z) is separable from the other two, then
T=Q=CZ(XY)=:>a=Q. The converse is also true: If σ=0 then
CZ(xY) = Q for some permutation Χ, Υ,Ζ of the qubits, so one
qubit is separable from the other two.

Bell inequalities for three qubits are constructed from the
correlator

E(a,b,c) = (ψ\(α · σ) ® (b · σ) ® (c · σ)\φ). (10)

Here a,b,c are real three-dimensional vectors of unit length
that define a rotation of the Pauli matrices σ=(σλ,σν,σ!).
One chooses a pair of vectors a,a', b,b', and c,c' for each
qubit and takes the linear combinations

E(a',b,c)-E(a',b',c'),

(H)

E'=E(a',b',c) + E(a',b,c') + E(a,b',c')-E(a,b,c).

(12)

Mermin's inequality [8] reads |f| s=2, while Svetlichny's
inequality [10-13] is |£-£'|=S4. We define the Mermin and
Svetlichny parameters

-ε'\. (13)

The maximization is over the six unit vectors a,b,c,a',b',c'
for a given state \ψ). The largest possible value is reached for
the GHZ state (MM = 4 and Λ4 5=4\2). The W state has
Λ4Μ = 3.05 and jMg —4.35. Any violation of the Svetli-
chny inequality implies irreducible tnpartite entangle-
ment. In contrast, states in which one q u b i t is separable
from the other two may s t i l l violate the Mermin inequal-
ity, up to £=2\2. For both inequalities, there exist pure
entangled states that do not violate mein [9,20,21].

0.7

σ 0.5l-

0.2-ϊΙ-

FIG. 1. Numencally deterroined Merrmn (MM) and Svethchny
(Ms) parameters for the threc-parameter state (14). A ränge of
values for the entanglement measures τ and σ corresponds to the
same value of MM or M$. The solid curves are the upper and
lower bounds (15) and (16) The dotted Ime mdicates the maximum
value obtainable with local variable theories.

The maximization over the two unit vectors a,a' can be
done separately and analytically. The maximization over the
remaining four unit vectors was done numencally. Before
showing results for the füll five-parameter family of states
(4), it is instructive to first consider the three-parameter sub-
family

| Φ) = cos 0,

+ sin θι

/ 0 \ / c o s 0 2 \ / c o s 0 3

N

U / \ s i n ö 2 / \ s i n f t j /
(14)

with real angles Θ,. These states are all in the GHZ class, so
for the moment we avoid the complication introduced by the
W class. The physical significance of states of the form (14)
is that they are generated in optical [22] or electronic [23]
schemes to produce three-particle entanglement from two in-
dependent entangled pairs. (Notice that the second and third
qubits become separable upon tracing over the first qubit.)

For any state of the form (14) picked at random, we cal-
culate the two entanglement monotones τ and σ, and com-
pute numerically the Mermin and Svetlichny parameters de-
fined in Eq. (13). Results are plotted in Fig. 1. The numerical
data fill a region bound by

(15)

(16)

These bounds on τ, σ do not have the Status of exact analyti-
cal results (hence the symbol s), but they are reliable rep-
lesentations of the numerical data [24]. Note that the same
violation of the Svetlichny inequahty gives a tighter lower
bound on τ, σ than the Mermin inequality gives due to the
fact that 2—1 separable states are eliminated.
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FIG 2. Same äs Fig. l, but now for the geneial five-parameter
state (4)

For the three-parameter states (14) in the GHZ class there
is no advantage in using σ over τ. Both entanglement mea-
sures are bound m the same way by the Bell inequahties.
That changes when we turn to the general five-parameter

states (4), which also contain states m the W class. We see
from Fig. 2 that the bounds (15) and (16) still apply to σ.
However, the tangle τ drops below the previous lower bound
due to the fact that it cannot distinguish W states from sepa-
rable states.

In conclusion, we have constructed an entanglement
monotone σ for three qubits which, unhke the tangle τ, can
detect entanglement of both the GHZ and W types. We have

investigated numerically the relation between the entangle-
ment measures σ, τ and the maximal violation of Bell in-

equalities (both of the Mermin and Svethchny form). The
upper and lower bounds reported here have already been put
to use in the design of a protocol for the detection of tripar-
tite entanglement in the Fermi sea [23]. Alternatively, if one
wants to do better than a bound, one could use the interfero-
metiic circuit proposed recently for the tangle [25], which,
with a small modification, can be used to measure σ äs well.

