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Quantum magnetism in the stripe phase: Bond versus site order

Jakub Tworzydło,* Osman Y. Osman, Coen N. A. van Duin, and Jan Zaanen
Lorentz Institute, Leiden University, P.O.B. 9506, 2300 RA Leiden, The Netherlands

~Received 17 August 1998!

It is argued that the spin dynamics in the charge-ordered stripe phase might be revealing with regards to the
nature of the anomalous spin dynamics in cuprate superconductors. Specifically, if the stripes are bond ordered
much of the spin fluctuation will originate in the spin sector itself, while site-ordered stripes require the charge
sector as the driving force for the strong quantum spin fluctuations.@S0163-1829~99!05301-1#
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For quite some time it has been suspected1,2 that the
anomalous spin dynamics of superconducting cuprates h
do with theO(3) quantum nonlinear sigma model~QNLS!,
describing the collective dynamics of a quantu
antiferromagnet.3 The discovery of the stripe phase4 opens a
new perspective on these matters.5 Below the stripe-charge
ordering temperature, charge fluctuations have to becom
consequential and the remaining spin dynamics should
automatically in QNLS universality. As will be explained
the available data suggest that this spin dynamics is cha
terized by a close proximity to the QNLS zero-temperat
transition. This enhancement of the quantum-spin fluct
tions as compared to the half-filled antiferromagnet can h
a variety of microscopic sources. Here we will focus on t
possibility that these are due entirely to the charge-order
induced spatial anisotropy in the spin system. Although
influence of spatial anisotropy is well understood on
field-theoretic level,6,7 the charge can be bond ordered or s
ordered8 and this links the spin physics of the stripe phase
that of coupled spin ladders.9–11 At superconducting doping
concentrations, bond and site order translate into coup
two-leg and three-leg spin ladders, respectively. We w
present an in-depth quantitative analysis of both proble
showing that spatial spin anisotropy has to be largely ir
evant for site order, while it might well be the primar
source of quantum spin fluctuations in the bond-orde
case. A strategy will be presented to disentangle these
ters by experiment.

Let us first comment on the available information rega
ing the stripe-phase spin system. The spin-ordering temp
ture appears to be strongly surpressed as compared to
filling.4 A first cause can be a decrease of the microsco
exchange interactions. However, the more interesting po
bility is that some microscopic disordering influence h
moved the antiferromagnet closer to the zero-tempera
order-disorder transition~quantum critical point!. The few
data available at present seem to favor the second possib
We specifically refer to the ESR work by Kataevet al.12 on
La1.992x2yEuyGd0.01SrxCuO4 exploiting the Gd local mo-
ments to probe the spin system in the CuO planes. Q
remarkably, little change is seen in the spin-lattice relaxat
rate (1/T1) at the charge-ordering temperatureTco.70 K.
AboveTco the 1/T1 is quite similar to that in La22xSrxCuO4
where it is known from, e.g., neutron scattering that the m
PRB 590163-1829/99/59~1!/115~4!/$15.00
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netic correlation lengthj is already quite large at the tem
peratures of interest: since the width of the incommensu
peaks is smaller than their separation, the correlation len
is larger than the stripe spacing.13 It follows that atT.Tco a
continuum description of the spin dynamics should be s
sible. BelowTco 1/T1 starts to increase exponentially upo
lowering temperature, signaling the diverging correlati
length associated with the renormalized classical regi
Taken together, this fits quite well the expectations fo
quantum antiferromagnet that is rather close to its quan
critical point with a crossover temperature from the ren
malized classical to the quantum critical regimeT* .Tco .

