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On the extension of the theory of adiabatic Cepheid pulsation, by Miss /7. 4. Kluyver.

1. In the theory of adiabatically pulsating stars,
developed in order to explain Cepheid variability,
the usual method of investigating second-order terms
breaks down in the particular case where two of the
characteristic frequencies are approximately com-
mensurable.

Dr Wortjer has shown®) how the theory of
periodic solutions from celestial mechanics may be
applied here, and the present paper contains a solu-
tion of EDDINGTON’s equations, obtained with the aid
of this method. Further it is shown that the observed
changes in radial velocity of the cluster-type variable
RR Lyrae can be interpreted as due to approximate
commensurability between the first and third charac-
teristic frequencies.

2. The equation for the displacement is given by
the hydrodynamical equation, combined with the
first law of thermodynamics in the adiabatic form
and the equation that expresses conservation of mass.

The hydrodynamical equation is:

a - d(rd)
dr T T8 T 0 g

where: r = distance from star’s centre,
P = total pressure = gas pressure -, radi-
ation pressure,
acceleration of gravity,
density,
or, [r,.

i

g
0
4

i

Quantities with index zero are to be given the
equilibrium values for a star with polytropic index
equal to 3.

The conservation of mass leads to the equation:

L= (142 <I+'C.+ o j—iyi

) M. N. 95, p. 260, 1935-

For adiabatic oscillations the first law of thermo-

dynamics gives:
P <ﬁ>’/
P, \po/’

where y is the ratio of specific heats for matter and
radiation taken together. Thus P/P, can be expressed
in ¢ and d¢/dr,.

The hydrodynamical equation may be written:

P gt T d%
o podrs 74 r* di?
which gives:
it * dP g1,
i P (D)-

All quantities occurring in equation (I) can be
developed in terms of £; the first-order terms give:
¢ Py d(PIP) | g(PP.) | 4t
dez .0, dr, r, P, 7o
With £ = s cos n¢ and, as new independent variable

the distance from the centre, z, measured in EMDEN’s
units, this equation becomes:

dzs 4—pds o.n® (R\* 1 o
dz* - z dz + % Py <Z’> '7;—(3—4/7)2—25 §=0

R and Z are the values of 7, and z at the outer boun-

dary of the star, p = Sofelo o, and P, are

u
P, tudz!
06\ 13
the central values of o, and P,, and u = <‘—> .
e (B
Py \2Z)
this is EppiNaTON’s well-known equation, which may
be written, after multiplication with z%#, in the form:

With:

d / d.f. n?
CARRL PRI ST

An infinite number of values for 2 exist, such
that for any of these the equation has a solution s.
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314 LEIDEN

that satisfies both boundary conditions of being finite
at the centre and at the outer boundary. The functions
sw form a complete set of orthogonal functions; they
may be normalized.

3. Equation (I) may be written:

& _ _(R> 3(1+c) AP uP, §

dr zpo dz ' Z2(1+0)p, )

The solution £ can be developed in the charac-

-

since p, = p. #? and s, = 3/0C%,.

f<1+c

The first integral, J;, may be transformed by par-

B. A.N. 276.

teristic functions, in the form:
= Z Co (t) So) (Z),
oW

where the coefficients (', depend on the time only.
Differential equations for the coefficients Cr, in-
cluding terms to an arbitrary degree in Cw, are
derived by developing the right-hand member also
in terms of the functions s» and equating the coef-
ficients of s» in both members. The coefficient of s,
in the development of the right-hand member is
found by multiplying it with z%3s. dz and integrating
from o to Z; it is thus equal to:

M’_i % )
d 2+ | ixnrac, ¢ “y

tial integration, the integrated terms disappearing at
the boundaries, into:

A
B R o .
Li=— [Py} G2 55| dz=
z z
J— C 2 bC 2 agt" — 2 B po
= ”f %2(““;)7' zac, T3 5, H Y Zazac,,,gdz_-fP" 5‘6‘5(}?)‘”‘
. O (P\_ p0%p 1 90P I/p yP 9p 0%p
Since: m(,z)—Pacﬁ;m Pig == (=) Pag
. . . As to the second integral, it is evident that:
this last integral is equal to: z
I = {/Z P, -4 dz — _a_ MZzPo
( -H;) an EC(,),[ I"I‘C

A
0 P
+a—c;0f6_—1rp“°dz-

#Cu_ 1 (Zy 3
e

The first integral corresponds to the internal
energy, the second one to the gravitational energy.
In the right-hand member the terms of different
degree in (. are treated separately, and therefore

P Al u4<P)7_I =

1—2) Tl !(yfl 2 p, dz—

o

Hence the differential equation for C(n is found
to be:

