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Abstract. – We demonstrate the existence of a form of topological order in the Luttinger
liquid state, which appears crucial to the notion of spin-charge separation. This order, which
is closely related to the hidden order characterizing the Haldane spin chains, appears to be
incompletely specified in the Tomonaga-Luttinger picture from bosonization. Thus, we use
numerical calculations to complete the picture.

Systems composed of an infinite number of interacting quantum particles can be charac-
terized by long-wavelength excitations carrying quantum numbers unrelated to those of the
constituents. A classic example is the phenomenon of spin-charge separation which is well es-
tablished in one-dimensional electron systems [1]. The elementary excitations can be viewed
as pieces of the original electron, carrying separately the charge and the spin. This notion first
emerged when it was demonstrated that systems of relativistic fermions in 1+1D can be repre-
sented exactly under a variety of circumstances in terms of Bose fields, carrying separately the
spin and the charge degrees of freedom. Although this bosonization correctly describes asymp-
totic properties of local correlation functions, a possible loophole is that the lattice problem
is characterized by a non-critical topological order. Here we demonstrate that at least the
Hubbard model in 1+ 1D carries such an order, and we believe that the Hubbard model is in
this regard fully representative for all non-relativistic electron systems. This topological order
is a close relative of the hidden order discovered by den Nijs and Rommelse in the Haldane
(S = 1) spin chains [2]. By virtue of the mapping onto a t−Jz model with an additional U(1)
(charge) breaking superconducting term, Batista and Ortiz demonstrated that this order can
exist in one-dimensional fermion systems [3]. Here we show that this order is crucial to the
notion of spin-charge separation. Starting from a Z2 sublattice parity description, we present
arguments for the existence of a state of matter described by an effective Z2 gauge theory.

This hidden order has to do with the fact that the charge carriers (“holons”) are at the
same time Ising “domain walls” (kinks) in the spin system, a property shared with stripes in
two-dimensional systems [4]. Resting on the geometrical definition of spin-charge separation
as deduced from the Bethe-Ansatz [5] solution of the Hubbard model at infinite U , obtained
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Fig. 1 – The emergence of the Z2 “sublattice parity field” in the geometrical “squeezing” operation.
The open circles refer to some configuration of holes. The black dots define the embedding space
of the spin system in both the full (upper) and squeezed (lower) lattice. The unsqueezing operation
can be parametrized in terms of binding of the electric charge quantum to flips in the Z2-valued
sublattice parity field.

by Woynarovich [6] and Ogata and Shiba [7], we construct a non-local operator measuring
directly the topological order, which is a close relative of the string correlator of den Nijs
and Rommelse [2]. Using the density matrix renormalization group method, we demonstrate
numerically that this order is present in the Hubbard chain for all positive U ’s and electron
densities. We subsequently show that a straightforward application of bosonization leads to
difficulties in finding unambiguous inconsistencies, demonstrating that this topological order
is not present in the Dirac vacuum in 1 + 1D. Our non-local correlator has the structure of
the Wilson loop of a Z2 gauge theory. We will see that it may be possible to realize this state
in a specific kind of 1 + 1D superconductor.

Woynarovich-Ogata-Shiba [6, 7] amounts to the demonstration that in the limit U → ∞
the Bethe-Ansatz solution of the 1D Hubbard acquires a simple but peculiar structure. The
wave function factorizes into a charge part ψSF, depending on the electron coordinates xi, and
a spin part ψH which merely depends on the way the spins are distributed,

ψ
({xi}N

i=1; {yj}N/2
j=1

)
= ψSF

({xi}N
i=1

)
ψH

({yj}N/2
j=1

)
. (1)

