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We study the statistics of the reflectance (the ratio of reflected and
incident intensities) of an W-mode disordered waveguide with weak
absorption γ per mean free path. Two distinct regimes are identified.
The regime γΝ2^>1 shows universal fluctuations. With increasing
length L of the waveguide, the variance of the reflectance changes from
the value 2/15N2, characteristic for universal conductance fluctuations
in disordered wires, to another value 1/8ΛΓ2, characteristic for chaotic
cavities. The weak-localization correction to the average reflectance
performs a similar crossover from the value 1/3W to 1/4N. In the re-
gime γΝ2<ζΙ, the large-L distribution of the reflectance R becomes
very wide and asymmetric, P(R)<*(l-R)~2 for R<3l-yN. © 1996
American Institute of Physics. [80021-3640(96)01416-8]

PACS numbers: 05.40.+j, 42.25.Bs, 78.20.Ci

An elegant and fundamental description of universal conductance fluctuations is
provided by random-matrix theory.1 Different complex physical Systems can be classified
into a few universality classes, characterized by the dimensionality of the geometry and
by the symmetries of the scattering matrix. The so-called circular ensemble, with a
uniform distribution of the scattering matrix on the unitary group, describes chaotic
cavities.2 The variance of the conductance in this ensemble (in units of 2e2//z) equals
1/8/3, where ß=\ (/3=2) for Systems with (without) time-reversal symmetry in the ab-
sence of spin-orbit interaction.3 This is the zero-dimensional limit, corresponding to a
logarithmic repulsion of the transmission and reflection eigenvalues. A disordered wire
belongs to a different universality class (one-dimensional limit), with a nonlogarithmic
eigenvalue repulsion and a variance 2/15/3. The change from 1/8 to 2/15 is due to a
weakening of the repulsion between the smallest transmission eigenvalues.4

The optical analogue of universal conductance fluctuations is the appearance of
sample-to-sample fluctuations in the intensity transmitted or reflected by a random me-
dium. Universality in this case means that the transmitted or reflected intensity, divided
by the incident intensity per transverse mode of the medium, fluctuates with a variance
which is independent of the sample size or the degree of disorder.5 It is essential for this
universality that the incident Illumination be diffusive, which means that the incident
intensity is equally distributed over the N transverse modes of the medium. A new aspect
of the optical case is the possibility of absorption or amplification of radiation. In Ref. 6
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it was shown that the distribution of reflection eigenvalues in the limit of an infinitely
long waveguide with absoφtion or amplification is the Laguerre ensemble of random-
matrix theory. The reflection eigenvalues Rn, n = l,2,...N, are the eigenvalues of the
matrix product rr\ where r is the NXN reflection matrix of the waveguide. In Ref. 6 the
fluctuations in the reflected intensity were computed for the case of plane-wave Illumi-
nation. The purpose of the present paper is to consider the case of diffusive Illumination,
in order to make the connection with universal conductance fluctuations.

We consider the reflection of monochromatic radiation with wavenumber k by a
waveguide of length L and width W. The reflectance R is defined äs the ratio of reflected
and incident intensities. For diffusive Illumination it is given by

K = N-^\rnm\2=N-l^Rn. (1)
n, m n

The L-dependence of the distribution of reflection eigenvalues is described by the
Fokker-Planck equation6

χ
dP

(2)

where we use the parametrization Rn=\n/(l+\„), X„e(0,°°). The parameter γ>0 is
the ratio of the mean free path / to the absorption length la . Equation (2) is valid if kl
>1, kla9>\, and W<^L. Optical Systems normally possess time-reversal symmetry (ß
= 1), but in view of a recently observed magneto-optical effect,7 we also include the case
of broken time-reversal symmetry (/S=2).

Relevant length scales are defined in terms of the transmitted intensity.8'9 The trans-
mitted intensity decays linearly with L for L<l£ and exponentially for L^-ξ, where the
decay length ξ=(1/ξα+1/ξι)~1 contains a contribution ξα=1(2γ+γ2)~112 from ab-
sorption and a contribution ξι=^1(βΝ+2 — β) from localization by disorder. We will
study the two regimes (1) ξα<£ξι (or jN2^>\) and (2) £„>£/ (or γΝ2<\). In both
regimes we assume N^> 1.

(1) The regime yN2> l admits of a perturbative treatment for all L by the method
of moments of Mello and Stone.10 We define the moments Mg=N~l(— 1)ρΣ,·(1
+ λ,·)~?, so that /?=1+M 1 . The Fokker-Planck equation (2) enables us to express
derivatives d(M"l...M"k)/dL in terms of the moments themselves. Expanding each mo-

ment in powers of l/N, we get a closed system of first-order differential equations for the
coefficients. The method has been explained in detail,10 therefore we just present the
result. We need the following terms in the l/W-expansion of the moments,

) , (3a)

(3b)
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(3c)

The <?-dependence of the coefficients is given by

^,o=/?, Fqtl=8ßiqpf«-1, Fq<2=qr,ßf>-i + q(q-l)eßfi-\ (4a)

Gqfl=gfg, G^dß^afo + qvgfi-1), (4b)

H9 = hf. (4c)

Here/, g, h, μ, θ\^, σ, η\ ,2 are functions of L which obey the following System of
first-order differential equations and initial conditions:

ldf/dL=f2-2yf-2y, /(0)=-1, (5a)

g(0)=l, (5b)

A(0)=-l, (5c)

(5d)

0, (5e)

σ(0) = 0, (5f)

= 0. (5g)

The equations can be easily solved one after another. The first two of them determine the
mean and variance of the reflectance for plane-wave Illumination, studied in Ref. 6. The
other equations determine the mean and the root-mean-squared fluctuations for diffusive
Illumination to order ΛΓ1. We decompose (R) = R0+SR, where RQ = 0(N°) and SR
= &(N~l). In terms of the functions in Eq. (5) we have

R0=l+f, 8Κ=8β1μ/Ν, (6a)

(6b)

The weak-localization correction <5/? vanishes for ß=2, while var R** IIß, just äs without
absorption.