2P, |
1—!-?; ) (-

the integrands are developed in powers of &.
N 4
Since £ — (£) and P = p.(%)" = P,
P, o pe
the first integrand may be written:

z°u4<1 N C>_2(7_I)< - Z:-}_Zaz;>—(7—x)

71 Po 7— 1
The second integrand becomes:
P, pau
14L
. dC. P, (Z\* S 2wt 2 (7—1) Lo T 7uz w |
Thus: % = _,Z<P> o ( ( +z> <1+(,+z&> de— [225 az .
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The terms of order zero disappear with the differentiation. Those of the first order are:

e (Zy
(2

They are seen to beidentically zero, since by partial
integration, the integrated parts disappearing, the

z z a7 z )
— 3]z”u4'cdz—fz3u4§£dz+jyzzu‘*ﬁ_dzj.

second integral may be shown to cancel the two
others:

z

A - A
—fz3u4g»zdz= + 3fz’u42;dz——f‘uz’-‘u4<:dz.

The terms of the second order are:

OC Lf 3~-/ C”r(z—s/)cZaz
p:<R>

By partial integration the first term in the first
integral is transformed into:
z

<I _%7> f#z“ i dz,

o

HOHEE

After the substitution { = 2Cus» the form in
brackets may, with the aid of the differential equation
for sw, be written:

— 2 w? Co So 24 3. .

On account of the orthogonality of the functions
s» the only terms left after the integration are:

1 P,
—2106<R> 720) Cm——*Z—‘ﬂ C2.

o

P —
gyz’<a—§> E 22 ut dz + fuz’u“;’dz

0z

z
. ) 0L\? | ,
1wy (Y et frewea ]

and the second term into~

—yfzz (z u4—>dz

so that all terms taken together give:

(zw“ —2) — (3—4ly) 2wt % dz

Thus the differential equation for Co, to the first
order in C., becomes:

a*Co

ar = — n* Co.

4. In the case of approximate commensurability
the second-order terms in the differential equation
become critical. These are found from:

JZ?)QBLCM[sz“"{(I—gV—P272>c3+<1_gy+gya>cgz§_§+
+-7 (37— )c:za(ag)z 67(7+I)z3<g> dz—fpzw*li*dz],

which expression may, by partial integration of the second term in the first integral, be transformed into:

ff(zy_a_f{(; .3 : - By NI
o \&) e, 1G5 )*C+ 7(37 I)€z<> 6y(+1)z<z>}zu 2.

The function § contains all functions s., but since

this investigation is concerned with the effect of

commensurability, only the- first characteristic os-

cillation and the one which has a frequency equal to
twice the first characteristic frequency, have been i in-
cluded.
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At first it had been expected that for 3—4/y equal
to o'4 the second characteristic frequency would be
about twice the first one; however, it turned out that
for this value of the parameter the third and first
characteristic frequencies are approximately com-
mensurable, whereas for the second and first ones
this is the case for 3—4/y somewhat smaller than o-2.
It is possible that for values of the parameter between
0’4 and the maximum o'6 the fourth and first cha-
racteristic frequencies are commensurable. The
value o°2 is less probable on account of the hydrogen
content of the stars and the case where 3—4/y = 04
has been investigated here.

The characteristic values of w? and the corres-

LEIDEN

B.A.N. 276.

ponding functions s» have been found according to
the method formerly used ), which has been slightly
refined in the following way. At z = 5o the quotient
of ds/dz and s is determined both for the solution
starting at the centre and for that from the outer
boundary; the characteristic frequency is the one for
which these two quotients are equal. The final values
are »? = ‘10391 for the first and »'? = "39179 for
the third characteristic oscillation 2). Details of the
successive approximations are shown in Table 1.
The functions # and p have been taken from the
B. A. Mathematical Tables, vol. II, the solutions for
' w2 = ‘110 and »'? = 466 for z from o to 50, from
5 the paper by J. A. EDGAR.

TABLE 1.
First characteristic oscillation Third characteristic oscillation

. 15 nside) | 2% (outsi - 2 I8 sae B outsi i
) sk (inside) s (outside)| difference 2 s &z (inside) s I (outside)| difference
‘11000 -+ ‘29150 + 52187 — 23037 ‘46600 — *9b645 + 1°5556 — 2°5201
'10400 + 47383 | + ‘47730 | — ‘00347 "42000 — 1065 | + ‘7514 | — °8579
'39091 + 2044 | + 2685 | + ‘0259
‘10391 + 47627 + ‘47668 — 00041 39179 + 2834 + 2820 + ‘oo14

All solutions of the equation for s must, at the
centre and at the outer boundary, be started with
the aid of a series, on account of singularity of the
coefficients. In the outer part of the star the series
for the first characteristic oscillation can be used
as far inward as z = j5o.

