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Introduction. The differential equations for the
components of the radial pulsation in non-adiabatic
motion have been developed in a paper published
several years ago?). Generally, a simple-periodic os-
cillation and its maintenance appeared possible. If
special circumstances prevailed, a permanent secon-
dary oscillation might be excited: however, the restric-
tions imposed on the analytical treatment (the limited
interaction of only two degrees of freedom) allowed no
quantitatively-satisfactory solution. An analysis, in
certain respects more general, of the anomalous phase-
relation between first angd second harmonic in the
radial velocity of { Geminorum 2) removed these res-
trictions and showed the possibility of a secondary
permanent oscillation of very long period in the pul-
sation of this variable.

The theoretical developments contained in the
present paper are general:-the limitation of the energy-
function to some terms supposed to be of principal im-
portance, though still illuminating many aspects of
the problem, is not necessary; hence, the structure of
the simple-periodic solution is more clearly apparent.
The analysis of the secondary oscillations shows many
possibilities to exist: a pulsation of very long period
comparable with that considered in the case of
¢ Geminorum; an oscillation of arbitrary period com-
parable with those observed in cluster-type variables
and long-period variables; and also the coexistence
of both.

1. The equations of motion and the conditions required for
a permanent multiple-periodic solution.

The partial differential equation of the non-adia-
batic radial motion of a star may be broken up into
the system of simultaneous ordinary differential
equations, infinite in number:

dJ;_— . oH dwi_
TR St Pl Ty

47 H, the sum of kinetic, gravitational and internal

oH 1=1,2,...;

1) See Note by the Editor on p. 136.
2) B.A.N. No. 303.

3) B.A.N. No. 359.

v

_cerned with regard to the variables w;, w,, . .

energy, is a function of the variables J;, w: only,
independent of the time ¢; these variables are related

i

to the quantities (; and aG by the equations

dt
' "2 i dC; ey
Cizl/ 2 S coswi, L= — 1/ 2m Josinwi;
i dt
these quantities determine the radius-vector 7, related

to the value r, ina “normal” static stellar structure by
the series:

r—"n
Tn

= Cisi(m);
I

the functions si(r,) are normalised solutions of the or-
dinary linear differential equation that determines the

P I . . 2T
infinitesimal oscillations and their periods P the

coefficients o; are the damping-constants; their in-
troduction in this way into the differential equations
is a simplification, which does away with the implicit-
time-dependence of the function H in a still more
general treatment.

Suppose a multiple-periodic solution of these equa-
tions to exist, consisting of periodic functions with
period 2w of phase-arguments o that are independent
linear functions of the time ¢ Then, multiplication of

S addition of
the results and reduction of the resulting equations to
the constant term in their goniometric developments,
leads to the system of relations:

the equations respectively with

k=1,2,...,"

the bar denoting the mean value of the quantity con-
.. The
fact that this mean value is zero in the quantity

S (4 i _ duw 2

dt dw; ' dt

11

is evident, if J; and w;: are replaced by their gonio-
metric developments, supposed to exist, and account
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is taken of the fact that to this mean value only con-
tribute terms of the same argument in J; and w;,
which cancel out in the difference

dw; d J;

If the solution is simple-periodic these equations
may be reduced to the one relation also necessary in
the general case:

Za,ﬁddzf'=o.

The quantities involved then are functions of one
constant of integration corresponding to the ampli-
tude of the oscillation; hence, this amplitude must
have a definite value.

Generally the mean values of j pr ( =1,2,...)

have all the same sign; hence at least one of the
damping-constants must- be negative; physical con-
siderations allow the possibility «; < o.

2. Transformation of the equations.

The differential equations may be transformed by
introduction of the variable w, as independent va-
riable, a procedure well known in celestial mechanics;
in this way, if the damping-constants are neglected,
the then existing integral H = constant reduces the
order of the system.

Consider the relation H=mn, z and determine by |-

this equation the variable J;asa function Q of J,, . .,
Wy, Wy, - .., z. Then the ratios

OH 0H oH oH

aw'T,aﬂ J (>I)a

LEIDEN

1=2

3. The solution of the equations of motion.

Contrary to the procedure followed in the paper on
14 Gemmoruml) first the damping-constants will be
omitted in the equatlons of motion; then the corres-
ponding solution is to be substltuted in the relations
necessary to maintain the oscillations and the values
of the independent amplitudes may be determined.
Then the reaction of the damping-constants in the
solution should be taken into account and the approxi-
mation be continued.

In this restricted form the equations of motion are
closely related to the differential equations of celestial
mechanics.