The charge part ψSF is the wave function of a system of non-interacting spinless fermions with
coordinates xi. The spin part ψH is identical to the wave function of a chain of Heisenberg spins
interacting via a nearest-neighbor antiferromagnetic exchange. However, the positions yi of the
up spins are needed but these no longer refer to the Hubbard chain. Instead, these parametrize
another lattice with sites at coordinates x1, x2, . . . , xN given by the positions of the charges
in a configuration with amplitude ψSF. Peculiarly, the quantum dynamics of interacting
electrons has generated a geometrical structure which can be visualized by a representative
example (fig. 1). Consider N electrons on a chain with L sites under the condition that N < L
such that the charge configurations can be specified by the locations of the holes. A charge
configuration in the full Hubbard chain (“external space”) has an amplitude ψSF in the wave
function with the coordinates of the dots corresponding with the xi’s. The spin system sees a
different “internal space” obtained from the full space by removing the holes together with the
sites where the holes are located, substituting the hole and its site with an antiferromagnetic
exchange between the sites neighboring the hole (the “squeezed space” [7]).

This is a very simple geometrical structure which can be formulated in terms of a simple
topological “gauge” theory. In what aspects are the full chain and the squeezed chain different?
The squeezed chain is obviously shorter than the full chain and this is a simple dilation: a
distance x measured in the full chain becomes a distance ρx in the squeezed chain (ρ = N/L,
the electron density) when x � 1, the lattice constant. The other aspect is also simple,
but less trivial in its consequences. The spin system is a quantum-antiferromagnet and is
therefore sensitive to the geometrical property of bipartiteness. A lattice is called bipartite
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if it can be subdivided into two sublattices A and B, such that all sites on the A sublattice
are neighbored by B sublattice sites and vice versa. This division can be done in two ways
(· · ·−A−B−A−B · · · and · · ·−B−A−B−A · · ·) defining a Z2 valued quantity “sublattice
parity”, p = ±1. Consider now what happens with sublattice parity in the squeezing. For the
Heisenberg spin chain a redefinition of p = 1 ↔ −1 does not carry any consequence (“pure
gauge”). However, sublattice parity becomes important in the mapping of squeezed space
into full space (fig. 1). “Fix the gauge” in squeezed space by choosing a particular sublattice
parity, and consider what happens when it is unsqueezed. The holes are inserted, and because
every hole is attached to one site, every time a hole is passed the sublattice parity flips. This
is true for every instantaneous charge configuration, but the ground state is a superposition
of many of these configurations: the charge is delocalized and it cannot be said where the
sublattice flips are, but it is still certain that the sublattice parity will flip when a hole is
passed. This is a form of topological order of a kind similar to that encountered in spin-1
chains. In the spin chain the sublattice parity flips are attached to the magnetic quantum
number Ms = 0 states and after squeezing these out a bipartite lattice results carrying a
system of antiferromagnetically coupled Ising spins (corresponding with the Ms = ±1 states)
which orders subsequently [2]. The topological order of the Luttinger liquid is richer, because
the spin order parameter is superimposed on an additional charge degree of freedom which is
missing in the spin-1 chains.

Can a correlation function be defined acting on the full Hubbard chain which can measure
the true spin correlations living in squeezed space? Since all that matters is sublattice parity,
this can be achieved by simply multiplying the spin operator by a factor −1 every time a
hole is passed, thereby removing the sublattice parity flips from the spin correlations. Define
staggered magnetization as �M(xi) = (−1)xi �S(xi), where �S is the spin operator (Sz = 1

2 (n↑ −
n↓), S+ = c†↑c↓) with the charge operator nxi

= nxi↑+nxi↓ taking the values 0, 1 and 2 for an
empty, singly and doubly occupied site, respectively. The correlation function we are looking
for is [8]

Otop(x) =
〈
Mz(0)(−1)

∑x−1

j=1
1−njMz(x)

〉
. (2)

The operator (−1)(1−nj) takes the value +1 for a singly occupied site, while it is−1 for a charge
(hole, or doubly occupied) site. By multiplying these values on the interval 0 < j < x, all the
minus signs associated with the sublattice parity flips are removed from the spin correlations.

