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Introduction

For a positive integer m, let ζιη denote a primitive m-Üi root of unity. By φ we
roean the Euler φ-function. In this paper we prove the following theorem.

THEOREM. Let φ (m) < 10, m Φ 16, m Φ 24. Then Z[C,„] is Euclidean for the
usual norm map.

Since Z [ζ,,,] = Z[£2m] for TM odd, this gives eleven non-isomorphic Euclidean
rings, corresponding to m = l, 3, 4, 5, 7, 8, 9, 11, 12, 15, 20. The cases m = l, 3, 4,
5, 8, 12 aremoreorless^classical [2 (pp. 117-118 and pp. 391-393); 8; 5 (pp. 228-231);
3 (chapters 12, 14 and 15); 4; 7]. The olher flve cases are apparently new.

For m even, the ring Z [ζ,,,] has class number one if and only if φ(ηι) ^ 20 or
m — 70, 84 or 90, see [6]. So there are exactly thirty non-isomorphic rings Z[C,„]
which admit unique factorization. If certain generalized Riemann hypotheses would
hold, then all these thirty rings would be Euclidean for some function different from
the norm map [9].

l . The general measure and Euclid's algorithm

In this section K denotes an algebraic number field of finite degree d over Q, and
KR is the R-algebra K ®Q R. Following Gauss [2; p. 395] we define the general
measure μ : KR -> R by

the sum ranging over the d different R-algebra homomorphisms σ: KR -> C, (cf. [1]).
It is easily seen that μ is a positive definite quadratic form on the R-vector space KR.

Let R be a subring of K which is integral over Z and has K äs its field of
fractions. Then R is a lattice of maximal rank d in KK. The fundamental domain F
with respect to ,R is defined by

F = {x e KR | μ(χ) «Ξ μ(χ~γ) for all y e R}.

This is a compact subset of KK which satisfies

(1.1)

Let

c — max {μ(χ) \xe F}.

Λ real number c' is called a bound for F if c' ^ c. A bound c' for F is usable if for
every χ e F n K satisfying μ(χ) - c' there is a rool of unity u e R such that
μ(χ — Η) = c'. Note that every real number c' > c is a usable bound, since no xe F
satisfies μ(χ) = c' > c.
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The norm N : KR -> R is defined by

the product ranging over the R-algebra homomorphisms σ · KR -> C The anthmetic-
geometnc mean mequahty imphes

(l 2) N(*)2 < ΟΦΟΑΟ", for χεΚκ,

the equahty sign holding ]f and only if \σ(χ)\2 = |τ(Χ)|2 for all R-algebra homo-
morphisms σ, τ · Κα -> C

For Λ- ε ί?, Λ: ^ 0, we have W(A) = |Α/Λλ| The ring Ä is called Luchdeanfoi the
noimifiOTeveiya,beR,b φ 0, theieareg, reR suchthatß = qb+i and N (r) < N(b)
Using the multiphcativity of the norm one eas'ly proves that R is Euchdean for the
norm if and only if for each xeK Ihere exists y c R such that N(x—y) < l

In the lest of this section we assume that eveiy cube root of unity contamed m K
is actually contamed in R This condition is necessary for R to be Euchdean, since
any unique factonzation domam is integrally closed mside its field of fractions
Notice that the condition is satisfied if K = Q(<Tm) and R — Z[£„] for somc integer
m ^ l

(l 3) LEMMA Let xeK be such that \σ(χ)\2 = l and \σ(τ — u)\2 = l for some root
of umty ueR and some field homomoi phism σ . K -> C Then xeR

Pioof Let y = σ( — xu~l)eC, ihenyy = l and y+y = — \ , so y is a cube root of
umty Since σ K ->· C is mjeclive, it follows that — xu~l is a cube root of umty
m K Theiefore our assumpüon on R imphes that — xu"1 eR, hence

x= (-λΐ/)"1 (~u)eR

(l 4) PROPOSITION Ifd is a mahle boundfor F, then R is Euchdean for the norm

Proof Let xeK be arbitrary, we have to exhibit an element ye R for which
N(x— y) < l Usmg (l 1) we reduce to the case xeF. Then μ(χ) ^ d, since d is
a bound for Γ If the mequahty is strict, then N(x) < l by (l 2), and we can take
y = 0 If the equahty sign holds, then μ(χ) = μ(χ—ΐί) = d for some root of umty
ue R, since d is usable We get