Numerical data about the trial solutions and the
characteristic functions s, are given in the following
tables; all start with value unity. Table 2 contains
the second trial solution for the first characteristic
vibration, the first one having been taken from
Epcar’s paper 3). Corresponding data for the third
characteristic vibration may be found in Table 4.
The solutions for the final values »2? and »'?, one for
the inner and one for the outer part of the star, are
given in Table 5. They have been computed by
extrapolation and interpolation from the trial
solutions; for the first characteristic oscillation the
series has been used in the outer part of the star.
The coefficients of this series, together with those
from which they have been extrapolated, are shown
in Table 3. If the two parts of each final solution are

1) B.AN. 17, p. 265, 1935.

2) This result is different from the one found by J. A.
Epcar, M. N. 93, p. 422, 1933, viz. > = 466 for the second
characteristic vibration; however, his method, where the outer
part of the star can hardly be taken into account, is not so
suitable for a determination of the higher characteristic oscil-
lations.

83) lc., Table III, p. 428.

combined into one, the values at the outer boundary
become, for unit central amplitude, 9-0499 and
114°34; for the normalized functions these boundary
values are 1°47042 and 22°520.

TABLE 2.
Solution for w? = *10400.
ds d?s

z s dz dz2

o'o I -+ 1°0c0000 ‘00000 -+ -08s9
o2 ! 1°00172 + ‘o1722 ‘0866
o4 ! 100691 *03475 ‘0889
o6 | 1'01566 ‘05290 0928
o8 } 1°'02813 ‘07198 ‘0983
1o 1°04454 '09231 ‘1054
12 1°06516 ‘11425 ‘1143
14 | 1°0903%7 ‘13814 ‘1250
16 | 1'12058 16439 ‘1378
1'8 1°15631 ‘19340 ‘1527
2°'0 1°19815 22561 ‘1699
22 1°24680 26152 ‘1897
2'4 1°30304 ‘30167 ‘2123
26 1°36779 *34665 2380
28 1°44207 ‘39710 2671
30 1'52704 "45376 *3001
32 1°62403 ‘51742 *3373
34 1773454 '58898 '3792
36 1'86022 *66945 ‘4264
38 2°00298 ‘ 75991 ‘4793
40 2°16493 " ‘86160 ‘5387
42 234846 ‘97587 "6053
44 2°55622 1'10422 *6796
46 279119 1°24825 #7622,
48 305668 1°40970 8538
50 | + 3'35635 1+ 159034 + 9539
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TABLE 3.
. . . z\*
Coefficients in the series s = X ki (1 —7>, néar the

outer boundary.

w? = 11000 w? = 10400 ©? = ‘10391
i ki ki ki
o + 10000 | 4 1'00O0O0 + 10000
1 — 40700 = — 38262 — 38225
2 + 87340 =+ 78664 + 78531
3 — 123991 | — 106953 — 106692
4 + 133154 | -+ 1170670 + 11°0326
5 — 118120 | — 0°5088 — 9°'4736
6 + 9198 Lo+ 7223 + 7193
7 — 6538 | — 5025 — 5002
8 + 47305 .+ 37250 + 37234
9 — 2°658 — 1°966 — 1'956
TABLE 4.
Solutions for »'2 = ‘42000 and »'? = *39091.
i
% 0’2 = 42000 »® = ‘39091
i | ds d%s ds ' d2s
! 5 : —_ —_— —_ —