The “string” [2] operator (−1)
∑

j
1−nj can be evaluated in a straightforward manner.

Using the techniques by Parola and Sorella [9] for the large-U limit,

〈
Mz(0)(−1)

∑x−1

j=1
1−njMz(x)

〉
=

x+1∑
j=2

P x
SF(j)(−1)jOH(j − 1), (3)

where OH is the spin correlator of the Heisenberg chain, while P x
SF(j) = 〈n(0)n(x)δ(∑x

l=0 nl−
j)〉SF is the probability of finding j spinless fermions in the interval [0, x]. This factor causes
the additional decay of the spin correlations due to the charge fluctuations in the standard
spin correlator. However, it is precisely compensated in Otop by the factor (−1)j coming from
the string operator and in the scaling limit we find

Otop(x) =
ρ

x
ln1/2(ρx). (4)

This is identical to the result for the pure Heisenberg spin chain 1
x ln

1/2(x) after rescaling
the amplitude of staggered spin �M → �M

ρ and the measure of length x → x/ρ, where ρ is
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Fig. 2 – Exponents of the spin-spin correlation, η (top) and the topological correlation, ηtop (bottom)
as a function of electron filling, for various values of interaction U .

the average charge density. Comparing eq. (4) with the well-known [9] asymptotic behavior
of the local staggered spin correlations for the Hubbard model, O �M (x) = 〈|Mz(0)Mz(x)|〉 ∼
cos([2kF−π]x)

x1+Kρ
, we find that the former decays more slowly. The charge stiffness Kρ is associated

with the decay of the charge correlations, 〈n(0)n(x)〉 ∼ cos(4kFx)/x4Kρ , and Kρ > 0 for all
ρ �= 1. Hence, the charge fluctuations modify the spin correlations because the charge is
attached to the sublattice parity flips, resulting in a simple multiplicative factor 1/xKρ . It
follows that the comparison between the spin-spin correlator and eq. (2) yields a direct measure
of the presence and strength of the topological order.

Is this topological order an accident of the strongly coupled case? Having identified the pro-
cedure to measure the topological order, it becomes possible to study it in any one-dimensional
system. For finite U it becomes very hard to calculate eq. (2) from the Bethe-Ansatz solution.
The infinite U point has a status similar to that of the special (AKLT) point in the spin
chain where the hidden order becomes exact [2], and for finite U the non-factorizability of
the Bethe-Ansatz solution reflects the presence of short-distance fluctuations. We therefore
compute it numerically for the Hubbard model using DMRG. We employ an algorithm re-
cently developed by one of us [10], making explicit use of the SU(2) × SU(2) symmetry of
the Hubbard model. In this formulation, the generators of the global symmetry group are the
spin �S and the pseudospin �I; the latter is a generalization from the charge U(1) to an SU(2)
symmetry such that the particle number at site i is given by ni = 1 + 2Iz

i . In principle, it is
straightforward to calculate the expectation value of string operators such as eq. (2) using the
DMRG method. However, the calculation of critical correlators with DMRG is not unprob-
lematic even in 1 + 1D, because of the truncation errors causing eventually an exponential
decay [11], and the requirement to use open boundaries. We used a relatively large system
size (1000 sites) to reduce the effect of the boundary conditions, and used a basis size (700
SU(2) × SU(2) states) large enough to achieve a truncation length of the order of 200–300
lattice constants. In this way meaningful results can be obtained from a simple curve fit to
obtain the desired exponents.