N(x)2 <ζ (μ(χ)/άγ = 1,

N (χ -u)2 ^(μ(χ-ιι)/ά)ά= l

If at least one strict mequahty holds, then we can take y = 0 or y = u If both
equahty signs hold, then

|σ<»|2 = \τ(χ)\2, \σ(χ~Η)\2 = \τ(χ~η)\2

for all σ, τ . Κ -> C, ar>d since

it follows that \σ(χ)\2 = \a(x-u)\2 = I for all σ But then (l 3) asserts xeR,
contradictmg χ e Γ since χ φ Ο
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2. Cydotomic fields

In the case when K = Q(Cm) and R = 2[ζ,η] for some integer wj > l, we write
μ,η, F,„ and c,„ insiead of μ, F and c, respectively. The function Tr„, : Q^m)R -> S
denotes the natural extension of the trace Q(£,„) -* Q. The field automorphism of
Q(Cm) which sends C,„ to C,,,"1 extends naturally to an R-algebra automorphism of
Q(Cm)R, which is called complex conjugation and denoted by an overhead bar. For
xeQ(C„)R, we have

(2.1) μηι(χ) = Trm(xx).

Note that a similar formula holds for arbitrary K, if complex conjugation is suitably
defined.

(2.2) PROPOSITION. Lei n be a positive divisor of m, and

e = [Q(O : QO = <K«)AK«)·

£·,„ < e2.c„. Moreover, if c' π α wsöfc/e boimdfor F,„ Ihen e2 .c' i s a usable bound
for F,„.

The proof of (2.2) relies on the relative trace function Q (£,„)-» Q(£„) and its
natural extension Q (£,„)« ->· Q(£„)n, notation: Tr. This is a Q(£„)R-linear map, given by

Tr(^)= Σ σ(λ'), for

where G denotes the Galois group of Q(Cm) over Q(£„), acting naturally on Q(C,„)R.
We have Trm = Tr„ o Tr, and one easily proves that Tr commutes with complex
conjugation.

(2 . 3) LEMMA. Lei χ e Q(QR and y e Q (£„)„·

Proof. Using (2.1), we find:

— Tr (x) -rt; Tr

= e . Tr„ - Tr (x)y+- Tr (3c) j;

= Tr„(Tr(x)j;+Tr(x)j;~e.yj;)

= Tim(xy+xy-yy)

(2.4) LEMMA. For χ e Q((,„)R, we have

μη,(χ)~ ~ E
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Proof. In the computation below Σσ and Στ refer to summations over G.

Σ //„(Tr Ma

jj) = Σ Αί»(Σ<Φ
j = l j = l \ σ

( <«

Σ Σ Σ
y = l σ τ

For σ, teG, lel C f f ; I denote the m-th root of unity σ(ζη^τ(ζη)-1. Then ζσ,τ = l if
and only if σ = τ, and

Σ α.« = ο if ζ σ . ϊ 9 έ ΐ ,

Hence the above expression becomes

Tr„ (Σ σ W σ(3ο) w } = m . Tr„(Tr (xx)) = m . Tr,„(xx) = m . μη(χ).
\a , !

This proves (2.4).

Proof of (2.2). Let χ e F,„; we have to prove μ,η(χ) ^ e2 . c„. Applying (2 . 3) wilh
y e Z[C„] we find that χ e Fm implies (l /e) Tr (x) e F„. Since also xCm

y belongs to Fm,
for y e Z, we have in the same way (l je) Tr (ArCJ) e Fn. Therefore

for all je Z, and (2.4) implies that μη(χ) ^ e2.c„. This proves that cm ^ e2 .c„.
Next assume that c' is a usable bound for F„, and let xef,„nQ(Cm) satisfy
μ,η(χ) = e2.c'. Then the above reasoning implies that c' = c„ and

μη (— Tr (χζη^)\ = c„ = c' for all j e Z.

Taking / = 0 we find that (1/e) Tr (x) is an element of F„ n Q(Q for which

ί

Since c' is a usable bound for F„, there is a root of unity u e Z[£„] such that

Applying (2.3) with y = u we get μη(χ-α) = //„,(*) = e2.c', which proves that
e2.c' is a usable bound for Fm.