F 1 &z dz? ! dz | dz?
oo . - 100000 ‘0000 + o227 -+ 1°00000 l ‘0000 { + 0285
o2 1°00045 + ‘oo44 ‘0208 1'00056 4+ 0056 : 0268
04 1°00171 ‘0080 0149 1°00219 0105 ‘0217
0’6 1°00356 *o101 + 0045 1°004677 ‘0140 : + -oizs
08 1'00557 0095 — o113 1'00763 ' ‘0152 — ‘o016
10 1'00710 + ‘oos1 ‘0339 1'01051 ‘0129 i ‘0218
12 1°00725 — 0046 *06049 1°01249 ; + o059 : ‘0497
1’4 1'00477 ‘0216 ‘1065 1°01245 | — ‘0076 ! ‘0873
16 ‘99798 ) ‘0481 ‘1609 100889 0298 ‘1370
1'8 ‘98471 ‘0870 *2308 ‘99980 0633 ‘2014
2°0 ‘96214 ‘1416 3189 ‘98259 ‘ITIS 2834
22 '92674 2159 4275 "95397 ! ‘1781 '3859
2°4 87418 ‘3141 ‘5582 ‘90985 2674 ‘5113
26 79921 '4407 7ITT 84519 3842 ‘6610
28 '69574 "5998 ‘8834 "75400 "5334 "8345
30 55688 7949 1°0681 62937 7194 1'0280
32 "37530 1°0270 12510 "46359 "9453 ‘ 1'2322
34+ 14377 12936 1°4075 + 24853 12118 1'4293
36— 14384 1'5356 1°4979 — 02357 1'5145 1'5885
38 ‘49095 1'8842 1°4604 35892 18414 1°6599
40 ‘89575 2°1552 1'2030 “76012 2°'1675 1'5656
42 1°34749 2'3420 —  °59019 1'22301 2'4488 1'1873
4'4 1'82112 2°3560 + 5617 173187 26120 — 3489
46 226962 - 2°'0640 2°5179 2°25232 2°5408 + 172072
48 261359 — 12725 56221 272087 2°0568 3°8531
50 — 272739 + 2905 + 10°3134 — 3'02993 — 8919 + 81208
50 ° — 024569 — ro1846 + 0488 — 026476 — 00711 + o724
52 026962 — 00365 ‘1037 ‘026103 + -o1278 1307
54 ‘025101 + ‘o2515% *1907 020402 ‘04716 2189
56 — 015454 '07579 '3250 — 005332 "10320 "3499
58 + 007422 ‘15973 ‘5280 + -022966 "IQII3 ‘5412
60 ‘051744 '20353 8296 ‘073600 ‘32528 ‘8169
62 ‘129716 50090 1'2719 ‘157482 52574 1'2106
64 ‘250224 81553 1'0134 '290240 ‘82038 17675
66 "466206 128498 2'8359 "494450 124777 2'5499
68 787930 1°'97599 4'1509 801687 : 1'86092 36415
70 1°277504 2°98171 60132 1255984 2773247 5'1559
72 + 2'or0123 + 443172 + 86348 + 1°918431 + 3'96159 + 7°2468
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TABLE 5.
Final solutions for the first and third characteristic oscillations.
w? = 10391 o2 = *39179
: ; s ; ds
dz dz
! .

[eXo} <+ 1°00000 ! ‘00000 -+ 1°00000 ‘0000
o2 1°00172 + ‘ory22 1°00056 + -0056
0’4 100691 ‘03476 1°00218 ‘0104
o6 1'01566 '05291 1°00464 ‘0139
o8 102813 ‘07198 1'00757 ‘0150
1’0 1°04455 09233 1°01041 ‘0127
12 106517 ‘11427 1'01233 + ‘oosz7
1'4 1°'09039 ‘13818 1’01222 — ‘0080
1’6 1°12061 16445 1°00856 ‘0304
18 115635 ‘19348 ‘99934 ‘0640
2’0 1°19821 22572 98197 ‘1124
22 1°24687 26167 ‘95315 ‘1792
24 1°30315 5 30187 90877 2688
26 1°36795 "34692 '84380 "3859
28 1°44229 39747 - 75224 "5354
30 1'52734 "45426 62717 7217
32 ! 162445 | ‘51809 '46092 ‘0478
34 1773512 ! '58988 + 24536 1°2143
36 - 1'86100 f *67066 — 02721 1'5167
38 2°00405 76154 36292 1-8427
40 ; 2°16638 86383 76423 2°1671
42 ‘ 2°35044 97891 1°22678 2°4456
4'4 2'55891 110835 173457 2°6042
46 279471 125386 225284 25264
48 3°06121 1'41764 271762 2°0330
50 -+ 3°36269 + 1'60155 — 3702076 — ‘8561
50 + 37157 + 17712 — 026418 — 00745
52 ‘40925 20008 ‘026129 + -o1z28
54 45181 22587 "020544 "04649
56 i 49982 25488 — ‘006124 *10237
58 ] ‘55399 28752 + 022495 "19018
60 4 ‘61509 32426 ‘073025 ‘32432
62 '68400 '36557 "156641 "52499
64 | 76168 41204 289300 ‘82023
66 ‘84922 '46434 '493594 124890
68 "94784 ‘52315 ‘801270 1'86441
7°0 1'05897 ‘58936 1'256636 274002
7'2 + 118414 + 66387 -+ 1'921209 + 3°97583

The term needed afterwards is the one proportional to C%.C.’; its coefficient is:

z z
Pc Z\*? 9 9 - R , 2 I . dSm 2 ,
— p_c<73> <2+-2—7—5/>fsmsm 1z zﬁdz—z Y (3/—1)f<a,z> So’ ztut dz —

o o

zZ
d(’) d(l) d(l) 2d (/)/
y—I)fmij« 4u4dz———y(/+ )f<?1%> —5;z5u4dz

o

Because the possibility of this general treatment | above in actually computed integrals, it may be
had not been realized from the beginning, the | transformed, by partial integration of the last integral
coefficient had been derived in a more complicated | and application of the differential equation for s,
form. In order to express the coeflicient as found | into:

