EUCLID’S ALGORITHM IN CYCLOTOMIC FIELDS
H. W. LENSTRA, JR.

Introduction

For a positive integer m, let {,, denote a primitive m-th root of unity. By ¢ we
mean the Euler ¢-function. In this paper we prove the following theorem.

THEOREM. Let ¢p(m) < 10, m £ 16, m # 24. Then Z[({,] is Euclidean for the
usual norm map.

Since Z[(,) = Z[{,,} for m odd, this gives eleven non-isomorphic Euclidean
rings, corresponding tom =1, 3,4, 5,7, 8,9, 11, 12, 15, 20. The cases m =1, 3, 4,
5, 8, 12 are more or less classical [2 (pp. 117-118 and pp. 391-393); 8; 5 (pp. 228-231);
3 (chapters 12, 14 and 15); 4; 7]. The other five cases are apparently new.

For m even, the ring Z[{,] has class number one if and only if ¢(m) < 20 or
m =70, 84 or 90, see [6]. So there are exactly thirty non-isomorphic rings Z[{,]
which admit unique factorization. If certain generalized Riemann hypotheses would
hold, then all these thirty rings would be Euclidean for some function different from

the norm map [9].

1. The general measure and Euclid’s algorithm

In this section K denotes an algebraic number field of finite degree d over Q, and
Ky is the R-algebra K ®oR. Following Gauss [2; p. 395] we define the general
measure 1 : Kz — R by

pu(x) = 3 |o(x)|?, for xeKg,

the sum ranging over the d different R-algebra homomorphisms o: Kg — C, (¢f. [1]).
It is easily seen that y is a positive definite quadratic form on the R-vector space K.

Let R be a subring of K which is integral over Z and has K as its field of
fractions. Then R is a lattice of maximal rank d in Kg. The fundamental domain F
with respect to R is defined by

F={xeKgy|pux)< pu(x~y) forall yeR}.
This is a compact subset of Ky which satisfies
(1.1 F+4R = K.
Let
¢ = max {u(x)| xe F}.

A real number ¢’ is called a bound for F if ¢’ = ¢. A bound ¢’ for F is usable if for
every xe F n K satisfying p(x) = ¢’ there is a root of unity ueR such that
p(x—u) = ¢’. Note that every real number ¢’ > c is a usable bound, since no xe F

satisfies u(x) = ¢’ > c.
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The norm N : Kg — R 1s defined by
N(x) =ITlo(x)], for xeKsy,

the product 1anging over the R-algebra homomorphisms ¢ * Kz = C The arithmetic-
geometric mean inequality implies

(12 N(x)* < (u(x)/d)!, for xeKjy,

the equality sign holding if and only if [6(x)|* = |7(x)|*> for all R-algebra homo-
morphisms ¢, ©* Kz — C

For xeR, x # 0, we have N(1) = |R/Rx| The ring R 1s called Luclidean for the
noimif foreverya,be R, b # 0, theie areq, r € R such thata = gb +1 and N(r) < N(b)
Using the multiplicativity of the norm one easily proves that R 1s Euclidean for the
norm 1f and only if for each x € K there exists y ¢ R such that N(x—y) < 1

In the 1est of this section we assume that every cube root of unity contained in K
15 actually contained m R This condition 18 necessary for R to be Euclidean, smce
any umque factorization domam 1s integrally closed mside its field of fractions
Notice that the condition s satisfied if K = Q((,) and R = Z[(,] for somc mteger
mz1

(1 3) LemmA Let xe K be such that |c(x)|* = 1 and lo(x—u)|* = 1 for some root
of umty ue R and some field homomoiphism o . K - C  Then xe R

Proof Lety = a(—xu"')eC,thenyy =1and y+7 = —1, 50 y 1s a cube root of
uity  Smce ¢ K — C 1s mnjective, 1t follows that —xu~! 1s a cube root of unity
mn K Theiefore our assumption on R implies that —xu~' € R, hence

x= (=)' (~uweR
(1 4) ProposITION If'd 15 g usable bound for F, then R s Euclidean for the norm

Proofs Let » €K be arbitrary, we have to exhibit an element ye R for which
N(x—y) <1 Usmng (I 1) we reduce to the case xe F. Then u(x) < d, since d 18
a bound for I' If the mequality 1s strict, then N(x) < 1 by (1 2), and we can take
y =0 If the equality sign holds, then u(x) = p(x—u) = d for some root of unity
ue R, since d 1s usable We get