The principal part of the analysis consists in the
determination of a simple-periodic solution.

The function Q is periodic with periods 27 in the

1) B.A.N. No. 359.
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introduced by division of the equations by dw I !, are

equal to —g g);’ 3 % ; the quantity 1 : J 1s equal to
o an‘ Hence, if the equations are restricted to the
1

presence in the right-hand members of the'deriva-
tives of H only, the transformed equations are:

iJ 20 dw Q. .
dw, dw;’ dwl__B—ﬁ’Z>I
& dem)_ 20
dw, ~ ’ dw, =~ 0z’

The transformed damping-terms must still be add-
ed; these are the quantities to be added to the J;
equations

dt
— 2 i d—wl 5

the z-equation receives the addition

2 dw;
i 2 Ty
corresponding to the equation
a
dt

N

- Then, ifa multiple-periodic solution exists, periodic
with periods 27 in w; and the phase-arguments S
(i=1,2,3, ...) thatare independent linear func-
tions of w, and correspond in some way to the varia-
bles n, £, w,, .. ., the reduction applied.in the preced-
ing section leads to the system of necessary relations:

Ml k1,2,

dependent variables w,, ... and the independent
variable w;,; the coefficients of the corresponding go-
niometric development are functions of z, J,,...;
the value of z is constant.

If only some critical periodic terms are considered,
the construction of the simple-periodic solution is
easily performed: it has been treated of in previous
papers on the subject ). This restriction is not at all
necessary; it only clearly shows the principal features.
‘If the “normal” static stellar constitution issufficiently
known, the determination of the solution may be
carried out to a higher degree of approximation
without difficulty.

If the simple-periodic solution has been constructed
it may be used for the determination of the secondary
oscillations by a transformation to new dependent

1) B.A.N. No. 303 and 359.
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“variables. These variables X; and x; (i > 1) are related |

to the variables [, . ..
equate the differences

Vz/—zY}cosxifl/ 2Jicoswi, |/ 2 Xisinxi—]/ 2 Jisinw; -
to the values of |/ 2 Ji coswi, |/ 2 J; sinw, in the

simple-periodic solution, hence, to known functions of
w,, periodic in w, with period 2n. The resulting differ-
ential equations are:

dX; OR dx
a’wl _Bxi’

, Wy, . . . by the relations that

R
S X
the function R is derived from Q by subtraction
of the terms of order zero and one in the variables
1/ 2 Xicosxi,]/ 2 X; sinx;; it is a multiple-periodic
function of wy, x4, x5, ... with periods 2, the coefficients
depending on the X; variables. If the solution has been

constructed. the value of 7, ¢ is derived by a simple
quadrature from the differential equation

dnyt) _9Q

dw, 0z '
The solution of the new equations is more com-
plicated, as a simple-periodic solution is irrelevant;

hence, a qualitative treatment is appropriate, reduc-
ing the function R to a single periodic term.

dw,

» 1> 13
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Suppose- -
R, 4+ R, cosi,

¢ being equal to some selected linear combination
with integral coefficients of w,, x,, %3, ..., say
b=k, wy + kyx, + k3 x335 k5 and k; are supposed to
be non-zero integers. Generally these restricted equa-
tions allow a solution ¢ = o or =, suppose o, the values
of the variables X,, X,, ... being constant and de-
termined by the equation:

' 3(R,+R
by =k, LB T R 25 1

R:

2 (R, + Ry

+k3 aXs

In this solution the variables x,, 3, . . . are linear
functions of w,, the mean motions being connected by
the relation

ky+ a’x2 dx

+k3dw1 o.

If|k,lor|ks| is equal to unity, then, as this generally

makes R, proportional to ]/ X, or ]/X s, the equation
of condition between the constant values of X, and X,
readily may be solved; if not, special values, p0551b1y
very large, are 1nvolved

The variations with regard to this solution are
determined by the differential equations:

doX, ddx, 2 (R,+ Ry o2 (R, + R))
dw, =~k R0, dw,  3X,° 3 X, — 0X,0X, 9 X,
dd X, - ddxy R,+R) ., 0 (R +R)
dw, =~k RO, dw,  0X,0X, IX; — aX3 3 Xa
. >3y 0% (R, + R,) 9% (R, + R,) 0% (R, + Ry)
hence: To = ky? —— —Fa + 2k, ky ST, + kg2 T R, 0.

So a new argument is introduced, ‘the amplitude
being free; the square of the mean motion in w;, if
existing, is equal to the coefficient of d{¢ with
reversed sign; if 0§ has been determined, ¢ X,, d X,
0 x,, 0 x5 follow by quadrature from the differential
equations.

