BULLETIN OF THE ASTRONOMICAL INSTITUTES OF THE NETHERLANDS.

1928 November 27

Volume IV.

No. 160.

COMMUNICATION FROM THE OBSERVATORY AT LEIDEN.

Measures of the magnitude of α Ursae minoris on plates taken, mainly by N. W. Doorn, with the "moving camera", by A. de Sitter.

The Zeiss photographic twin telescope of the Leiden Observatory has two identical cameras with moving plateholders 1). The objectives are Zeiss Tessars; aperture 10 cm, focal length 51 cm. On many of the plates, made for general photometric purposes, there has been superposed an exposition of the Polar region. Prof. HERTZSPRUNG suggested to me to measure on these plates the magnitude of Polaris in order to get a new epoch of maximum. The plates used here have all been made in such a way, that for each star a square of the size $\cdot 25 \text{ mm} \times \cdot 25 \text{ mm}$ is uniformly blackened in 225 exposures of I second each. The gratings used in front of the objectives have the spaces between the wires of the same breadth as the thickness of the wires (2 mm), so that the difference in magnitude between the central image and the first order diffraction image is theoretically **.98. This value was controlled by the aid of special measures. In the present paper 1^m·00 has been used. The 78 sets of two simultaneous plates which I have used have been taken from July 1925 till July 1928, mainly by Mr. DOORN.

I have measured in the Schilt microphotometer on each plate the third order diffraction images of Polaris and the central and first order diffraction images of B. D. 88° 4. The opacity of the, somewhat elongated, third order spectra of Polaris lies always between the opacities of the central image and the first order spectra of B.D. 88° 4. From these measures in connection with the two extreme readings viz: for fog of the plate and zeropoint, the difference in magnitude between Polaris and B.D. 88° 4, apart from a constant, could be derived with sufficient certainty. The mean of each pair of plates taken simultaneously with the two cameras is used as one observation. When the difference between the results of both plates exceeded **I*, the plates

were rejected. From the mostly large deviations of these observations from the final sinecurve we may conclude that their rejection is in general justified. A few plates taken on nights indicated as bad in the observers notebook have been rejected. Thus altogether 17 observations were rejected. The remaining 61 observations have been used for the lightcurve. The observations were arranged according to the phase and divided in 12 groups; 11 of 5 observations, and 1 of 6 observations.

Table I gives in:

- column I J. D. hel. M. astr. T. Grw. of the middle of each exposure.
 - The Phase, computed by the formula $P = {}^{d-1}\cdot 251994$ (J. D. hel. M. astr. T. Grw. -2420000), corresponding to the period $3^{d}\cdot 96835$ (GRAMATZKI A. N. 217, p. 453).
 - 3 The difference in magnitude between the mean of the third order images of Polaris and the central image of BD 88°4.
 - 4 The difference in magnitude between the results of the two plates.
 - 5 The deviation from the sinecurve. Those of rejected observations are enclosed in parentheses.

Table 2 gives in:

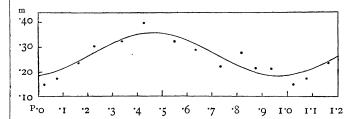
- column I The mean of the phases of each group of 5 obs. (the last of 6 obs.).
 - The mean of the observed mag of each group.
 - 3 The deviation from the sinecurve.

¹⁾ See Reports for 1920, 1924, 1926, B. A. N. 2, 72, 92.

TABLE I.