We thank W. K. Wootters for drawing our attention to the
merits of the Svetlichny inequahty. This work was supported
by the Dutch Science Foundation NWO/FOM and by the
U.S. Army Research Office (Grant No. DAAD 19-02-1-
0086).

[1] J S. Bell, Physics (Long Island City, N Y) l, 195 (1964)
[2] J F Clauser, M A. Hörne, A Shimony, and R A Holt, Phys

Rev. Leu 23, 880 (1969)
[3] N. Gism, Phys Leu. A 154, 201 (1991)
[4] A Aspect, P. Grangier, and G Roger, Phys. Rev. Lett 47, 460

(1981)
[5] W. K Wootters, Phys Rev Lett 80, 2245 (1998)
[6] V Coffman, J. Kundu, and W K Wootters, Phys Rev. A 61,

052306 (2000)
[7] D M Greenberger, M Hörne, and A. Zeilmger, in Bell's

Theorem, Quantum Theoi y and Conceptions of the Universe,
edited by M. Kafatos (Kluwer, Dordiecht, 1989)

[8] N. D Mermin, Phys. Rev Lett 65, 1838 (1990)
[9] V Scaram and N Gism, J Phys A 34, 6043 (2001)

[10] G. Svetlichny, Phys Rev. D 35, 3066 (1987).
[11] P. Mitchell, S Popescu, and D Robeits, quant-ph/0202009.
[12] D Collms, N Gism, S. Popescu, D Roberts, and V Scaram,

Phys Rev. Lett 88, 170405 (2002)
[13] M Seevmck and G Svetlichny, Phys Rev Lett 89, 060401

(2002)
[14] W Dur, G Vidal, and J. 1. Cnac, Phys Rev A 62, 062314

(2000).
[15] D A Mcyci and N. R Wallach, J Math Phys 43, 4273

(2002). Their entanglement measuie Q can be expiessed in
terms of concunences by Q=\(C!

A(BC)+C'B{AC)+C2
c(AB-}) We

have not found a simple relation bctwcen Q and the Bell m-
equalities Howcvci, the entanglement monotone μ=(τ

+ Q)/2 does satisfy the simple bounds \ M l A / l 2 - \ / 3 \ - -.μ

[16] A. Acin, A Andnanov, L Costa, E Jane, J I Latorre, and R
Tarrach, Phys Rev. Lett 85, 1560 (2000); A Acin, A Andn-
anov, E Jane, and R Tarrach, J. Phys A 34, 6725 (2001)

[17] R M Gmgnch, Phys Rev A 65, 052302 (2002)
[18] A Sudbery, J. Phys A 34, 643 (2001)
[19] We have also studied an alternative entanglement measure

σ' = Ώΐιη(0^ΥΖ)-ΰ^γ) = τ+π\ιη CXY Both σ and σ' are capable
of dislmguishing W states fiom separable states, and they are
bound in the same way by the Bell inequahties We focus on σ
rather than σ' because we have no proof that σ' is an entangle-
ment monotone.

[20] M. Zukowski, C Brukner, W Laskowski, and M. Wiesmak,
Phys Rev Lett. 88, 210402 (2002)

[21] J.-L Chen, C -F Wu, L C Kwek, and C. H Oh, quant-ph/
0311180

[22] A Zeilmger, M A. Home, H Weinfurier, and M. Zukowski,
Phys Rev Lett. 78, 3031 (1997), J -W. Pan, D Bouwmeester,
M Daniell, H. Wemfuiter, and A. Zeilmger, Nature (London)
403, 515 (2000)

[23] C W J. Beenakkei, C Emaiy, and M Kindennann, Phys Rev
B (to be pubhshed)

[24] The upper bounds on τ in Eqs (15) and (16) are exact lower
bounds on MM and .Ms, äs may be seen by evaluating E and
£' w i t h a = Z > = c = (0,1,0), and a'=b'=c' = (l ,0,0)

[25] H A Caiteiet, quant-ph/0309212

032317-3