NG < (ufdy = 1,
N(x—u)* < (u(x—w)/d)! = 1
If at least one strict mequality holds, then we can take y =0 or y =u If both
equality signs hold, then
o) =[G, lo(x—u)? = [t(x—u)}*
for all o, 1. K — C, and since
[Tle()|* = N(x)* =1,

G

TTlo(x—u)> = N(x—1)? = 1

it follows that |o(x)|> = |[o(x—u)|* =1 for all ¢ But then (I 3) asserts xeR,
contradicting xe I' since x # 0
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2. Cyclotomic fields

In the case when K = Q({,) and R = Z[{,] for some integer m > 1, we write
Um Fr and ¢, instead of p, F and ¢, respectively. The function Tr,: Q) — R
denotes the natural extension of the trace Q((,) — Q. The field automorphism of
Q(¢,) which sends {,, to ¢, ! extends naturally to an R-algebra automorphism of
Q(¢,)w Which is called complex conjugation and denoted by an overhead bar. For
x e Q((,)r, we have

2.1) tim () = T, (XX).
Note that a similar formula holds for arbitrary K, if complex conjugation is suitably
defined.

(2.2) ProrosiTION. Let n be a positive divisor of m, and

e = [Q) : QUI] = dm)/d(n).

Then ¢, < €*.c,. Moreover, if ¢ is a usable bound for F,, then e*.c" is a usable bound
for Fy.

The proof of (2.2) relies on the relative trace function Q((,) — Q((,) and its
natural extension Q({,)g — Q({,)r, notation: Tr. This is a Q({,)g-linear map, given by

Tr(x) = ¥ o@x), for xeQUw

o E

where G denotes the Galois group of Q((,,) over Q({,), acting naturally on Q({,)g-
We have Tr,, = Tr,oTr, and one easily proves that Tr commutes with complex
conjugation.

(2.3) LemmA. Let xe Q({)r and ye Q(( g Then
1
:um(x)_lum'\x—-y) = £ (run (_e‘ Tr (x)) = My ('g; Tr (x)—y)) .

Proof. Using (2.1), we find:
1 1
e <u,, (1) -n, (e (x)—y))

1 1
= e.Ty, (_(; Tr (9 5+ — Tr (J?)y~y37)
= Tr(Tr (x) 7+Tr (X) y~e.yy)
= Tr, (Tr (xy) +Tr (xy) — Tt (7))
= Tr,(xJ+Xy—yy)
=ty (%)~ p(x—)-

(2.4) LEMMA. For xe Q((,)x, we have

1 m .
=— 3 ).
) =~ & 1ulTr (e6,)
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Proof. In the computation below >, and ¥, refer to summations over G.

j,§::1 Aun(Tr (mej)) = jél Hy (; o'(xcmj))

=Tr (£ 25 0@et) @ )

i=1 0

=T, (z 207 ( £, (01" ))) .

For o, 1€ G, let {,, , denote the m-th root of unity ¢({,)t((,)"!. Then {, ,= 1 if
and only if 6 = 1, and '

T l.=0 if {, . #]1,
j=1

=m il {, ,=1.

Hence the above expression becomes
Tr, (}: o(x) 6(X) m) = m. Tr,(Tr (x%)) = m. Tr,,(x%) = m. u, (¥).
This proves (2.4).

Proof of (2.2). Let xe F,,;; we have to prove p,(x) < e*.c,. Applying (2.3) with
yeZ[(,] we find that x € F,, implies (I/e) Tr (x) e F,. Since also x{,’ belongs to F.»
for je Z, we have in the same way (l/e) Tr (x{,/) e F,. Therefore

PTEGLP) = o, (- Te (L)) < ¢,

for all jeZ, and (2.4) implies that u,(x) < e®.c,. This proves that c, < ¢°.¢,
Next assume that ¢’ is a usable bound for F,, and let xeF, n Q({,) satisfy
tu(x) = e*.¢’. Then the above reasoning implies that ¢’ = ¢, and

!
U, (—e— Tr (x{mf)) =c,=¢ foralljeZ.
Taking j = 0 we find that (1/e) Tr (x) is an element of F, n Q({,) for which
1
—T =
Hy ( o I (x)) c.
Since ¢ is a usable bound for F,, there is a root of unity ue Z[{,) such that
1
Uy (~e— Tr (x)—-u) =,