J. D.	P	m	Δ	0—C	J. D.	P	m	Δ	0—C	J. D.	P	m	Δ	0—C
2425309.656 4341.469 5321.671 4345.468 4345.537 5123.370 4619.394 5123.419 5123.478 4639.412 4921.329 4921.379 4921.379 4921.422 4159.510 4921.527 5298.551 4921.605 5298.627 4961.324 4921.664 5298.661 4961.368 4346.507 4620.480 4894.309	001 024 029 032 049 058 060 071 085 104 1458 169 172 195 221 221 222 224 230 231 235 294 333	m 15 13 16 14 15 20 16 16 20 14 22 18 24 37 28 426 36 36 28 26 36 36 37 37 37 38 37 37 38 37 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	m '02	m - · · · · · · · · · · · · · · · · · ·	2425152'301 5152'341 5124'566 5124'566 5124'599 5152'389 5152'434 5275.480 5180'322 4406'506 5180'378 4922'497 5299'605 5299'644 4851'297 4851'339 4974'478 5442'844 4851'582 5442'847 4851'664 4879'490 4879'530 4879'576 5165'298 4919'438 4907'580	349 359 360 368 371 389 410 444 440 478 478 575 564 575 602 612 624 669	m · · · · · · · · · · · · · · · · · · ·	m 14 3 1 8 10 5 6 9 5 3 1 8 14 2 1 3 4 2 2 5 0 14 12 14 9	$\begin{array}{c} \text{m} \\ -\text{io} \\ (-\text{if})^2) \\ (-\text{if})^2) \\ (-\text{if})^2) \\ (-\text{if})^2) \\ (-\text{if})^2) \\ (-\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^3) \\ (+\text{if})^4) \\ (-\text{if})^3) \\ (+\text{if})^4) \\ (+\text{if}$	4907.704 5439.516 5304.679 4352.434 5245.332 4352.492 5245.380 4848.573 4352.531 5245.420 5257.385 5261.420 4908.329 4638.491 4920.339 5273.560 4920.386 4920.465 4920.523	·692 ·700 ·701 ·712 ·725 ·747 ·787 ·792 ·802 ·814 ·812 ·814 ·820 ·829 ·846 ·862 ·872 ·897 ·905 ·908 ·928 ·942 ·951	m · · · · · · · · · · · · · · · · · · ·	m 13 8 5 6 3 3 0 16 30 10 92 5 8 7 3 9 0 0 1 4	m - 02 - 12 (+ 2) +) - 3 - 1 (+ 10) (+ 11) (+ + 2 6) + + 7 7 7 8 + + 5 6 4 5

- r) Exposure on a rather clear moment of a cloudy night.
- 2) When leaving the dome Mr. Doorn saw a great many small clouds near the pole.
- "It is rapidly getting foggy and moisty".
- 4) Drifting clouds near the pole.


	TABLE 2.	
P	m	O-C
.0237	•148	—·04 I
·0761	.123	:031
·1643	·2 36	008
·2266	· 304	+:026
·3368	•326	006
·426 2	· 3 99	+ .043
·5 50 8	·3 24	022
·6345	· 287	026
.7342	·2 20	*040
·8194	.277	+.060
·8746	.512	+.018
·9365	.515	027

From the data of Table 2 the sinecurve

$$m = .2710 + .0876 \sin (\varphi - 77^{\circ}.3),$$

where $\varphi = 2\pi P$, was determined by a least square solution. The mean error of one observation, as derived from the deviations of the individual observations from

this sinecurve, is \pm **\cdot \cdot \cdot 58. The mean error of the epoch is found to be $\frac{\mu}{V_{\frac{1}{2}n\cdot a}}$. $\frac{P}{2\pi} = \pm$ *\cdot \cdot 076, where μ

is the mean error of one observation, n is the number of observations, a is the total amplitude. The maximum is found to occur at the phase $^{\rm P}\cdot4674$ or $^{\rm I}$ d $\cdot844$. The epoch of maximum nearest to the mean epoch of the observations is J. D. hel M. astr. T. Grw. 2424894 $\cdot819 \pm ^{\rm I}$ o76. (m. e.) The data of Table 2 are represented in the diagram.

The epochs used for a least square solution for the period are:

O-C- ·02

+ .13

+ 15

+ '23

- 12

-- .02 -- .31

- .01

+ :27

****		J. D.	E	n	a	μ .	Þ
Müller & Kemf		2407696.57	0	305	т·05б	± ^m ·077	162
Edw. C. Pickering		8228.45	134	10	m·078	± ^m ·033	56
Pannekoek 1)	•	13045.81	1348	510	s·92	± s.84	615
King		779 i ·7 9	2544	98	m.119	± m·055	457
Hertzsprung 2)		8985.86	2845	20	m·171	± ^m ·017	2020
Stebbins		9299'15	2924	17	m·078	± m·02I	232
Gramatzki		23954'08	3845	68 <u>1</u>	m•126	± ^m ⋅05 I	420
Bottlinger		3620.77	4013	16	^m ·146	± m·027	468
A. de Sitter	- ,	4894.82	4334	61	^m ·175	± m·058	546

The epochs of MÜLLER, PICKERING and PANNEKOEK have been taken from PANNEKOEK *Proc. Amst. Ac.* 1913, p. 1192. The observations used by KING are to be found in *H. A.* 59 p. 250 table IV. The means of the 14 groups of 7 observations each are

Corrected phase		
P	m	0-C
·0386	— · I I	02
1314	- ⋅03	+ .05
· 2 086	•05	.00
·2 52 9	 ∙ 05	01
·3300	01	.00
·4500	+ .02	+ .02
·52 2 9	+ .04	·o1
•6 30 0	+ .02	+ .01
·68oo	+ •03	02
·7 1 43	+ .07	+ .02
· 752 9	+ .02	oı
·8043	02	04
·91 29	+ •04	+ .06
·972 9	04	.00

 $P = \frac{d^{-1} \cdot 251995}{1995}$ (J. D. - 2400000) The sinecurve derived from these figures is

$$m = .4217 - .0338 \sin \varphi - .0488 \cos \varphi$$
.

