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Excess conductance of a spin-filtering quantum dot
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The conductance G of a pair of single-channel point contacts in series, one of which is a spin filter, increases
from 1/2 to 2/3�e2 /h with more and more spin-flip scattering. This excess conductance was observed in a
quantum dot by Zumbühl et al., and proposed as a measure for the spin relaxation time T1. Here we present a
quantum mechanical theory for the effect in a chaotic quantum dot �mean level spacing �, dephasing time ��,
charging energy e2 /C�, in order to answer the question whether T1 can be determined independently of �� and
C. We find that this is possible in a time-reversal–symmetry-breaking magnetic field, when the average
conductance follows closely the formula �G�= �2e2 /h��T1+h /���4T1+3h /��−1.
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The study of spin relaxation in the presence of chaotic
scattering is a challenge for theorists and experimentalists.
The common goal is to identify transport properties that can
be readily measured and that depend as directly as possible
on the spin relaxation time �T1�. One line of research is to
study how quantum interference effects such as weak local-
ization or universal conductance fluctuations are modified by
spin relaxation.1 A direct relation with T1 in that context is
hindered by the fact that dephasing �both of the orbital and of
the spin degrees of freedom� also modifies the quantum in-
terference effects. Another line of research is to study spin-
resolved current noise.2 There a direct relation with T1 is
possible, but the complications involved in the measurement
of both time- and spin-dependent current fluctuations have so
far prevented an experimental realization. Ideally, one would
like to relate T1 to the time averaged current in a way that is
insensitive to dephasing. It is the purpose of this work to
present such a relationship.

Our research was inspired by the proposal of Zumbühl et
al. of a new technique to measure spin relaxation times in
confined systems.3 These authors reported measurements of
the conductance of an open two-dimensional GaAs quantum
dot in a parallel magnetic field. One of the two point contacts
was set to the spin-selective e2 /h conductance plateau. The
other point contact was set to transmit both spins. In this
configuration, the classical series conductance of the two
point contacts is 1

2 �e2 /h if there is no spin relaxation and
2
3 �e2 /h if there is strong spin relaxation. What we will show
here is that the ensemble averaged conductance in a time-
reversal–symmetry-breaking magnetic field varies between
these two limits as a rational function of the product of T1
and the mean level spacing �—largely independent of the
presence or absence of dephasing.

The geometry of the problem is sketched in Fig. 1. We
discuss its various ingredients. Electrons in a two-
dimensional electron gas �2DEG� enter and leave the quan-
tum dot via two single-channel quantum point contacts
�QPC�. A QPC can operate as a spin filter in a magnetic
field,4,5 as a result of the slightly different Fermi wavelengths
of spin-up and spin-down electrons. The filtering property of
a QPC can be turned on and off by adjusting its local elec-
trostatic potential �via a gate voltage�. The polarity of the

spin filter is fixed by the direction of the magnetic field. The
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conductance becomes sensitive to spin-flip scattering if one
point contact is a spin filter while the other transmits both
spin directions. �To be definite, we will take the current
source as the spin filter, but it does not matter which is which
in the linear response regime.�

We assume that the magnetic field is sufficiently weak
that we may neglect the spin dependence of the Fermi wave-
length inside the quantum dot �where the Fermi energy is
much greater than in the point contact�. The effect of the
magnetic field on the orbital motion will typically break
time-reversal symmetry �symmetry index �=2�, if the field is
oriented perpendicular to the 2DEG. We contrast this with
the case �=1 of preserved time-reversal symmetry, appropri-
ate for moderately weak parallel fields �until the finite thick-
ness of the 2DEG drives �=1�2 even for a parallel field6�.
The mean dwell time in the quantum dot is assumed to be
small compared to the spin-orbit scattering time, so that spin-
orbit coupling can be neglected. Landau level quantization
inside the quantum dot is assumed to be insignificant. The
effects of a finite charging energy will be assessed at the end
of the paper.

Two independent time scales characterize the spin decay,

FIG. 1. Illustration of the model. A current I is passed through a
quantum dot via two single-channel leads, at a voltage difference V.
Spin-flip scattering and decoherence �with relaxation times T1 and
��� are introduced by means of fictitious voltage probes, separated
from the quantum dot by tunnel barriers �dashed lines�. The lower
�ferromagnetic� voltage probe reinjects an electron into the quantum
dot with the same spin but a random phase �contributing only to
���. The upper �normal metal� voltage probe randomizes both spin

and phase �contributing to both T1 and ���.
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the time scale T1 on which the spin direction is randomized,
and the time scale T2�2T1 on which the phase of the spin-
dependent part of the wave function is randomized.7–9 In
closed GaAs quantum dots, hyperfine interaction with
nuclear spins is the dominant source of spin decay for weak
magnetic fields, with T2��s and T1 increasing from �s to
ms with increasing magnetic field.10,11 For the transport
problem in an open quantum dot considered here, the deco-
herence time �� of the whole wave function, rather than just
its spin-dependent part, is the relevant quantity. Typically, ��

is dominated by dephasing of the orbital degrees of freedom
by electron-electron interactions.