The variables 5, %, mtroduce only one new argu-
ment: a linear function of w, with a mean motion
(though necessarily not always) equal to '

_<d_xz_
ks \d

_x (d_xs
ks \dw,

nearest mteger) and to

— nearest integer> ;

generally, the penod will be rather large, though not

excessively.

The solution may be approximated to more closely
by taking account of higher powers of the d-variations
and including more arguments from the function R.
Then, the number of independent phase-arguments is

© Astronomical Institutes of The Netherlands e

also augmented. Evidently the subject is strictly ana-
logous to the theory of the motion of planets and
satellites in celestial mechanics: from a formal point
of view the development in periodic series of the co-
ordinates in the lunar theory is illustrative.

4. The maintenance of the periodic motion.

If the solution of the equations of motion has been
constructed, the values of the integration constants
not included in additive constants in the phase-

| arguments must be so determined as to satisfy the con-

ditions necessary to maintain the multiple-periodic
motion, derived in sections 1 and 2.
The general relation

N

>

though not sufficient to determine the amplitudesif the
motion is not simple-periodic, is important as it
shows necessary restrictions in their values. For sup-

d w;
o Ji = = o,
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pose a multiple-periodic solution to exist and com-

“bine the indepéndent phase-arguments, now func- |
| stant of integration.

tions of £; then G is equal to an infinite sum of terms,
each belng equal to a constant multiplied by the
cosinus of a linear function of the time; however, as

d w; dC; d2 C;
2. dt <a’t>_a iz

dw .
the mean value of 2 J; —07' is equal to the sum of the

squares of these constants each multiplied by the mean
motion of the corresponding argument. Hence, if only
a, is negative, an upper limit exists for the absolute
value of each product of amplitude and mean motion
occurring in C,, Cj. . .; generally as oy, ag... are far
larger than — o, this upper limit is relatively small.
Moreover, as the coefficients of the second and higher
harmonics in the radial velocity largely depend on
C,,Cs, ..., the order of magnitude of these coefﬁments
‘may be understood

If only a 51mple-per10d1c solution is considered, |

then the relation is sufficient to determine the value
of the amplitude exactly.
If the function H is restricted to one periodic term

" preponderant in case of a close commensurability in |

the ratio 1 : 2 between the frequencies in the first and
second fundamental mode of vibration, the equation
is reduced to the simple relation between the constant
values of J, and J,:

“1J1+2“2J2=°§

hence «; and «, must have opposite sign if a solution
is possible. As the functional relation between J, and
J1 results from the construction of the periodic solu-
tion1), this equation determines the value of J,,
hence of the amplitude of the pulsation.

A general quantltatlve determination of the con-
stants of 1ntegrat10n involved in a multiple-periodic
solution is far too intricate; hence a qualitative treat-
ment must suffice, corresponding to the restriction of
the function R to a single periodic term in the pre-
vious section. - .

There the integration of the differential equations

, 2 (B, Ry) ?(R,+ R,) | Ry?
ik 0.X,2 P0X,0X;, ) 2
and the scjuare of the free amplitude divided by the

value of the mean motion of the argument y. The’
variation in 7, ¢ must be computed from the equation:

+k2k

dd(nyt) _0%(Q,+ Q1) sy , 92, + Q1)
dw, = 0z9/, X+ 029/, aXs.’
k 2 a (Qo + Ql) + kz k3

T 0zd ), 0z 9/,

1) B.A.N. No. 303.

LEIDEN
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has introduced two independent phase- arguments,‘
linear functions of w,, each connected with' a con-

Identification of these arguments with two of the
arguments y; establishes two relations for the deter-
mination of these constants of integration.

Firstly, the relation corresponding.to the y-argu-
ment contained in those parts of x, and x; that are
linear functions of w, is to be considered: The depen-
dent variable n,¢ does not contain this y-argument,
hence the relation is simplified to the form:

ow
“2]2 =

Transformatlon to the variables X,
relation to the equation:

x reduces this

0xg

ox
2‘|‘ 3X3 X=

,a2X2

hence to the equation:
ay kg Xy = a3k Xs.

X, and X are positive quantities to be connected by

the relation _
o ARAR) L IR AR

1— 2 d X2 d X3 .

Asa, and a5 are supposed to be positive, the solution
of the two equations by non-zero values of both X,
and X requires k£, and k3 to be either both positive
and non-zero or both negative and nons>zero. Then a
secondary oscillation may be maintained; the period
is probably large compared with the fundamental
period, though not excessively large.