Applying (2.3) with y = u we get p,(x—u) = u,(x) = ¢*.¢/, which proves that
e?.c is a usable bound for F,,

Without proof we remark that the equality sign holds in (2.2) if m and n are
divisible by the same primes,

Since ¢; = % is a usable bound for F,, we conclude from (2.2) that Lp(m)? is a
usable bound for F,, for any m. If ¢(m) < 4, then it follows that ¢(m) is a usable
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bound for F,, and that Z[{,] is Euclidean {or the norm, by (1.4). This gives us
exactly the cases m = 1, 3, 4, 5, 8, 12 which were already known. In §4 we will obtain
better results by applying (2.2) to a prime divisor n of m.

3. A computation 1 linear algebra
Let » = 2 be an integer, and let V' be an (n— 1)-dimensional R-vector space with

generators ¢,, 1 < i < n, subject only to the relation Z e, = 0. The positive definite
quadratic form q on V is defined by

1
gx¥)= ¥ (x,—x)% for x= Y x,eeV.
1€i<jsn =1

Denote by (,): ¥V x ¥V — R the symmetric bilinear form induced by ¢q:

(x5, ) = Hg(x+y)—qa(x)—a ().
Then
(x, x) = q{x), for xeV,

(e,e)=n—1, for 1<i<mn,
(e,e)=~1, for I<i<j<gn

The subgroup L of V generated by {e,|1 <i < n} is a lattice of rank n—1 in V.
The fundamental domain

E={xeViq(x)<q(x—y) forall yelL}
={xeV|(x,») <lq(y) forall yel}
is a compact subset of ¥, and we put
b =max {g(x)| xe E}.

(3.1) PrOPOSITION. The set of points x € E for which q(x) = b is given by

1
(3.2) - Z, 16,y | 0 is a permuntation of {1, 2, ..., n}} .
1=1
Moreover,
_n’—1
)

This proposition is proved after a series of lemmas. We put N = {1, 2, ...,n}. For
AcN,lete, =3 ,.4¢. Wecall A properif s A+ N.

(3.3) Lemma. Let ye L be such that y # e4 for all A = N. Then there is an element
z=teeEL such that

q(z) +q(y—z) <q¥).
Proof. Let y =73 m,e, with meZ. Using 3 ¢, =0 we may assume that
1=1 =1
0< S m,<n—1. Forz= te wehave

= e —9@—a(y-2)) = (,2)—(z,2)

= + (nm,— i m,) —(mn~-1.
=1
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If this is >0 for some j and some choice of the sign we are done. Therefore suppose
it is <0 for all j and for both signs. Then for 1 € j < n we have

nm; < (i mi) +(n~1) < 2n~-2 < 2n,
=1

nm; = (i; m,.) —(n=1)=z —n+1> —n,
so m; €40, 1} for all j. Hence y = e, for some A = N, contradicting our assumption.
(3.4) LemMa. Let xeV. Then x< E if and only if (x, e,) < tq(e,) for all A < N,

Proof. The “only if " part is clear. “If*’: we know that
(x,e) <lgle,) forall A<= N
and we have to prove that
(e, y) <3q(y) forall yelL.

This is done by an obvious induction on g(y), using (3.3).

(3.5) Lemma. Let xqeE satisfy q(xo) = b.  Then there are n—1 different proper
subsets A(i) @ N, for 1 <1 < n—1, such that x, is the unique solution of the system of
linear equations

(3.6) (%, e40y) = Fq(eaip)s I<ig<n-1

Proof. Put
S={A4 = N{(x, e4) = 3q(cs)},

then (x,, e,) < 4qleq) for each A < N, A¢S. If the linear span of {e,| A€ S} has
dimension n— 1, then there are n—1 subsets A(i)e S such that {e |1 <i<n—1}
is linearly independent over R. Then clearly x, is the unique solution of (3.6), and
each A(i) is proper since e, # 0.

Therefore suppose that the linear span of {e¢, | A€ S} has codimension >1 in V.
Then for some zeV, z £ 0, we have

(z,e) =0 forall AeS.
Multiplying z by a suitably chosen real number we can achieve that
(3.7) (%0,2) 2 0
(z,e4) <4g(e)—(xg,e4) forall AcN, Aé¢S.