In fig. 2 we show our results for the exponents of both the standard two-point spin correlator
〈 �M · (0) �M(x)〉, and our topological correlator, eq. (2), as a function of density for various
interaction strengths. The former illustrates the quality of the calculation; the dominant
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correlation is at the wave vector 2kF − π, ∼ cos([2kF − π]x)/xη and it is seen from fig. 2 that
the exponent η depends strongly on the parameters. In fact, the exponent behaves exactly
according to the expectations: η = Kσ + Kρ, where Kσ = 1 and Kρ is consistent with the
values previously obtained by Schulz [12]. Considering now the topological correlator, the
dominant component lives at the wave vector q = 0; we find no other characteristic momenta
in the Fourier transform of eq. (2) which is already reminiscent of the staggered spin correlator
of a Heisenberg chain. This is fortified by our finding that the exponent ηtop does not depend on
the microscopic parameters at all. In fact, for all parameters the exponent of the topological
correlator ηtop = 1 = Kσ. Hence, regardless of the values of U and ρ the long-distance
behavior of the topological correlator is indistinguishable from the spin-spin correlator of a
Heisenberg chain, demonstrating that the Hubbard model indeed carries the sublattice parity
topological order fully for all values U > 0.

If the topological order were complete, the amplitude of Otop would be identical to that of
the Heisenberg model, after rescaling the spin amplitude and length measure. This is realized
in the U → ∞ limit, but for finite coupling the factorization property of the wave function is
destroyed by local fluctuations and this is reflected in a smaller (but still non-zero) amplitude
of Otop for small U .

Let us now explain the reasons why such a topological order cannot be present in the true
Dirac vacuum. At the center of our considerations for the lattice model is the fact that the
topological structure is Z2-valued (the sublattice parity) and this in turns rests on the fact that
on a lattice the number operator ni is integer-valued: a site is either empty, singly or doubly
occupied and one isolates the evenness or unevenness by exponentiation, σ3i = (−1)ni = ±1.
In a relativistic theory, one has to keep the fermion creation and annihilation operator apart,
nr → ψ†(r)ψ(r+ε), and the resulting Schwinger terms are the building blocks for bosonization.
Thereby, the charge density becomes the gradient of a continuous function n(x) = (1/π)∂x.
Accordingly, (−1)ni ∼ (−1)∂xφ is a complex scalar and not an Ising-valued operator. This
reflects the fact that it is impossible to localize an electron in space in a truly relativistic
theory (UV cut-off at infinity), while the ability to ascribe a position to the electron is at the
heart of the topological order on the lattice.

In fact, this problem is to a certain extent repairable. The operator entering the string
correlator is not σ3 itself, but instead Πlσ

3 = exp[iπ
∫ x′

x
dxn(x)], taking the continuum limit.

The integral smooths out the discreteness, and an integral over the continuous bosonization
fields can be manipulated to mimic the product of Ising-valued operators. This is a subtle UV
regularization issue, which we will discuss elsewhere in detail [13]. To give the reader some
feeling, let us consider the expectation value of the string correlator itself,

〈
(−1)

∑x

j=0
nj

〉
=

〈
cos

[
π

∑
j

n(j)

]〉
−→

〈
cos

[
π

∫ x

0

dyn(y)
]〉

. (5)

Accordingly, the total charge density is n(x) =
√

2
π

∂ϕc

∂x (j) + OCDW(j) + O†
CDW(j), where

OCDW(x) = exp[−2ikFx] exp[i
√
2πϕc] = cos(

√
2πϕs). It follows that〈

(−1)
∑x

j=0
nj

〉
=

〈
exp

[
i
√
2π[ϕc(x)− ϕc(0)]

]〉
= cos(2kFx)/xKρ . (6)

On the other hand, because on the lattice (−1)ni ≡ (−1)2Sz
i we might as well use

〈
(−1)

∑x

j=0
ntot(j)

〉
=

〈
cos

[
2π

x∑
j=0

Sz(j)

]〉
. (7)



H. V. Kruis et al.: Geometry and topological order etc. 517

Using the bosonized form 2Sz(x) =
√

2
π

∂ϕs

∂x (j) +OSDW(j) +O†
SDW(j) it follows that

〈
(−1)

∑x

j=0
nj

〉
=

1
xKσ

. (8)