4 z
P, 1Z\? 2,9 9. 2c 1y g2 . . dso
_E<R>y <;+;—E/>fswswy.z u4dz—(/+1)mfswzzswzsusdz_{_

o
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The six integrands are given in Table 6, the inte-
grals being shown in the last line. For the integration

z V4
dse dsw\*?
+ (y+ 1) <3 — g) fswEsw'qu*dz — (37 + I)f<%> So’ ztut dz +

o

‘1 Z g z
T (- ey

LEIDEN

o

o

dse dse’
So —— —— zZtut dz

dz

dz

319

the interval o'2 has been used from o to 60, and
from 6'0 to Z the interval o1.

TABLE 6.
ds, S dse\2 ds,\2 ds,, ds,y
z 52, 5, 22 ut S gz S’ 25 ud S T 2ut <7z> Soy’ 22 ut <a'—z> S e rut | s, P 2
o'o ‘0000 ‘000 I ‘0000 ‘00000 ‘000 ‘0000
o2 + ‘ooz1 ‘000 : ‘0000 ‘00000 ‘000 ‘0000
o4 *0306 ‘000 +  -ooos4 + 00003 ‘000 *0000
06 ‘1352 + ‘004 i ‘0042 ‘00029 000 -+ ‘ooo1
o8 3562 ‘018 i ‘0200 ‘00142 +  oox *0003
o 6950 obr ‘0614 "00460 "005 “0007
12 I'I1110 ‘159 ; 1430 ‘01137 ‘018 + o006
1'4 1°5392 ‘343 f 2731 ‘02318 ‘048 — 004
1'6 1°9143 ‘645 1 "4495 ‘04088 ‘106 ‘0084
'8 21884 1°088 ; ‘6501 ‘06438 ‘198 | '0246
20 2°3358 1°683 i *8800 ‘09238 ‘332 ! ‘0561
2°2 23514 2°412 ! 1'0857 12238 ‘501 ; ‘1096
2'4 2°2441 3226 12476 "15068 ' 694 i 1924
26 2°0290 4’029 ; 1°3379 ‘17257 } 882 ! ‘3112
2'8 17244 4665 1'3307 "18253 ‘ 1'027 } 4714
30 1°3481 4’902 | 12028 17457 1°073 g 6753
32 "9169 4424 9357 "14281 ‘955 ; "9206
34 + 4468 + 2823 + 5165 + 08235 + 597 | 1'1988
36 — 0449 . — 368 — 0583 — '00964 — o076 ! 1'4912
38 ‘5389 5'650 7782 13241 1’124 | 17692
40 10114 13°424 : 16132 28006 2°573 l 1'9916
42 1°4331 23828 | 2°5069 *44003 4385 [ 21062
44 17689 30467 33711 '59243 6°425 J 2'0535
46 1'9785 50086 470832 71078 8427 J 177767
48 2°0209 62256 44923 "76570 9986 i 12369
50 1-8624 69219 ‘; 4°4370 73098 10°570 [ — 4338
52 1°4862 66113 37781 ‘50290 9605 ; + ‘5700
5'4 "9096 48024 2°4554 "36042 6629 | 16315
56 — ‘2011 — 12°510 — ‘5742 — ‘07717 — 1640 i 2'5297
57 + ‘1656 + 11158 : 4 4859 -+ 06190 + 17426 | 28372
58 5124 37°308 i 1'5424 18471 4'643 | 30088
59 8149 64033 : 2°5157 ‘28074 7766 1 3°0241
60 1°0483 88744 i 33157 ‘34105 10'488 g 28730
61 1'1895 108°333 ; 38523 36040 12°475% i 25639
62 1'2219 119°550 4'0491 '33893 13°417 ! 21254
63 1'1395 119°588 38607 28302 13°081 i 1°6076
64 ‘9521 107°040 32963 ‘20554 I1°413 ‘ 1°0772
65 ‘6900 82'992 2°4396 12409 8626 i 6081
6'6 ‘4049 52°044 1°4613 ‘05675 5'273 ‘ 2626
67 1637 22'457 6028 ‘01583 2°219 i 0697
68 + ‘0268 + 3917 + ‘1006 + "o0o132 + 377 - + -0056
69 ‘0000 ‘000 *0000 *00000 ‘000 4 *0000
70 — 0598 — 9898 — 2330 + ‘00339 — 907 + o133
71 ‘6155 108229 2'4412 ‘07130 9682 27708
72 — 2'7427 — 511°881 — 11'0713 + ‘49110 — 44°691 | + 1°8128
inte- :
grals + 2°4562 + 10202 — 8453 — "4595 — 1872 [ — 5486
|

With these numerical values the coefficient of | which becomes, by multiplication with the normaliz-
(%, Co is found to be equal to

+ 4144 % <%> 2

ing factor:

+ ‘02155%2 = -+ ‘2074 n°.
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The numerical value of this coefficient will, in the
neighbourhood of the commensurability, change

only slowly with changes in y.