The increase of the coupling constantg0 , controlling the
long wavelength fluctuations, originates in some microsco
phenomenon. A limiting case is that charge can be regar
as completely static even on the scale of the lattice const
such that its effect is to cause a spatially anisotropic dis
bution of exchange interactions.6,7 As indicated in Fig. 1,
there are two options:8 the stripes can bebond or site or-
dered. It is expected that the spin dynamics associated
the hole-rich regions is characterized by a short time sc
and the magnetic ordering phenomena are therefore as
ated with the magnetic domains. The spin-only model
relevance becomes either a spinS51/2 Heisenberg mode
describing three-leg ladders~site ordered! or two-leg ladders
~bond ordered! with uniform exchange interactions (J), mu-
tually coupled by a weaker exchange-interaction coupl
(aJ,a,1). This model is explicitly,

H5J(
i¢

SiSi1dy
1J (

i xÞpnl ,i y
SiSi1dx

1aJ (
i x5pnl ,i y

SiSi1dx
,

~1!

FIG. 1. Schematic distinction between site-ordered~a! and
bond-ordered~b! stripes.
115 ©1999 The American Physical Society
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where i5( i x ,i y) runs over a square lattice,dx5(1,0), dy
5(0,1). nl measures the width of the ladder andp counts
the ladders.

Since the interest is in nonuniversal quantities as rela
to the nontrivial lattice cutoff, we studied the model equati
~1! numerically using a highly efficient loop algorithm qua
tum Monte Carlo method14 supported with a technique o
improved estimators.15 To keep track of the various finite
temperature crossovers we focused on the temperature
pendence of the staggered correlation length in both di
tions, parallel (jy) and perpendicular (jx), to the stripes. We
typically insisted on 33104 loop updates for equilibration
and ~2–3)3105 updates for a measurement, keeping the
mensions of the system in thex and y directions Lx,y
>6jx,y , to avoid finite-size effects.16 The correlation length
was determined by fitting the staggered spin-spin correla
function C(r )5(21)r x1r y^Si 1r•Si&, using a symmetrized
two-dimensional Ornstein-Zernike form C(r )
5A(r 21/2e2r /j1(L2r )21/2e2(L2r )/j) separately for the
x@r5(r ,0),L5Lx# andy@r5(0,r ),L5Ly# directions, omit-
ting the first few points to ensure asymptoticity. We check
our results against the known results for both isolated ladd
by Greven et al.17 (a50, nl51,2,3) and the low-
temperature results for the isotropic (a51) limit.15,16,18

SinceO(3) universality is bound to apply at scales mu
larger than any lattice-related crossover scale, unive
forms for the temperature dependence of the correla
length can be used to further characterize the lo
wavelength dynamics. The absolute lattice cutoff is reac
at a temperature (Tmax) where the correlation length paralle
to the stripes (jy) becomes of order of the lattice constan
However, the problem is characterized by a second cut
when the correlation length is less than the lattice constan
the direction perpendicular to the stripes (ax), the dynamics
is that ofNx independently fluctuating spin ladders. We d
fine T0 as the temperature wherejx.ax is the crossover
temperature below which the system approaches~211!-
dimensionalO(3) universality. In this latter regime, furthe
crossovers are present. When the effective coupling cons
(g0) is less than the critical coupling constant (gc) a cross-
over occurs from a ‘‘high’’-temperature quantum critic
~QC! to a low-temperature renormalized classical~RC! re-
gime. In the QC regimej;1/T while the crossover tempera
tureT* to the RC regime can be deduced from the expon
tial increase of the correlation length at lowT, using3,16,19

j~T!}
eT* /T

2T* 1T
, ~2!

whereT* 52prs in terms of the spin stiffnessrs(a). When
g0.gc , the ground state is quantum disordered~QD! as sig-
naled byj becoming temperature independent, and the cro
over temperatureT8 between the QC and QD regimes
estimated from the approximate relation17

T85
cy

jy~T→0!
, ~3!

wherecy is spin-wave velocity in the strong direction.
We determined the various crossover lines as function

a for the casesnl51, 2, and 3 ~anisotropic Heisenberg
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coupled two- and three-leg ladders, respectively!. To deter-
mine T0 , we used fora close to 1 the same criterion as fo
the Tmax determination in the isotropic problem@jx(T

0)
50.720.8#. This becomes inconsistent for smalla where
one better incorporates the width of the ladder@jx(T0)5nl
3(0.720.8)# and we used a linear interpolation to conne
smoothly both limits. We checked that below theT0 , deter-
mined in this way, bothjx andjy exhibited the same depen
dence on temperature after an overall change of scale, d
onstrating that the collective dynamics is indeed in a~211!-
dimensional regime.