Secondly, the relatibn corresponding to the y-ar-
gument contained in the 8-variations is to be con-

+ ks

sidered. Here the mean value of j 5 (z—z 3),being

equal to the mean value of X ,is equal to the mean

value of 0 Xi B
ly,

s ! hence to the product of, respective-

®(RARy) | , , #(RoA+Ry)) Ry?
30X, 0X, 3 X, 2

Q ,and Q , being those termsin the function Q that cor-
respond to the restrlctlon of the function R to R_, R;.

( 1)
o

to the product of, respectively,

+ ket

Hence the mean value of J; (1= 2, 3) is equal

022, e
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and the square of the amplitude divided by the mean

motion of the argument .
The equation of condition for maintenance of the

o, <J2 2]2 a(nlt)> +

m; are integers apprommatmg to the influence of the

sz

LEIDEN

oy <Jsab

129

pulsation corresponding to the argument y now being.
considered, reduced to its principal terms is:-

3‘]33(711 )> o3

values transforms this equation into the equation of
condition:

coeflicients — dw . Substitution of the computed mean
1 :
(R, + Ry) (R, + Ry) ’ 0%(R,+ Ry) PR+ Ry)| _
a2§k22 BX221 + ks ka X, bX; + ay ks kg X0 X, + ky? BX2 = |
( d2 02 02
My oy S(kzz (32;_131) + k2 k3 (g ;—]?1)§ + mg « §k2 k3 (bQ';;‘._IZQ’I) + k ? (BQ’Z ;[3Q’1)§ :

As R, generally is proportional to powers of V' X, |

- . . .. 02R;, 02R;, O2R,
1/ X, the derivatives TX,PIX, 0K, X, may be es-

timated to be of the order of magnitude of R, divided
by X,2, X, X, X;2respectively. Furthermore asa pre-
dominates, R, must be as regards order of magnitude
comparable with the differential coefficients of R, of
second order with regard to X,, X, multiplied by X2
Hernce the square of the mean motion of the argu-
ment as computed in the preceding section must be of
the order of magnitude of X; multiplied by the said
differential coeflicients. As the value of X, is limited
by the general upper-limit condition discussed in the
first part of this section, the period must be excessively
long.

This analysis of the state of motion and its mainte-
nance corresponding to the restricted function R
might also have been used, slightly changed, to gain
some-preliminary insight in the construction of the

simple-periodic solution already carried out more
generally in the former part of this section.

It is to be born in mind that a quantitative deter-
mination of the constants of integration involved in
the maintained multiple-periodic solution involves a
far more extensive and intricate analysis. However,
the existence of the upper-limit condition may replace
the analysis as far as concerns a comparison with ob-
servation.

5. Some special developments.

Itis useful to apply the preceding general analysis to
some extent to the special consideration of a function H
composed only of some terms of principal importance
if the values of n,, n,, n; are nearly commensurable in
the ratio 1 : 2 : 3. The coeflicients of the goniometric
terms have been computed in a former paper ).

The function H is restricted to the periodic terms
in 2w,—w, and 3w;—ws;, hence:

H=ny Jiy+ny Jo+n3 Js+ ko Jll/ﬁ cos (2w;—w,) +k13.]1 I/J3cos (3w,—ws) .

The formation of the equations of motion with w,
as independent variable requires the solution from
this equation of J; as a function of J,, J5, w1, w,, ws

k n
Fi2) , T2
ny ni

where necessary the approximation may easily be
continued.

Hence the simple-periodic solution is given by |

constant values of J, and [, to be denoted by 4, and
A; and values of 2w;,—w, and 3w,;—w; equal to
- either o or 7, the choice being so made as to ensure the

positive sign of 1/ Jeand 1/ J; suppose o to be the
required value. These constant values result from the

I/z cos:w'gé ]/A_2 cos2w,; + ]/Y2 COSX, ,
]/ﬂ sinw‘2‘= ]/A_2 sinzw, + ]/Y2 sinx,,

- 1) B.A.N. No. 359.
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2—_ 3;1/\]2‘305(21”1 wy)— k13 3/2§I
1

and z, the functional relation denoted by the symbol
Q. Hence, to a sufficient degree of approximation, the
function Q is determined by the relation:

372 J2 3%/ —
2nyz 2mp 2 %l/‘[ 005 (31— ;
‘solution of the equations:

LQ 00 _
HRVA oJs

Then this periodic solution is to be used in intro-
ducing the new variables X,, X, x,, ¥ by the equa-
tions of transformation:

=0,

345

V Jscoswy, =1 Azcos 3w, + |/ X, cosx3,
]/]3 smw3 = I/A sin 3 w; + [/X sinx, .
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