Experiments12 on the effect of a finite �� on spin-
independent conduction have been analyzed in the past using
Büttiker’s voltage probe model.13–15 Extensions to spin-
dependent conduction have been proposed more recently.16,17

As described in Ref. 16, one needs two types of voltage
probes to describe spin relaxation and decoherence. One type
of voltage probe is connected to a normal metal reservoir,
while the other type of voltage probe is connected to a pair
of ferromagnetic reservoirs �of opposite polarization, parallel
to the polarization of the spin filters in the quantum point
contacts�. For each reservoir, an electron that enters it is
reinjected into the quantum dot with a random phase. The
ferromagnetic reservoirs conserve the spin �contributing only
to ���, while the normal metal reservoir randomizes the spin
�contributing both to T1 and ���.

Each voltage probe is connected to the quantum dot by a
tunnel barrier. The normal metal voltage probe has Nn

↑=Nn
↓

�Nn channels for each spin direction and the ferromagnetic
voltage probes have Nf

↑=Nf
↓�Nf channels. Each barrier has

tunnel probability 	 per channel and per spin direction. By
taking the limit 	→0, Nn, Nf →
 at fixed �dimensionless�
tunnel conductances �n=Nn	, � f =Nf	 we ensure that the
decay processes are spatially homogeneous.15 The decay
times are

T1 =
h

�n�
, �� =

h

��n + � f��
�

h

���
, �1�

with � the mean spacing of spin-degenerate levels and ��

��n+� f. These time scales should be compared with the
spin-dependent mean dwell time �dwell

� in the quantum dot
without voltage probes, given by �dwell

↑ =h /2�, �dwell
↓ =h /�.

The electron reservoirs connected to the quantum dot
have electrochemical potentials �X, with X=s �source�, X
=d �drain�, X=n �normal metal voltage probe�, and X= f �fer-
romagnetic voltage probe�. In the latter case we distinguish
the two spin polarizations by a superscript: � f

↑ ,� f
↓. We

choose the zero of energy such that �d=0, hence �s=eV.
Both the temperature and the applied voltage V are assumed
to be small compared to �, so that we may neglect the en-
ergy dependence of the scattering processes.

The potentials of the voltage probes are determined by
demanding that no current be drawn from the quantum dot,13

0 = �2Nn − Tn→n
↑ − Tn→n

↓ ��n − Ts→n
↑ eV − Tf→n

↑ � f
↑ − Tf→n

↓ � f
↓,

�2�
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0 = �Nf − Tf→f
↑ �� f

↑ − Ts→f
↑ eV − Tn→f

↑ �n, �3�

0 = �Nf − Tf→f
↓ �� f

↓ − Tn→f
↓ �n. �4�

The current I through the quantum dot then follows from

h

e
I = �1 − Ts→s

↑ �eV − Tn→s
↑ �n − Tf→s

↑ � f
↑. �5�

Here TX→Y
↑ and TX→Y

↓ denote the transmission probabilities,
summed over all channels, from reservoir X to reservoir Y
with spin up or down. They satisfy the sum rules13

�
Y=s,d,n,f

TX→Y
� = �

Y=s,d,n,f
TY→X

� = NX, �6�

with Ns=Nd�1. For later use we define

R↑ = 2 − Ts→s
↑ − Td→d

↑ − Ts→d
↑ − Td→s

↑ , R↓ = 1 − Td→d
↓ .

�7�

Because of the spatial homogeneity of the coupling of the
quantum dot to the voltage probes, the transmission prob-
abilities for normal and ferromagnetic probes are related by
ratios of tunnel conductances,

TX→n
�

TX→f
� =

Tn→X
�

Tf→X
� =

�n

� f
if X � �s,d	 , �8�

TX→Y
� − XYNX�1 − 	eff

� �

TX�→Y�
� − X�Y�NX��1 − 	eff

� �
=

�X�Y

�X��Y�
if X,Y � �n, f	 .

�9�

The effective tunnel probability 	eff
� = �	���� differs from the

bare tunnel probability 	 because the density of states �� in
the quantum dot has spin and energy dependent fluctuations
around the average 1/�.