In Fig. 2 we summarize our results in the form of a cros
over diagram as function ofa and temperature, both for th
one- and three-leg@Fig. 2~a!# and the two-leg@Fig. 2~b!#
cases. Consistent with analytic predictions,10 the behavior is
radically different for the half-integer spin one- and three-l
cases on the one hand, and the ‘‘integer spin’’ two-leg c
on the other hand. Let us first discuss the former. Here
ground state remains in the renormalized classical regime
any finite a. The reason is obvious. In isolated laddersa
50) with an uneven number of legs the ground state i
Luttinger liquid exhibiting algebraic long-range order an
any finite ladder-to-ladder interaction will suffice to stabiliz
true long-range order atT50.10,11 This in turn implies a
finite T* where the classical nature of the ground state
comes visible. Interestingly, our calculations indicate thatT*
andT0 basically coincide for anya: at the moment the sys
tem discovers that it is 211 dimensional, the classical beha
ior sets in. Our finding thatT0 increases linearly witha for
small a @Fig. 2~a!# confirms the scaling theory by Affleck
and Halperin for this problem.11 The behavior of the spin-

FIG. 2. Crossover temperatures as a function of anisotropya for
the coupled three-leg~a! and two-leg~b! spin-ladder models. The
lines and points refer to the analytical and numerical results, res
tively, for the various scales. Notice that the one-leg ‘‘cutoff’’~one-
dimensional to two-dimensional crossover! follows closely the re-
sults forT* .
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spin correlator for an isolated chain̂ S(x)S(0)&
;(1/x)exp(2x/j1), j1;1/T signals the approach to th
Gaussian fixed point: within the thermal lengthj1 the system
exhibits algebraic long-range order. For finitea the cross-
over temperatureT0 can be found using the standard mea
field consideration: atT0 temperature becomes of order
the exchange interaction between two patches of correl
spin on neighboring chains of sizej1 : kBT0

.aF1
2/j1(T0), whereF15j1(T0)f, f being the micro-

scopic staggered magnetization. Takingf independent ofa
would yield the erroneous result thatT0;Aa. The subtlety
is that whena is sufficiently small, the quantum dynamic
within the correlation volumej1 is already in the~211!-
dimensional regime.7 Using theT50 result by Affleck and
Halperin that f;Aa,11 we recoverT0;a, a!1. The
other feature worthwhile mentioning is thatT0 and T* are
identical for the one- and three-leg cases for smalla ’s. This
is in line with the observations by Frishmuthet al.20 that
these spin ladders renormalize in identical Luttinger liqu
when the ladder exchange interactions are isotropic.

In the two-leg ladders case@Fig. 2~b!# the quantum order-
disorder transition occurs at a finite value ofa, ac
50.30(2). This is in line with the qualitative expectation
~see also Ref. 21! and agrees with the quantitative valu
obtained in a different context.22 Since the isolated two-leg
ladders are incompressible spin systems, the ladder-to-la
interaction has to overcome the single-ladder energy gap
fore the two-dimensional lock-in can occur. This criticala is
rather large, and in addition, the~111!-dimensional→ ~2
11!-dimensional crossover temperatureT0 shows the up-
ward curvature (T0;Aa) previously predicted from a sca
ing analysis of the anisotropic QNLS model~AQNLS!.7 As a
ramification,T0 andT* ~as well asT8) separate and alarge,
genuinely (211)-dimensional quantum critical regime open
up aroundac . This is in marked contrast with the isotrop
Heisenberg model where the renormalized classical reg
sets in essentially at the lattice cutoff.23,24

The grossa dependences of the various crossover te
peratures can be understood by considering the AQN
model obtained by taking the naive continuum limit for t
ladder problem. An average staggered fieldf is introduced
for a block of 23nl sites. Integrating out the quadrat
fluctuations,25 the effective action forf becomes the
AQNLS model with anisotropic spin-wave velocities,

cx
25ac0

2H ~31a!