Without proof we remark that the equality sign holds in (2.2) if m and n are
divisible by the same primes.

Since c1 = \ is a usable bound for F1} we conclude from (2.2) that \4>(m) is a
usable bound for F„„ for any m. If φ (m) ^ 4, then it follows that φ (m) is a usable
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bound for Fm, and that Z[£,„] is Euclidean for the norm, by (1.4). This gives us
exactly the cases m = l, 3, 4, 5, 8, 12 which were already known. In §4 we will obtain
better results by applying (2.2) to a prime divisor n of m.

3. A compulation in linear algebra

Let n > 2 be an integer, and let V be an (n— l)-dimensional R-vector space with
n

generators eu l < z < «, subject only to the relation "Σ e, = Q. The positive definite
quadratic form q on V is defined by

i W = Σ C*,-*,)2, for x = i * , e , e K .
l < S K j = S n i = t

Denote by ( , ) : V χ V -* R the Symmetrie bilinear form induced by q :

(x, 30 =
Then

(x, x) = q(x), for xeF,

(<?„ <?,) = /;—!, for l < i < n,

(et, e}) = - l, for l < z < y < ff.

The subgroup L of F generated by {e, | l < i < n} is a lattice of rank n— l in K
The fundamental domain

E = {xeV lq(x)^q(x-y) for all yeL}

= {x e V ] (x, y) *ξ k 00 for all y e L}

is a compact subset of V, and we put

b = max {g(x) | x e E}.

(3.1) PROPOSITION. TAe set of pohits xe E for which q(x) = b ii given by

i l " l
(3.2) — Σ ιβσ(<) Ι σ /s σ permutation of { l , 2, ..., n}} .

{ " '=1 ;

Moreover,

12

This proposition is proved after a series of lemmas. We put N = {l, 2, ..., /?}. For

A c N, let ex - Σ. e ^ <?.· We cal1 A proper if 0 ^ A ^ N.

(3 . 3) LEMMA. Let yeLbe such that y φ eA for all A c N. Then there is an element
z = ±Cj€L· such that

q(z)+q(y-z) <q(y).

Proof. Let y = ̂ mie> w^ w,eZ. Using Σ <?, = ° we may assume that
, = i ,=i

0 < Σ "7 "— 5 · F°r z ~ +^ we have

= ± (*"»>-£ '«,) -(«-l).
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If this is >0 for somey and some choice of the sign we are done. Therefore suppose
it is ^0 for all j and for both signs. Then for l ^ j < n we have

\

] πιλ + («-!) ;ζ 2η-2 < 2η,
: ι /

»m.> (γ. m] -(«-!)> -η + 1 > -«7"" \ ; = ι 7 "'
so Γ/Τ,· e (0, 1} for all j. Hence y = eA for some A <=. N, contradicting our assumption.

(3.4) LEMMA. Lei xeV. Then x e E if and only If (x, eA) ^ %q(eA) for all A c. N.

Proof. The " only i f" part is clear. " If": we know that

(x,eA)^%q(eA) for all A cz N

and we have to prove that

(x, y) ζ i^OO for all _ y e L .

This is done by an obvious induction on q(y), xising (3.3).

(3.5) LEMMA. Lei x0eE satisfy q(x0) = b. Then there are «—l differcnt proper
subsets Α(ϊ) <=. N, for l < i < n— l, such lhat x0 is the unique solution ofthe system of
linear equations

(3.6) (x, eA(i)) = %q(eA(i)\ l < / ^ n -1.

Proof. Put

S = {A c N | (XQ, eA) = %q(eA)},

then (ΛΓΟ, eA) < ^q(eA) for each A <= N, A φ S. If the linear span of {eA \AeS} has
dimension n-1, then there are «-1 subsets yl(/)eS such that {e^{/)| l < i < n-l}
is linearly independent over R. Then clearly XQ is the unique solution of (3.6), and
each y4(i) is proper since eA(i) Φ 0.

Therefore suppose that the linear span of {eA\Ae S} has codimension ^ l in F.
Then for some z e F, z ^ 0, we have

(z, eA) — 0 for all A e S.

Multiplying z by a suitably chosen real number we can achieve that
/o ^7\ /,. „Λ *%>. Λ(j. /) (x0, z) 5= υ

(z, ex) 5Ξ i«(ej - (x0, eA) for all A <= N, Αφ S.