To find (R) and var R we need to solve the first five equations (5). The analytical
solution is cumbersome to use, but it is easy to integrale the System numerically at a
given γ. Results for γ= 10"4 are shown in Fig. 1. The large-L limit can be found directly
by replacing the derivatives at the left-hand side of Eq. (5) by zero. In this way, we obtain
the following asymptotical values:

(Ta)

(Tb)

)2]-1. (Tc)

The large-L limit (7) an also be obtained from the Laguerre ensemble for the reflection
eigenvalues,6
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FIG l Length dependence of NSR and N2 var R for 0= l and y= 10 4, accordmg to Eqs (5) and (6), in the
regime γΝ2> l The vanance var R of the reflectance crosses over from a plateau at 2/15N2 (one dimensional
hmit) to a plateau at 1/8/V2 (zero dimensional limit) The crossover is nonmonotonic and occurs when the length
of the waveguide becomes comparable to the decay length ξ= 70 / of the transmittance The weak-locahzation
correction SR shows a similar crossover from 1/3W to l/W, but the plateaus are less well deflned for this value
of γ

P00({X„})ocexp In -Ύ(βΝ+2-β)Σ (8)

which is the asymptotic solution of the Fokker-Planck equation (2) The hmitmg values
(7) are reached when L>£, hence when the transmittance through the waveguide has
become exponentially small. For L<l£ the effect of absorption can be neglected. Over a
ränge of lengths L such that /<^Z-<^£, the mean and variance are given by10 /?o=l
-//L, SR=Sßl/3N, varR = 2/l5ßN2. The value l/8ßN2 for the variance when γ<11
and L>£ follows directly from the loganthmic repulsion of the X„'s m the Laguerre
ensemble (Ref. ll) a ) The difference with the 2/l5ßN2 for Κ1<ξ arises because the
repulsion is nonlogarithmic in the absence of absorption.4

(2) We now turn to the second regime, γΝ2<1. This regime cannot be treated
perturbatively for L>£, because of the onset of locahzation by disorder. The limitmg
large-L values of (R) and var R can be computed from Eq. (8) usmg formulas12 for the
density and correlaüon function of the X„'s m the Laguerre ensemble. The result is

(9a)

var R = ßj- (βγΝ)2[\η( 1/γΝ2) + @( l )]2 (9b)

A new crossover length L c=£ \τι(1/γΝ2) appears at which the mean and vanance of R
attain their asymptotic values (9) This is the length at which the exponential decay
(l-R}~N~l exp(-L/4£)13 comes to a halt.
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FIG. 2. Large-L distribution of the reflectance for ß= 1. Data points are obtained by generating 5 · 104 random
matrices in the Laguerre ensemble (8). The main plot is for the regime γΝ2<\(Ν=20,γ= 10~4), the solid
curve being the asymptotic tail (10). The inset is for the regime γΝ2ί>1(Ν=20,γ=ΟΛ), the solid curve being
a Gaussian with mean and variance given by Eq. (7).

From Eq. (9) we see that the reflectance has a wide distribution in the regime
γΝ2<1: The root-mean-squared fluctuations of l-R are greater than the mean by a
factor (γΝ2)~υ2. (In the opposite regime γΝ2^>1, in contrast, the distribution of the
reflectance is a narrow Gaussian, see the inset in Fig. 2.) To determine the tail of the
distribution, it is sufficient to consider only the contribution from the smallest eigenvalue
λ ι, which gives the main contribution to l —R when γΝ2—>0. The smallest eigenvalue
in the Laguerre ensemble has the exponential distribution Ρ(\ι) = βγΝ2 exp

\-2 (10)

We have calculated P (R) by generating a large number of random matrices in the
Laguerre ensemble (see Fig. 2). The distribution reaches its maximum at 1—R=* γΝ and
then drops to zero for smaller values of l — R. The tail for large values of l — R is well
described by Eq. (10) (solid curve in Fig. 2).

To conclude, we have studied the statistics of the reflectance in an absorbing random
waveguide under diffusive Illumination. When the decay of the transmittance is domi-
nated by absorption (γΝ2^> 1), the fluctuations are shown to possess the same features äs
universal conductance fluctuations, including independence on the disorder and IIβ de-
pendence on the symmetry index. A crossover from the zero-dimensional to the one-
dimensional limit was found in Refs. 15 and 16 for a chain of chaotic cavities. (A long
chain of cavities behaves äs a diffusive wire.) We have found an opposite crossover, from
the one-dimensional to the zero-dimensional limit, äs the length of the waveguide is
increased beyond the decay length ξ. Another regime, where the decay of the transmit-
tance is dominated by localization due to disorder (γΝ2<1), is principally new and
characterized by a wide and asymmetric distribution of the reflectance. The asymptotic
regime is established at a new characteristic scale £c>£.
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a)The deviation of var R from its universal value 1/8/3 when y is not <l arises because the spectrum of the
X„'s has an upper bound at X=2/y (see C. W. J. Beenafcker, Nucl. Phys. B 422, 515 (1994)).
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