5. Equation (II) may be written:

¢ H dC _ H
& ¢ dr ]
d¢’  H  dC _H
F I Yo TR Yol

where C and C’ have been put for Co and Co.
New variables J and w, /' and w’ are introduced
by the equations: :

C= ]/ET‘L—]cosw, C= " 2 Jnsinw;

ST |
¢ = l/ z_nj'_ cos w', C'=}"2]'n sinw'. !

|

Since this is a canonical transformation, the new
variables satisfy the equations:

dj _ M dw _H,
a = at — oj’
aj _ _oH  dw' _ H
dt — T oaw”  dt — oJ”

Because 2n—n’ is about zero, the terms in H with |
argument 2w—w’ are the most important ones. This
argument occurs only in a term given by the product
C2C’, the coefficient of which has been computed in |
the preceding section. This product gives also terms
with the arguments 2w—-+w’ and w'; since these are
not critical they have not been included. Thus H ‘

has been used in the form: :

4

H= —nj—n'J 4 1467 Jn

There exists a periodic solution for which w and ‘

o7 cos (2w — w').
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w’ change linearly with the time, such that 2w—w’
is constant and J and J' are constant. If Jand J’
do not depend on the time, d3H/ow and 3H/[dw’
must be zero, which gives the condition:

sin (2w — w') = o.
This equation is satisfied for 2w—w" equal to zero
or m, and cos (z2w—w') = + 1.
With: H= —nJ—n'J 4+ 1467 Jn]/‘nl ,
it is found that:

dw

- /T
T n 14677 Pk

dw’ fy Jn
dr T ET

The condition: % (2w —w') = o,

' gives a quadratic equation for V/(J'/n’), viz.

(RS R Ve S

For a definite value of 2n—n’ the two solutions £

' found for 2w—w’ equal to zero are the same as those

for 2w—w’ equal to 7, because both 1/( /' /n") and cos w’

' change sign, if 2w—w’ is taken to be = instead

of zero. Therefore it suffices to consider only one
sign of the second term in the quadratic equation;
the negative sign, corresponding to 2w—w’ equal to
zero, has been chosen.

Of the two solutions for y/(J’/n’) only that one is
used, which becomes zero for [ equal to zero.

At a distance from the commensurability the root
occurring in the expression for /(J'/n") may be
developed, which gives, if only the term of the first
degree is included:

’ ! / n ? n
’!7= 1‘7042n l[I—]// ;\I+.08609J<2n—n’> %]_—_—-0734% 2n—n"

n n

Thus J’ is seen to be proportional to J? in the
same way as the coefficient found in the preceding
paper 1). On the other hand it is evident from the
quadratic equation that for 2 approaching 7', J’
approaches the value /4.

As the observations of RR Lyrae are treated of in
section 7, the numerical data relating to this star
may be used here:

J n—n’ 1

J — 000308, 2" = .
n 3% T T bra12

1) B.AN. 1, p. 265, 1935.

© Astronomical Institutes of The Netherlands

n'
The second term in the square root is then equal

to ‘0607, so that development including the first-
order term only, is a good approximation. It gives:

I/;{,l = — *000767.

The periodic solution derived here is only a par-
ticular solution. Adjacent ones may be found by
considering variations of the variables'!); this results
in a differential equation of the second order, with
constant coeflicients, for the variation of the critical

1) Gf. Dr J. Wortjer Jr, B.AN. 1, p. 219, 1923.
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argument. Thus 2w—w’ is seen to change periodi-
cally with a frequency v, given by:

— = '02I§50 5\ 2 7 )"
n 5 +4J
For increasing |2n—n'| v approaches |zn—n'|,

but in the critical case of |2n—n’| becoming equal
to zero, v reaches the finite value given by:

.2

12 = 03226 g
n n

For the numerical values used above v/n = ‘01506,
whereas |2n—n’|/n is equal to 01483.

6. In the previous section it has been shown how
a solution may be found for all values of 27—n’, in-
cluding zero, by treating the two characteristic
oscillations together, taking into account the second-
order terms from the beginning. However, at some

- distance from commensurability the equations can

be solved more simply by successive approximations.
This method, where the two characteristic oscillations
are considered independently, has been used in the
present section.