With the help of these relations the solution of Eqs.
�2�–�5� for the conductance G= I /V can be written in terms
of transmission probabilities between source and drain,

G =
e2

h

1 − Ts→s

↑ − Q�1 − Ts→s
↑ − Td→s

↑ ��1 − Ts→s
↑ − Ts→d

↑ �� ,

�10�

Q =
	eff

↑ 	eff
↓ �n��n + � f� + 	�	eff

↑ + 	eff
↓ �� fR↓

	eff
↑ 	eff

↓ �n��n + � f��R↑ + R↓� + 	�	eff
↑ + 	eff

↓ �� fR↑R↓ .

�11�

The transmission probabilities between source and drain
are constructed from two scattering matrices S↑ and S↓, one
for spin-up and one for spin-down. The spin-up scattering
matrix is a 2�2 matrix,

S↑ = �r t�

t r�
 , �12�

such that Ts→s
↑ = �r�2, Td→d

↑ = �r��2, Ts→d
↑ = �t�2, and Td→s

↑ = �t��2.
The matrix S is symmetric for �=1, meaning that Ts→d

=Td→s in that case. For �=2 the two transmission probabili-
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ties are not related. Because of the voltage probes, S is
subunitary. The eigenvalues �1 ,�2� 
0,1� of the matrix
1−S↑S↑† give the probability to enter one of the voltage
probes.

The statistics of the matrix S↑ in an ensemble of chaotic
quantum dots was calculated in Ref. 15 using the methods of
random-matrix theory. It is given in terms of the polar de-
composition

S↑ = u��1 − �1 0

0 �1 − �2
u�, �13�

with unitary matrices u�=uT if �=1 and u� independent of u
if �=2. These matrices are uniformly distributed in the uni-
tary group. The distribution P���1 ,�2� is the Laguerre en-
semble for ���1 and a more complicated �but known� func-
tion for larger ��.

In addition to S↑ we also need S↓. This is a single complex
number, such that Td→d

↓ = �S↓�2. It is constructed from the co-
efficients r , t , t� in Eq. �13� by reflecting spin-down from the
source contact,

S↓ = r� +
ei�tt�

1 − ei�r
. �14�

�The phase shift � need not be specified because it drops out
upon averaging over u and u�.� Using Eq. �14� the statistics
of S↓ follows from the statistics of S↑.

To complete the random-matrix theory, we need to know
the statistics of the density of states �� of the open quantum
dot, which determines the effective tunnel probabilities. For
weak decoherence we have the relation18

Tr�1 − S�S�†� = ����� + O���
2 � . �15�

Since the left-hand-side of Eq. �15� equals R� by definition
�7�, we have

	eff
� /	 � ��� = R�/�� if �� � 1. �16�

In the opposite limit ���1 the fluctuations in the density of
states can be neglected, so that

	eff
� /	 � ��� = 1 if �� � 1. �17�

These two limits are sufficient for the purpose of comparing
coherent and incoherent regimes.

We calculate the average conductance �G� separately in
the regime � f �1 of strong orbital dephasing and the regime
� f �1 of weak orbital dephasing. For strong dephasing we
have 	eff

� →	, R↑→2, R↓→1, �1 ,�2→1, hence

�G� =
2e2

h

1 + �n

4 + 3�n
if � f � 1. �18�

This incoherent regime is insensitive to the presence or ab-
sence of time-reversal symmetry. By writing Eq. �18� as

�G� =
e2

h
�2�1 − p� +

3

2
p�−1

, p = �n/�1 + �n� , �19�

we can understand it as a classical series resistance, weighted
by the probability p of a spin-flip scattering event.
The classical addition of resistances in a series does not

201304
apply to the phase coherent regime. Turning now to this re-
gime, we find to linear order in � f and �n the expansions

h

e2 �G� = �
1

3
+ 0.14 �n +

1

24
� f if � = 1

1

2
+ 0.10 �n if � = 2.� �20�

Note the absence of a term linear in � f for �=2. The differ-
ence between the zeroth order terms 1/3 and 1/2 in the
presence and absence of time-reversal symmetry is known as
weak localization or coherent backscattering.

In the absence of any orbital dephasing, � f =0, we obtain
the results plotted in Fig. 2 �dashed curves�. Comparison
with the incoherent result �18� �solid curve� shows that the
presence or absence of orbital dephasing does not change
�G� by more than a few % if �=2 �no time-reversal symme-
try�. For �=1, in contrast, the dependence on T1 is entirely
different with and without orbital dephasing.