Then for all A c N we have (x0+z, e^) < ̂ (SA), v^hich implies x0+ze£, by (3.4).
But using (3.7) we find that

q(x0 +z) #: 3(̂ 0) +l(z) > ?(-^o)j

which contradicts our assumption q(^0) = b = max {^(χ) | χ e E}.

(3.8) LEMMA. Lei x0eE, and let A, B c N be such that

(*o> eA) = %q(eA), (x0, eB) - ^q(es).

Then Ad B or B c A.
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Proof. Put C — A—E and D = B — A. If C = 0 or D = 0 we are done, so
suppose C =£ 0 =£ D. Then C r\ D — 0 implies

(«Unft^u/O-O^e*^ -(<?c, efl) = |C| . \D\ > 0.

Using eAnB+eA(jB = eA+eBv/e find thal

^ w B) = (x0, ex) + (*0, eB)

> 2<i(eA n B + eA u B)" ΟΛ n B, ̂  u ß)

Hence for X = /4 n B or for Ji = A u ß we have (jc0, e^) > iq(ex), contradicting
x0eE.

Proof of (3 . 1). Let x0 e£ satisfy ^(ΛΓΟ) = b, and let (yl(i) | l < i ίξ η- 1} be a
System of n — l proper subsets of N äs in (3.5). By (3.8), this System is linearly
ordered by inclusion. This is only possible if after a suitable renumbering of the
vcctors et and the sets A(i) we have

A(i) = {i + l,i+2,...,n}, for l =ξ /<«- ! .

By (3 . 5) we have

Write Λ:Ο

 = Σ xjCj in such a manner that Σ Λ·.· = 0. Then (*0, e,) = nxy,
J = l J = l

so our system becomes
n

Σ nx, = ii(n-i), for 0 < ι < n- 1.
j = ; + i

This implies
, for l ^ i < n,

We renumbered Ihe e, once; so we conclude that x0 is in the set (3.2). Since at
least one x0eE satisfies q(x0) = b, it follows for reasons of symmetry that conversely
every elemenl χ of (3.2) satisfies xsE and q(x) = b. Finally,

Σ

This proves (3.1).

4. Proof of the theorem

(4.1) PROPOSITION. Let n be a prime number. Then c„ — (n2-l)/12, and this is a
usable boundfor F„.

Proof. We apply the results of §3. The R-vector space Q(QR is generated by n
n

elements ζη

ι, I «S i «S «, subject only to the relation ^ ζη' = 0. For real numbers
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λ',, l ^ / ζ η, we have

/ " \ / n n
μη( Σχ,ζ»1 = Tr„ Σ Σ χιΧ]^\ « = ι / \ ! = ι ] = ι

n n n

= ». Σ χ?- Σ Σ xtxj
ι = 1 1 = 1 j = i J

— V (v — γ \2

2-* v*i ^)) '

Therefore there is an isomorphism of quadratic spaces (Q(C„)R, μη) = (V,q) which
maps ζ,,1 to e„ for l < i < n. Clearly, Z[£„] corresponds to L, so F„ corresponds to £
and c„ — b. Translating (3 1) we find: c„ = (n2 —1)/12, and the set of xe F„ for
which μ,,(χ) = c„ is given by

M " \
(4.2) — Σ ?ζ, σ ( 0 |σ ΐ8 a permulation of (1,2, ...,«} .

\ n 1 = 1 )

Let χ be in this set. Putting σ(0) = σ(«) we have

J n-l l «^ _
χ~ζη*" ~ — Σ ϊζ»" = Σ yC«" J

Λ 1=0 n j = i

This element belongs to the set (4 2), so μη(χ—ζη

α1"')) — c,„ which proves usability

of c„.

We turn to the proof of the theorem. The cases m - l, 3, 4, 5, 8, 12 have been
dealt with in §2. Further, (2.2) and (4 I) imply that

Cj = 4 < 6 = 0(7),

and in each of these cases φ(ηί) is a usable bound for Fm, Application of (l .4) con-

cludes the proof.

Without proof we remark that our method does not apply to other fully cyclotornic

fields:

(4.3) PROPOSITION. Let m ^ l be an integer for which c,„ < φ (m). Then φ (m) < 10
and m φ 16, m φ 24.
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