The equations are, up to second-order terms:

&, )
=000,
%§+WO=Q@OM%

and analogous equations for C” etc.; the functions
Q are homogeneous and quadratic in the coeffi-
cients C.

C=Acos (nt+¢) + o

C"= A’ cos (n't + ¢') +

Hence:

= [A cos (nt + o) + (=

—l—[A'cos (n't+ ') +

It is evident that for 2z close to 2’ the equations
cannot be solved in this way, since the second and
fourth terms then get small denominators; however,
by the theory of periodic solutions as used in section
5, this difficulty is avoided, and it is found that for
approximate commensurability the coefficient of the
fourth term has a value of about 4/21/2.

2074 44’7
—n)
1037 A

.—ZM_:)_Z cos | (n'—n) t+ cg'-cp}] Sw +
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The solutions for the equations with right-hand
member equal to zero are:

C = Acos (nt+9),
C" = 4’ cos (n't+9'),
etc.

If a number of free oscillations are excited the
light-curve will be variable, but if there is only one,
the variation of light will be strictly periodic. A
periodic solution of this kind has been sought in the
earlier paper !); it has been derived by a different
method, the displacement not being developed in
terms of the functions s.. It is equivalent to the
solution that would be found if the equations above
for all coefficients C, ¢’ etc. were solved, the right-
hand members consisting only of the term with
argument 2(nt-+9), given by the term proportional
to C? in the functions Q.

If the solutions of the equations to the first order
only are substituted in the quadratic terms, it is
seen that for 2n close to »’ the most important term
in the right-hand member of the first of the equations
above is the one with argument (»'—n) #4-¢’—09, and
in the second one that with argument 2(nf+9),
since these give resonance. The equations for C” etc.
contain no such critical terms and have not been
considered 2). If only the above-mentioned terms
are retained, the equations for C and C’ become:

b G a0y A cos () £+ ¢'— o,
d;g + n"*C" = ‘1037 A’ %" cos 2 (nt + o).

The solutions are:

(n'—n) t+ o' —9 g s

cos {

—yp cos 2 (nt + 9).

1037 4w

. cos 2 (nt+ cp)] Se’ .

The argument of the second term in § may be
written:

ntt+ o4 (n'—2n)t+ o' —20=nt+ 9+ y,

1) B.A.N. 1, p. 265, 1035.
2) It may be stated once more explicitly that primes refer
to the third characteristic vibration.
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that of the third term:
2 (nt+9) + %3
x has the frequency n’—2n. In the neighbourhood
of the commensurability, however, the solution found
in the preceding section must be used instead of the
present one, and the argument y is replaced by an
argument with frequency v; v has the limiting value
1796 V/ Jn.

The displacement is strictly periodic if there is
no free oscillation in C’, so that A’ is equal to zero;
¢ then consists of the first and fourth terms only.
The character of the velocity-curve depends on the
relative values of the two coeflicients, but also on
the sign of the last term, which is here the same as
that of n'—2n, since s» and so’ have the same sign
at the outer boundary. It may be remarked here
that the curves found before ) would have had an
entirely different shape if a slightly different value of
v had been chosen. Therefore the agreement found
with the well-known empirical result that for the
equivalent spectroscopic orbit the distance from node
to periastron is about go°, is more or less accidental.

7. In the variation of light of the cluster-type

% = —n{As@sin (nt4 o) +

The value of 4 is determined by equating the
maximum of —Rd;/dt?) to the observed maximum
radial velocity; this latter has been multiplied with
24/17, to account for the fact that the observed
velocity is an average over the stellar disc, the in-
tensity having been taken proportional to 243 cos S.
The resulting value of 4 reduces the equation to:

- r_lz%‘ = ‘0365 sin (nf - 0) — "0491 sin 2 (nt + ).

This function has two maxima3?), the principal one,
equal to "0764, at ni4-¢ = 128°'35, and the secondary
one of ‘0253 at nf+9 = 36°3. SANFORD actually |
mentions the possibility of a secondary maximum 4). |

Moreover the periodic variation in the epoch of

2074 A’ 1’
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variable RR Lyrae two periods have been found,
one of 0°56685 day and one of 38-21 days, or 67°41
times the short period !). The long period suggests
interference between two approximately commen-
surable frequencies, and therefore the observations
of this star have been interpreted with the aid of the
present analysis. '

Observers of the radial velocity have not men-
tioned the long period, but the radius may be ex-
pected to change with the same periods as the lumi-
nosity 2). If 38-21 days corresponds to the frequency
v, this means that n/v = 674, or n/(2n—n') =
-+ 674, since it has been shown in section 3 that for
RR Lyrae v and |2n—n'| are about equal. It has
also been found there that the development of the
root in the expression for y/(J'/n’) gives a good ap-
proximation, so that the solutions of the preceding
section may be used here. From the shape of the
radial velocity-curve it is seen that the amplitudes
of cos (nt4¢9) and cos 2(nt4-9) have opposite signs;
therefore n’—2n must be negative.