For U = 0, Kσ = Kρ and the two expressions are the same, but away from this point Kσ �= Kρ

and depending the way one calculates D, one obtains different answers. On the other hand,
the numerical calculations show that the correct expression is〈

(−1)
∑x

j=0
nj

〉
= A/xθ +B cos(2kFx)/xKρ , (9)

where A andB are non-universal amplitudes [14]. The exponent θ is difficult to pin down as the
corresponding amplitude vanishes exponentially for U > 0, however it is clearly related to the
presence of double occupied sites in the charge distribution, possibly θ = 1/Kρ. Indeed, this
operator cannot measure Kσ because it is transparent to the direction of spin. Bosonization
relies on point splitting to be able to form a continuum limit, and therefore effects arising
from double occupied sites on a lattice are not properly taken into account. In the presence
of point splitting (−1)ni �= (−1)2Sz

i and more care is required to recover the correct bosonized
expression. It should be emphasized that this is additional to the well-understood lack of
knowledge of the k = 0 component of the density, which gives corrections of order cos(2kF).

In summary, we have discovered a correlation function which makes it possible to measure
directly the presence of a hidden or topological order underlying spin-charge separation in
1 + 1D electron systems. This hidden order can be viewed as a geometrical structure where
the spin system lives in a squeezed space different from the full chain, and it is related but
different to the hidden order in the S = 1 spin chains. The suspicion was widespread that
the Woynarovich-Ogata-Shiba construction was special to the U → ∞ limit and our main
result is the numerical demonstration that instead the hidden order is generic in the scaling
limit. This insight is powerful enough to hint at the existence of hitherto unidentified states of
1 + 1D matter. An exciting possibility is closely related to recent ideas regarding a potential
connection between Ising gauge theory and the destruction of stripe order in 2 + 1 dimen-
sions [4, 15]. As we discussed, (−1)ni is Ising-valued and the string operator can be written
accordingly as Πiσ

3
i , where σ

3
i represents the flipping of the sublattice parity itself. A local

gauge transformation preserves the property that Πiσ
3
i = (−1)

∑
i
ni , hence the correlator

Otop(x) is equivalent to a Wilson line of Z2 gauge theory [16]. Hence, if local Ising symme-
try were dictating, 〈SΠσ3S〉 ∼ exp[x/ξg]〈SS〉, because the l.h.s. is gauge invariant while the
r.h.s. is not; ξg is the length scale where the gauge invariance emerges. In the Luttinger liquid
the two are related by an algebraic factor 1/xKρ but this is due to the algebraic order in
the charge system. Therefore, under the conditions that a) the spin system stays separated
from the charge, b) the charge quanta are bound to sublattice parity flips, and c) the charge
correlations become short range, one will obtain the required relations between the correla-
tion functions signaling the Z2 gauge invariance. Condition c) is generally satisfied when the
superconducting phase is forced to condense by applying an external Josephson field. The
attractive U Hubbard model fails in this regard because its ground state can be viewed as a
continuation of the local pair limit where the spin system is destroyed.

However, it is easy to convince oneself that the above criteria are precisely fulfilled by
the Haldane spin chain, becoming particularly obvious in the Batista-Ortiz interpretation [3].
Therefore, one way to characterize the symmetry difference between the spin-chain and the
Luttinger liquid is that the spin-chain is characterized by a local Z2 invariance and the Lut-
tinger liquid is not. However, the den Nijs-Rommelse case, where the topological correlator
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shows true long-range order, is special in that the gauge fluctuations are completely sup-
pressed, i.e. the gauge coupling goes to infinity. If the SU(2) spin symmetry of the fermionic
model is restored (thus eliminating the spin gap while maintaining the charge condensate),
we expect the topological correlator to decay exponentially more slowly than the spin-spin
correlator but this time with algebraic decay. These conditions might well be satisfied in t-J
ladders under the influence of an external Josephson field [17].
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[10] McCulloch I. P. and Gulácsi M., Europhys. Lett., 57 (2002) 852.
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