To this corresponds the maximum 241779179.

The mean error of one observation as derived from

the deviations of the individual observations from the sinecurve is \pm ***.055.

sinecurve is ± 055.

HERTZSPRUNG's epoch is taken from A.N. 189 p. 89. Prof. HERTZSPRUNG called my attention to the fact that the mean error of the epoch there given is too high. It should be \pm d·042 instead of \pm d·083.

STEBBINS' observations (A. N. 192, p. 189) are:

P	m	O-C
.082	.103	— .o32
.091	.147	110.+
·134	.179	+ .047
.230	.132	+ .003
·246	120	—·017
·3 <i>37</i>	·178	+ .024
·3 49	142	-·o15
.350	·1 <i>7</i> 0	+ .013
•523	.192	005
·576	.191	018
·604	· 2 19	+ .007
·60 <i>7</i>	.210	003
675	· 22 6	110.+
·74 8	.313	+ .003
.832	.169	— .02 5
·86o	.196	+.009
·9 2 3	.162	008
		m. e. = ± m·021

 $P = {}^{d-1} \cdot 2520098$ (J. D. $-2418983 \cdot 337$).

The sinecurve derived from the figures is

$$m = .1733 - .0357 \sin \varphi - .0220 \cos \varphi$$

To this corresponds the maximum 2419299.15.

GRAMATZKI gives in A. N. 217, p. 453 two series of observations with a new type of visual photometer. The square of the mean error of one observation of the second series, as derived from the differences between the observations in phase next to each other, is about twice as large as the square of the mean error of one observation of the first series.

The observations of the second series were therefore given half weight. All observations were then arranged according to phase and divided into 14 groups of about equal weight.

P	m	0 — C
·0397	.188	013
·09 70	.223	+ .041
.1276	.181	+ .008
.2433	.122	+.001
.3039	.113	043
·3536	·2 00	+ '037
·4178	.162	- 015

¹) The two series combined. The series of 259 observations gives an amplitude of ⁵·90, the series of 251 observations gives an amplitude of ⁵·94. For computing the relative weight of both combined I have used as the amplitude ⁵·92.

²⁾ In this case the normal points are used instead of the individual observations for computing the relative weight. When using the individual observations the calculated weight would be found higher.

P	m	O—C
•5396	.192	028
.5840	.275	+ .032
·6870	254	010
·7798	.297	+ .027
·807 I	•269	+.001
·8436	•268	+ .006
.9127	.198	:048

 $P = \frac{d^{-1}}{2520098}$ (J. D. -2422903.458).

The sinecurve derived from these figures is

$$m = .2121 - .0584 \sin \varphi + .0037 \cos \varphi$$

To this corresponds the maximum 2422954 d ·082. The mean error of one observation as derived from the deviations of the individual observations from the sinecurve is \pm m·051.

The epoch of BOTTLINGER was derived from the observations which Dr. BOTTLINGER kindly sent to us, and for wich I express my thanks. There are 5 observations with one photoelectric cell and II with another. Assuming a constant difference of **026* between the results obtained with the two cells, the observations, arranged according to phase and corrected for this difference, are:

P ·	m	O-C
·0 7 9	339	00 I
.127	.313	 6
·150	·2 96	— 13
·284	· 243	— IO
297	.235	— 14
.305	•268	+ 21

P	m	0 — C
.342	.224	– 14
.570	.313	+ 48
570	268	+ 3
632	· ż 67	- 24
.787	.353	- 2
·796	.374	+ 18
.797	.313	- 46
.839	·374	+ 5
·916	.350	 26
•986	.431	+ 62
		m. e. $= \pm$ ***027

 $P = ^{d-1} \cdot 251994$ (J. D. -2420000)

$$m = .3038 + .0386 \sin \varphi - .0616 \cos \varphi$$

To this corresponds the maximum 2423620.766.

A least square solution of these epochs with relative weights computed by the formula $p = \frac{n\alpha^2}{\mu^2}$, where n is the number of observations, a the total amplitude, and μ the mean error of one observation, gives for the period $3^{d} \cdot 968148 \pm 000055$ (m. e.)

The formula found here for the epoch of maximum light of Polaris is thus

Max.=J.D.hel.M.astr.T,Grw.2424894.65+
$$3^{d}$$
.968148 E
(m. e.) \pm .06 \pm .000055

I wish to thank Prof. HERTZSPRUNG for his advice and help during my work.