2~11a!
for nl52,

9~713a!

2~112a!~1312a!
for nl53,

~4!

cy
25c0

2H ~31a!

4
for nl52,

3~713a!

2~1312a!
for nl53,

~5!

wherec0 is the spin-wave velocity in the isotropic limit. Th
coupling constantg0 is a independent and the same as f
-

ed

s

er
e-

e
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S

the isotropic model. According to the scaling analysis of R
7, the renormalized spin stiffness becomes in terms of
velocitiescx,y ,

rs~a!5rs

cxS 12
g0

gc~a! D
cyS 12

g0

gc~1! D
, ~6!

where

gc~a!54pAc0 /cyS 11
2

p
$cyarcsinh@cx /cy#/cx

1 ln@cy~11A11cx
2/cy

2!/cx /~11A2!2#% D ~7!

and rs is the spin stiffness fora51. According to
Ref. 7, the crossover scales areT* 52prs(a),
T052prscx@g0 /(4pc0)1(12g0 /gc)/cy# and T8
5consturs(a)u. It turns out that for the bare coupling con
stantg0 as determined for the isotropic case (g059.1), the
order-disorder transition occurs at a somewhat small valu
a50.08, which is not surprising given the approximatio
involved ~one-loop level!. However, by adjustingg0 to shift
ac to its numerical value (g0511.0), we find a very close
agreement between the numerical and analytical results
the various crossover temperatures@Fig. 2~b!#. As can be
seen from Fig. 2~a!, the above analysis also works quite we
for the three-leg ladders fora>0.4. Remarkably, it seem
that T* switches rather suddenly from the AQNLS behav
at largea to the linear behavior expected for the Lutting
liquid regime, as if the topological terms start to domina
rather suddenly.

Besides its intrinsic interest, the above does have po
tially important ramifications for the understanding of th
quantum magnetism in cuprates: bond ordering of stri
would imply that already at rather moderate values of
anisotropya, spin-ladder physics alone would enhance t
quantum spin fluctuations substantially. This can be furt
illustrated by comparing the temperature dependence

FIG. 3. jyT vs temperature for the two-leg system, when thea ’s
are close to critical point. Results fora50.0 ~isolated ladders! and
1.0 ~isotropic limit! are added for comparison. The vertical bar i
dicates the one-dimensional to two-dimensional crossover temp
ture.
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Tjy(T) for the isotropic spin systema51 with that of the
coupled two-leg ladders in the vicinity of the criticala ~Fig.
3!. This quantity can be directly compared with the spin-s
relaxation rate 1/T2G and, with some caution, also to 1/T1
~Refs. 23 and 26! ~a dynamical critical exponentz51 is only
strictly obeyed in the QC regime!. As compared to the iso
tropic case, the exponential increase ofTj ~signaling the
renormalized classical regime! is shifted to a low tempera
ture, while over most of the temperature rangeTj(T) is con-
stant, as is found in cuprates. It is noted that the ‘‘quantu
critical signature’’j;1/T extends in the temperature rang
above the dimensional crossover temperatureT0. Since this
regime is nonuniversal this should be regarded as a qu
criticality.

This is no more than suggestive. However, it points a
simple strategy to clear up these matters by experiments
t

n

-

si-

a
n-

volving the static stripe phase. It should be established if
stripe phase is site or bond ordered, which can be done
NMR. Next, thea should be determined from neutron me
surements of the spin-wave velocities, Eq.~5!. Using these
as an input, the temperature dependence of the correla
length, as well as the NMR relaxation rates, can be ca
lated to a high precision starting from a microscopic sp
only dynamics. Comparison of these quantities to experim
should yield insights into the microscopic origin of the p
culiar spin dynamics in doped cuprates.
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