So far we have not included the effects of a finite charging
energy e2 /C �with C the capacitance of the quantum dot�.
These results therefore apply to the regime e2 /C��. In the
opposite, more realistic, regime e2 /C�� the charging en-
ergy introduces a weight factor equal to the density of states
in the ensemble averages.19 This weight factor converts the
grand-canonical average �¯� �considered so far� into a ca-
nonical average,

�¯�canonical = 1
2��¯��↑ + �↓�� . �21�

The incoherent result �18� is the same in the canonical and
grand-canonical ensembles, because the fluctuations in the

FIG. 2. �Color online� Dependence of the average conductance
�G� on the spin relaxation time T1, normalized by the mean level
spacing �. The solid curve �red/dark gray� is the incoherent result
�18�, valid for strong orbital dephasing. The dashed and dotted
curves are the results of random matrix theory for weak orbital
dephasing, in the two cases of broken ��=2, black� and unbroken
��=1, blue/light gray� time-reversal symmetry. The dashed curves
are grand-canonical averages �e2 /C��� and the dotted curves are
canonical averages �e2 /C���. The black and red �dark gray�
curves lie close together, demonstrating that T1 can be determined
accurately from �G� for �=2. The large difference between the blue
�light gray� and red �dark gray� curves prevents this for �=1.
-3
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density of states are suppressed by decoherence. In order to
assess the importance of density-of-states fluctuations in
the coherent regime, we approximate �� /2���↑+�↓�
��R↑+R↓� / �R↑+R↓�. This formula interpolates smoothly
between the two exact limits �16� and �17� of weak and
strong decoherence. As shown in Fig. 2 �dotted curves�, the
effect on the average conductance remains relatively small.

In conclusion, we have calculated the dependence on the
spin relaxation time T1 of the average conductance �G� of a
quantum dot with a spin-filtering quantum point contact. In
the incoherent regime there is a simple one-to-one relation-
kamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature
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ship �18� between �G� and T1. The presence or absence of
orbital dephasing was found to be insignificant for �=2, so
that the value of T1 can be extracted from �G� with good
accuracy—without requiring knowledge of coherence time
or charging energy. For �=1, in contrast, the interplay with
the weak localization effect obscures the effect of spin relax-
ation.

I am indebted to C. M. Marcus for drawing my attention
to Ref. 3 and for valuable comments on the manuscript. This
research was supported by the Dutch Science Foundation

NWO/FOM.
1 O. Zaitsev, D. Frustaglia, and K. Richter, Phys. Rev. Lett. 94,
026809 �2005�.

2 O. Sauret and D. Feinberg, Phys. Rev. Lett. 92, 106601 �2004�.
3 D. M. Zumbühl, J. A. Folk, J. B. Miller, S. K. Watson, C. M.

Marcus, S. R. Patel, C. I. Duruöz, and J. S. Harris, Jr., 2001
March Meeting Bulletin of the American Physical Society �un-
published�, Abstract C25.006.

4 A. S. Sachrajda, P. Hawrylak, M. Ciorga, C. Gould, and P.
Zawadzki, Physica E �Amsterdam� 10, 493 �2001�.

5 R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Phys.
Rev. Lett. 89, 266602 �2002�.

6 V. I. Fal’ko and T. Jungwirth, Phys. Rev. B 65, 081306 �2002�;
D. M. Zumbühl et al., Phys. Rev. B 69, 121305�R� �2004�.

7 H.-A. Engel, L. P. Kouwenhoven, D. Loss, and C. M. Marcus,
Quantum Inf. Process. 3, 115 �2004�.

8 V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93,
016601 �2004�.

9 W. A. Coish and D. Loss, Phys. Rev. B 72, 125337 �2005�.
10 J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Wit-
�London� 430, 431 �2004�.
11 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 �2005�.

12 A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and A.
C. Gossard, Phys. Rev. Lett. 81, 200 �1998�; A. G. Huibers et
al., Phys. Rev. Lett. 83, 5090 �1999�.

13 M. Büttiker, IBM J. Res. Dev. 32, 63 �1988�.
14 H. U. Baranger and P. A. Mello, Phys. Rev. B 51, R4703 �1995�;

P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 51, 7739
�1995�.

15 P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 55, 4695
�1997�; 66, 209901�E� �2002�.

16 B. Michaelis and C. W. J. Beenakker, Phys. Rev. B 73, 115329
�2006�.

17 P. San-Jose and E. Prada, cond-mat/0601365 �unpublished�.
18 C. W. J. Beenakker and P. W. Brouwer, Physica E �Amsterdam�

9, 463 �2001�.
19 P. W. Brouwer, S. A. van Langen, K. M. Frahm, M. Büttiker, and
C. W. J. Beenakker, Phys. Rev. Lett. 79, 913 �1997�.

-4