For the interpretation of SANFORD’s velocity-curve,
which is an average one, A" must be taken equal to
zero; hence:

" an S’ sin 2 (nt + o) %
the light-curve exists, with a period of 3821 days

and an amplitude of about ‘o1 day. In order to

" account for this, another free oscillation must be
. brought in, and therefore 4’ must no longer be taken

equal to zero. For the radial velocity the amplitude
of this term will probably also be of the order of a
few hundredths of a day, and for the purpose of
making an estimate of 4’ it has been assumed to be
d-01. Substitution of the boundary values of s» and
sw’ and of the value for 4 found above, gives for the
additional terms in &:

"259 A’ cos (nt+ 9+ ) and 22° 520 A’cos {2 (nt+9) + 1,

so that evidently the first of these may be neglected
as compared with the second one. Therefore:

£ = 0365 cos (n¢ + ¢) — "0246 cosz(nt + 9) + 22520 4’ cos {2 (nt + ¢) + 11,

and, since y is approximately constant during one period of ‘56685 day:

1) lec., p. 270.

2) For R the value given by EppiNneToN in The Internal
Constitution of the Stars, Table 25, p. 182, has been used.

3) The curves, found in B.A.N. 7, p. 270, show, for the
larger values of a;, the same characteristics.

4) 4p. J. 81, p. 151, 1935.

1) Data about the variation of light have been taken from
B.A.N. 6, p. 215, 1932, by A. DE SITTER.

2) The radial velocity-curve used is the one given by
R. F. Sanrorp, 4p. J. 81, p. 149, 1935.
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The additional term changes both the time and
the height of the maximum; the time'is changed by a
periodic term 9%, given by: ‘

1 d¢
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n 0t = 41001 A’ cos (x + 256°70).

Hence the value 4" = ‘0002705 results and:

- = *0248 50 sin (nt + ¢) — *00218 s’ sin 2 (nt + ¢) + ‘0005410 sw’'sin | 2 (vt +9) + x } .

It is seen that in the greater part of the star, where | third term is very small compared with the first
s and s’ are of the same order of magnitude, the | one, whereas at the boundary:

g

15 *0365 sin (nt 4 ¢) — "o491sin 2 (nt + ¢) + ‘or22sin {2 (nt+¢) + x|

n dt

EppiNngToN has pointed out that the reason why
in general only one period is observed, probably is
that the higher characteristic oscillations suffer a
larger dissipation than the first one. Here it is seen
that the third oscillation may, even though it is
relatively small within the star, still give an obser-
vable effect in the radial velocity, as a consequence
of the large increase of s.’, as compared with so,
towards the boundary. The height of the principal
maximum oscillates between ‘0886 and 0642,
which is not incompatible with the observations.

8. Summary.

In this paper the terms of higher order in the
theory of adiabatically pulsating stars have been in-
vestigated, and in particular those of the second
order, for the case of approximate commensurability
between two of the characteristic frequencies.

The displacement has been developed in terms of
the amplitudes of the characteristic oscillations; it
has been found possible to write the differential
equations for the coefficients in this development,
which are functions of the time only, in the canonical
form (sections 3 and 5). In the case where 3—4/y
= 04, the first and third characteristic frequencies
are approximately commensurable. For this value

K

of 3—4/y the solution has been determined insection 5
according to the method given by Dr WovrTjeR, which
is valid for all values of 2n—n’, including zero; the
solution can be studied close to and exactly in the
commensurability. In section 6 the equations are
solved by successive approximations, which procedure
is only possible at some distance from the commen-
surability.

Finally the numerical results have been compared
with the observed changes in radial velocity of RR
Lyrae; the observations have been interpreted with
the assumption that the long period observed in the
variation of light must be attributed to the inter-
ference between the first and third characteristic
oscillations. It has been found that the theoretical
velocity-curve can represent the observations.

The long-periodic change of the epoch may be
explained as a consequence of the free oscillation
with the third characteristic frequency being ex-
cited; although the amplitude of this free oscillation
is rather small in the interior of the star, it still gives
an observable effect in the radial velocity.

With pleasure I express my sincere thanks to
Dr WourTjJeR for kindly having given me his guidance
and advice during the work.
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