Then for all A = N we have (x,+z, e,) < %g(e,), which implies x, +z € E, by (3.4.
But using (3.7) we find that

q(xo+2) = q(xo) +4(2) > q(x0),
which contradicts our assumption g(x,) = b = max {q(x) | x € E}.
(3.8) Lemma. Let x,€E, and let A, B < N be such that

(%0, €4) = 2q(e), (0, €5) = q(ep).

Then A < B or B < A.
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Proof. Put C=A—~Band D=B—~A. If C=f or D = & we are done, so
suppose C # J # D. Then Cn D = ¢ implies
(€4 nps €40 8)—(ess ep) = —(ec, ep) = [C].|D] > 0.
Using ey  g+e4 . p = e, +ep we find that
(X0, €4 o B) + (X0, €4 u 5) = (%0, €4) + (X0, €p)
= }q(e) +1q(es)
3q(est+ep)—(e4 €x)
> 3q(eanpteion)—(€snm Caon)
= kq(eq »p) T149(es L B)-

Hence for X = An B or for X = AU B we have (x,, ey) > %q(ey), contradicting
xp €L,

Proof of (3.1). Let xy€eE satisly q(xg) = b, and let {A(N]|1 <i<n—1} bea
system of n—1 proper subsets of N as in (3.5). By (3.8), this system is linearly
ordered by inclusion. This is only possible if after a sunitable renumbering of the
veetors e; and the sets A(7) we have

A = {i+1,i+2,...,#1}, for 1<ign-1.
By (3.5) we have

n
_Z+1(xo,ej)=%q(eA(;))=%z‘(n—i), for 1<i<n—1.
J=i

n n

Write xo = j}__jlxj e; in such a manner that _Z] x;=0. Then (xo,e;) = nx;;
= i=

so our system becomes

Z nx; = %i(n—i), for 0<i<g<n~-1.
IEILS!
This implies
nx; = 1—-%‘—(}1'*‘1), for 1<i < n,
1

n

M=

.‘:0 = ié‘i.
1

We renumbered the e; once; so we conclude that x, is in the set (3.2). Since at
least one X, € E satisfies g(x,) = b, it follows for reasons of symmetry that conversely
every element x of (3.2) satisfies xe E and gq(x) = b. Finally,

b= 2 (=¥ n? = (n?—1/12.

1€i<j<n
This proves (3.1).
4. Proof of the theorem

(4.1) PROPOSITION. Let n be a prime number. Then ¢, = (n*—1)/12, and this is a
ysable bound for F,.

Proof. We apply the results of §3. The R-vector space Q((,)p is generated by #

n .
elements (,}, 1 < i< n, subject only to the relation 3 {,* = 0. For real numbers
=1
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x, 1 <1< n, we have

n(é: x, ) = Tr, ( é J:“ X, X, C,,'_’)

n

=n. 3 x*— }“ }: X, x
=1 1=1 =1
= (xl___xl)Z.
1€1<€n

Therefore there is an 1somorphism of quadratic spaces (Q(¢,)g, 1t,) = (V,q) which
maps {,' to e, for 1 <i < n. Clearly, Z[{,] corresponds (o L, so F, corresponds to E
and ¢, = b. Translating (3 1) we find: ¢, = (n*~1)/12, and the set of xe F, for
which p,(x) = ¢, 15 given by
1 n
4.2) {71— 31, ¢ is a permutation of {1,2, ..., n}
1

1=

Let x be in this set. Putting ¢(0) = o{(n) we have

X (GO Il a(t) 4 G-1
o . . s .

€n 8 n Zolén n Co’] .

1= j=1

This element belongs to the set (4 2), so u,(x~{,"™) = ¢,, which proves usability
of ¢,.

We turn to the proof of the theorem. The cases m = 1, 3, 4, 5, 8, 12 have been
dealt with in §2. Further, (2.2) and (4 1) imply that
er =4 <6=p(7),
< 3%.c3=6=¢09),
¢y =10 = ¢(11),
¢15 < 2705 = 8 = ¢(15),
Cr0 € 2%.05 = 8 = ¢(20),

and in each of these cases ¢(m) is a usable bound for F,. Application of (1.4) con-
cludes the proof.

Without proof we remark that our method does not apply to other fully cyclotomic
fields:

(4.3) PROPOSITION. Let m = 1 be an integer for which c,, < ¢(m). Then ¢(m) < 10
and m # 16, m # 24,
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